Beyond DNA and RNA: the Expanding Toolbox of Synthetic Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Beyond DNA and RNA: the Expanding Toolbox of Synthetic Genetics Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics Alexander I. Taylor, Gillian Houlihan, and Philipp Holliger Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom Correspondence: [email protected] SUMMARY The remarkable physicochemical properties of the natural nucleic acids, DNA and RNA, define modern biology at the molecular level and are widely believed to have been central to life’s origins. However, their ability to form repositories of information as well as functional structures such as ligands (aptamers) and catalysts (ribozymes/DNAzymes) is not unique. A range of nonnatural alternatives, collectively termed xeno nucleic acids (XNAs), are also capable of supporting genetic information storage and propagation as well as evolution. This gives rise to a new field of “synthetic genetics,” which seeks to expand the nucleic acid chemical toolbox for applications in both biotechnology and molecular medicine. In this review, we outline XNA polymerase and reverse transcriptase engineering as a key enabling technology and summarize the application of “synthetic genetics” to the development of aptamers, enzymes, and nanostructures. Outline 1 Introduction 4 Nanoscale engineering using synthetic genetic polymers 2 Polymerase engineering for synthetic genetics 5 Concluding remarks: Worlds beyond RNA? 3 Evolving function using synthetic genetic References polymers Editors: Thomas R. Cech, Joan A. Steitz, and John F. Atkins Additional Perspectives on RNA Worlds available at www.cshperspectives.org Copyright # 2019 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a032490 Cite this article as Cold Spring Harb Perspect Biol 2019;11:a032490 1 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press A.I. Taylor et al. 1 INTRODUCTION this approach promises both new insights into the chemical boundary conditions of genetics as well as new tools to The capacity of DNA and RNA for accessible high-density study and modify biological processes. A prime example information storage and propagation separates nucleic ac- is the modification of nucleobases, utilizing alternative hy- ids from other sequence-defined biopolymers (including drogen bonding patterns, hydrophobic and/or geometric proteins and peptides). This provides both the medium compatibility, or metal ion chelation, toward an expansion and the mechanism for Darwinian evolution and is as of the genetic alphabet in vitro and in vivo, as well as yield- yet unmatched by any other polymer or other molecular ing secondary structure motifs beyond those of DNA and system. Indeed, DNA can store as much as 200 petabytes RNA (reviewed in Lee et al. 2018). Furthermore, in vitro of information per gram with high chemical stability. replication and evolution of nucleic acid variants compris- This function is underpinned by a unique chemistry in- ing backbone chemistries not found in nature (here referred cluding the polyanionic phosphodiester backbone, which to collectively as xeno nucleic acids [XNAs]) yields ligands dominates the physicochemical behavior and thereby (XNA aptamers) and enzymes (XNAzymes), as well as sim- decouples base sequence (i.e., information content) from ple nanostructures with novel properties including in- molecular properties and Watson–Crick base-pairing (a creased biostability (Pinheiro et al. 2012; Yu et al. 2012; combination of hydrogen-bonding and stacking interac- Taylor et al. 2015; 2016). Similarly, expansion of DNA mo- tions), which allows encoding and decoding of information lecular diversity (primarily through pyrimidine C5 substit- in a redundant fashion. uent chemistry) has accelerated aptamer discovery (Gold et al. 2010) and improved nucleic acid catalysts (Zhou et al. 1.1 Natural Chemical Variation 2016; Wang et al. 2018). Here, we provide an overview of the synthetic genetics toolbox, with a special focus on the Given the stringency of molecular requirements for func- impact of replacing the canonical ribofuranose sugar of tion, one might expect the chemical makeup of natural DNA and RNAwith synthetic congeners, informing broad- nucleic acids to be completely uniform. However, consid- er chemical possibilities for biotechnology and genetic erable chemical variation from the cognate DNA and RNA function (Fig. 1). chemistry is found in nature. Such variation is both diverse and widespread, including a range of epigenetic and other markers in both prokaryotic and eukaryotic DNA. Al- though most occur sporadically, some modifications can 2 POLYMERASE ENGINEERING FOR SYNTHETIC completely replace the canonical bases in some bacterio- GENETICS phage genomes (reviewed in Weigele and Raleigh 2016). High-fidelity polymerase enzymes catalyze synthesis and Arguably, such bacteriophages represent genetics based decoding of DNA sequence information with error rates as − on alternative, genetic polymers, suggesting that integration low as 1 × 10 7 coupled with an exquisite substrate specif- of expanded chemistry sets into living systems (xenobiol- icity enforced by both minor groove readout and active site ogy) may be possible (Herdewijn and Marlière 2009). geometrical constraints. This provides for both accurate fi In RNA, in addition to a diverse array of modi cations substrate selection and exclusion of damaged and/or non- found in transfer RNAs (tRNAs) (reviewed in Schimmel cognate nucleotides. Indeed, DNA polymerases must 2018), an expanding range of epigenetic messenger RNA stringently select cognate deoxyribonucleotide triphos- (mRNA) markers modulating translation initiation, RNA phates (dNTPs) from a pool that may contain between half-life, and even decoding by the ribosome have been 10- and 100-fold higher concentration of ribonucleotide discovered (reviewed in Meyer and Jaffrey 2017). triphosphates (NTPs) as incorporation of NTPs into the genome leads to genomic instability. The molecular basis of NTP discrimination lies in bulky amino acid side chains 1.2 Artificial Chemical Variation and Synthetic (e.g., tyrosine in the case of the archaeal polB family po- Genetics lymerases like Thermococcus gorgonarius [Tgo]: Y409) Beyond the natural variations, organic chemistry has ex- (Cozens et al. 2012), which excludes nucleotides with 2′- plored a much wider range of alternative backbones, sugar OH substituents from the polymerase active site. This congeners, and base chemistries with the aim to better de- “steric gate” residue has analogs in all DNA polymerase fine the key molecular parameters required for nucleic acid families and is paradigmatic of the mechanisms poly- function (Eschenmoser 1999). This has recently been ex- merases use to ensure substrate specificity, understanding tended to their potential for genetic information storage, of which will be key for progress in synthetic genetics propagation, and evolution. Termed “synthetic genetics,” (Fig. 1). 2 Cite this article as Cold Spring Harb Perspect Biol 2019;11:a032490 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Beyond DNA and RNA for Synthetic Genetics O O O O O O O O O O O Base Base Base Base Base Base HO F HO N3 HO NHNH2 HO F HO OOH O OH 2′ Fluoro 2′ Azido 2′ Amino FANA ANA TNA O O O O Base O O Base O O O O O Base Base Base Base OH OH HO O OH HO OH H3COCO OH HNA CeNA LNA/BNA 3′deoxy 3′OMe L-RNA HN Base O O O O Base O Base O O Base Base N O HO O O Base O OH OH HO HO OH – O NH O P BH3 AtNA PNA GNA xyNA HOMO-NA O Boranophosphate Figure 1. Chemical structures of unnatural nucleic acids investigated for synthetic genetics. Sugar modifications incorporated by polymerases are shown in red, whereas nucleic acids that currently cannot be synthesized by polymerases are shown in pink. Unnatural chemistries that do not hybridize to natural nucleic acids are shown in blue, and modifications to the phosphodiester backbone are shown in purple. 2.1 Engineering Primer-Dependent RNA 2.2 Engineering Modified DNA and RNA Polymerases Polymerases The comparable simplicity of such molecular checkpoints To incorporate 2′ modified nucleotide substrates, much has inspired efforts to engineer DNA polymerases into work has gone into engineering T7 RNA polymerase primer-dependent RNA polymerases (Houlihan et al. (T7RP) (e.g., for incorporation of dNTPs as well as ′ ′ 2017a). Replacement of the steric gate with less bulky amino 2 F- and 2 N3-pyrimidine triphosphates [YTPs]). One acids can improve NTP incorporation kinetics, up to levels such T7RP is available commercially as DuraScribe (Luci- comparable to dNTP incorporation kinetics by DNA poly- gen Corp.); it enables incorporation of 2′OMe-, 2′F-, and ′ ′ merases, but still precludes RNA synthesis beyond short 2 N3-YTPs or all four 2 OMe-NTPs provided GTP is oligomers. Indeed, a second checkpoint in the thumb also present to enable the initiation step (Burmeister et al. domain was recently discovered that enabled primer-de- 2005). pendent synthesis of longer RNAs (Cozens et al. 2012). DNA polymerases from the polA family have also Primer-dependent RNA synthesis has a number of appli- been extensively engineered for 2′-modified substituents. cations, as it obviates the need to initiate transcription with Phage display was adapted to evolve the Stoffel fragment a5′-pppG and allows a wide range of chemical groups to be of Taq polymerase for 2′OMe-CTP
Recommended publications
  • Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules
    MEDICAL INTELLIGENCE UNIT Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules Christopher G. Janson, M.D. Departments of Neurosurgery, Neurology and Molecular Genetics Cell and Gene Therapy Center UMDNJ-Robert Wood Johnson Medical School Camden, New Jersey, U.S.A. Matthew J. During, M.D., ScD. Department of Molecular Medicine and Pathology University of Auckland Auckland, New Zealand LANDES BIOSCIENCE / EUREKAH.COM KLUWER ACADEMIC / PLENUM PUBLISHERS GEORGETOWN, TEXAS NEW YORK, NEW YORK USA U.SA PEPTIDE NUCLEIC ACIDS, MORPHOLINOS AND RELATED ANTISENSE BIOMOLECULES Medical Intelligence Unit Landes Bioscience / Eurekah.com Kluwer Academic / Plenum Publishers Copyright ©2006 Eurekah.com and Kluwer Academic / Plenum Publishers All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher, vdth the exception of any material supplied specifically for the purpose of being entered and executed on a computer system; for exclusive use by the Purchaser of the work. Printed in the U.S.A. Kluwer Academic / Plenum PubHshers, 233 Spring Street, New York, New York, U.S.A. 10013 http ://www.wkap .nl/ Please address all inquiries to the Publishers: Landes Bioscience / Eurekah.com, 810 South Church Street, Georgetown, Texas, U.S.A. 78626 Phone: 512/ 863 7762; FAX: 512/ 863 0081 http ://v^^ww.eurekah. com http://www.landesbioscience.com Peptide
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0203610 A1 Meller Et Al
    US 20130203610A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0203610 A1 Meller et al. (43) Pub. Date: Aug. 8, 2013 (54) TOOLS AND METHOD FOR NANOPORES Related U.S. Application Data UNZIPPING-DEPENDENT NUCLECACID (60) Provisional application No. 61/318,872, filed on Mar. SEQUENCING 30, 2010. (75) Inventors: Amit Meller, Brookline, MA (US); Alon Publication Classification Singer, Brighton, MA (US) (51) Int. Cl. (73) Assignee: TRUSTEES OF BOSTON CI2O I/68 (2006.01) UNIVERSITY, Boston, MA (US) (52) U.S. Cl. CPC .................................... CI2O I/6874 (2013.01) (21) Appl. No.: 13/638,455 USPC ................................................. 506/6:506/16 (57) ABSTRACT (22) PCT Filed: Mar. 30, 2011 Provided herein is a library that comprises a plurality of molecular beacons (MBs), each MB having a detectable (86). PCT No.: PCT/US2O11AO3O430 label, a detectable label blocker and a modifier group. The S371 (c)(1), library is used in conjunction with nanopore unzipping-de (2), (4) Date: Apr. 17, 2013 pendent sequencing of nucleic acids. Patent Application Publication Aug. 8, 2013 Sheet 1 of 18 US 2013/020361.0 A1 . N s Patent Application Publication Aug. 8, 2013 Sheet 2 of 18 US 2013/020361.0 A1 I’9IAI ::::::::::: Dº3.modoueN Patent Application Publication Aug. 8, 2013 Sheet 3 of 18 US 2013/020361.0 A1 Z’9IAI ~~~~~~~~~);........ Patent Application Publication Aug. 8, 2013 Sheet 4 of 18 US 2013/020361.0 A1 s :·.{-zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz iii. 9 iii.338 lii &S Patent Application Publication Aug. 8, 2013 Sheet 5 of 18 US 2013/020361.0 A1 s r Patent Application Publication Aug.
    [Show full text]
  • Peptide Analogue of Glycol Nucleic Acid†
    Communications to the Editor Bull. Korean Chem. Soc. 2011, Vol. 32, No. 8 2863 DOI 10.5012/bkcs.2011.32.8.2863 γ3PNA: Peptide Analogue of Glycol Nucleic Acid† Taedong Ok, Joohee Lee, and Hee-Seung Lee* Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon 305-701 *E-mail: [email protected] Received February 7, 2011, Accepted February 9, 2011 Key Words : Peptide nucleic acids, GNA In the research of the chemical etiology of nucleic acid chemical yield were obtained with Mmt for γ3C and γ3G, Boc structure, the studies from Eschenmoser group1 and Nielsen for γ3A, respectively. In addition, the order of reactions at the group2 have demonstrated that the Watson-Crick base pairing initial steps turned out to be important for efficient synthesis. can be supported by various backbone derivatives. Inspired by For example, in case of γ3C, the protection of the amino groups the groundbreaking results, other researchers have devoted should be prior to the substitution reaction, whereas the other their attention to finding artificial nucleic acids that can form route worked better for the purine monomers (γ3A and γ3G). duplexes, in which both synthetic accessibility and new The detailed synthetic procedures are summarized in characteristics for potential therapeutic (or diagnostic) use are Scheme 1. The common intermediate bromide 1 was easily desirable aims.3 In this context, GNA (glycol nucleic acid, prepared from (S)-epichlorohydrin (> 99%ee) in three steps Figure 1A) is a promising artificial nucleic acid because it is (34% overall yield).6,7 For the synthesis of γ3A, the bromide 1 structurally very simple with a high atom economy and was reacted with unprotected adenine base in the presence of forms a duplex by Watson-Crick base pairing.4 sodium hydride in DMF for 48 hr at room temperature.
    [Show full text]
  • Nucleotide Metabolism
    NUCLEOTIDE METABOLISM General Overview • Structure of Nucleotides Pentoses Purines and Pyrimidines Nucleosides Nucleotides • De Novo Purine Nucleotide Synthesis PRPP synthesis 5-Phosphoribosylamine synthesis IMP synthesis Inhibitors of purine synthesis Synthesis of AMP and GMP from IMP Synthesis of NDP and NTP from NMP • Salvage pathways for purines • Degradation of purine nucleotides • Pyrimidine synthesis Carbamoyl phosphate synthesisOrotik asit sentezi • Pirimidin nükleotitlerinin yıkımı • Ribonükleotitlerin deoksiribonükleotitlere dönüşümü Basic functions of nucleotides • They are precursors of DNA and RNA. • They are the sources of activated intermediates in lipid and protein synthesis (UDP-glucose→glycogen, S-adenosylmathionine as methyl donor) • They are structural components of coenzymes (NAD(P)+, FAD, and CoA). • They act as second messengers (cAMP, cGMP). • They play important role in carrying energy (ATP, etc). • They play regulatory roles in various pathways by activating or inhibiting key enzymes. Structures of Nucleotides • Nucleotides are composed of 1) A pentose monosaccharide (ribose or deoxyribose) 2) A nitrogenous base (purine or pyrimidine) 3) One, two or three phosphate groups. Pentoses 1.Ribose 2.Deoxyribose •Deoxyribonucleotides contain deoxyribose, while ribonucleotides contain ribose. •Ribose is produced in the pentose phosphate pathway. Ribonucleotide reductase converts ribonucleoside diphosphate deoxyribonucleotide. Nucleotide structure-Base 1.Purine 2.Pyrimidine •Adenine and guanine, which take part in the structure
    [Show full text]
  • Chapter 23 Nucleic Acids
    7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • List of Abbreviations
    List of Abbreviations 1,3BPGA 1,3-Bisphospho-D-glycerate 10-formyl THF 10-Formyltetrahydrofolate 2PG 2-phospho-D-glycerate 3PG 3-phospho-D-glycerate 3PPyr 3-phosphonooxypyruvate 3PSer 3-phosphoserine 6PDG 6-phospho-D-gluconate 6Pgl glucono-1,5-lactone-6-phosphate AcAcACP acetoacetyl-ACP AcAcCoA acetoacetyl-CoA AcACP acetyl-ACP AcCoA acetyl-CoA ACP acyl carrier protein ADP adenosine 5'-diphosphate AKG alpha-ketoglutarate Ala alanine AMP adenosine 5'-monophosphate Arg arginine ArgSuc argininosuccinate Asn asparagine Asp aspartate ATP adenosine 5'-triphosphate CDP cytidine 5'-diphosphate Chol cholesterol Ci citrulline Cit citrate CMP cytidine 5'-monophosphate CO2 carbon dioxide CoA coenzyme A CP carbamoyl-phosphate CTP cytidine 5'-triphosphate Cytc-ox ferricytochrome c Cytc-red ferrocytochrome c dADP 2'-deoxyadenosine 5'-diphosphate dAMP 2'-deoxyadenosine 5'-monophosphate dCDP 2'-deoxycytosine 5'-diphosphate dCMP 2'-deoxycytosine 5'-monophosphate dGDP 2'-deoxyguanosine 5'-diphosphate dGMP 2'-deoxyguanosine 5'-monophosphate DHAP dihydroxyacetone phosphate DHF 7,8-Dihydrofolate dTMP 2'-Deoxythymidine-5'-monophosphate dUDP 2'-Deoxyuridine-5'-diphosphate dUMP 2'-Deoxyuridine-5'-monophosphate Ery4P erythrose-4-phosphate F16BP fructose 1,6-bisphosphate F6P fructose 6-phosphate FAD flavin adenine dinucleotide FADH2 flavin adenine dinucleotide reduced for formate fPP farnesyl diphosphate Fum fumarate G6P glucose 6-phosphate GA guanidinoacetate GA3P glyceraldehyde 3-phosphate GDP guanosine 5'-diphosphate Glc glucose Gln glutamine Glu glutamate GluSA
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation
    G C A T T A C G G C A T genes Review Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation Christian Diwo 1 and Nediljko Budisa 1,2,* 1 Institut für Chemie, Technische Universität Berlin Müller-Breslau-Straße 10, 10623 Berlin, Germany; [email protected] 2 Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada * Correspondence: [email protected] or [email protected]; Tel.: +49-30-314-28821 or +1-204-474-9178 Received: 27 November 2018; Accepted: 21 December 2018; Published: 28 December 2018 Abstract: The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution.
    [Show full text]
  • Biomolecules
    biomolecules Communication MBLinhibitors.com, a Website Resource Offering Information and Expertise for the Continued Development of Metallo-β-Lactamase Inhibitors Zishuo Cheng 1, Caitlyn A. Thomas 1, Adam R. Joyner 2, Robert L. Kimble 1, Aidan M. Sturgill 1 , Nhu-Y Tran 1, Maya R. Vulcan 1, Spencer A. Klinsky 1, Diego J. Orea 1, Cody R. Platt 2, Fanpu Cao 2, Bo Li 2, Qilin Yang 2, Cole J. Yurkiewicz 1, Walter Fast 3 and Michael W. Crowder 1,* 1 Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; [email protected] (Z.C.); [email protected] (C.A.T.); [email protected] (R.L.K.); [email protected] (A.M.S.); [email protected] (N.-Y.T.); [email protected] (M.R.V.); [email protected] (S.A.K.); [email protected] (D.J.O.); [email protected] (C.J.Y.) 2 Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA; [email protected] (A.R.J.); [email protected] (C.R.P.); [email protected] (F.C.); [email protected] (B.L.); [email protected] (Q.Y.) 3 Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy and the LaMontagne Center for Infectious Disease, University of Texas, Austin, TX 78712, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-2813 Received: 17 February 2020; Accepted: 12 March 2020; Published: 16 March 2020 Abstract: In an effort to facilitate the discovery of new, improved inhibitors of the metallo-β-lactamases (MBLs), a new, interactive website called MBLinhibitors.com was developed.
    [Show full text]
  • Recreating Ancient Metabolic Pathways Before Enzymes Kamila B
    Recreating ancient metabolic pathways before enzymes Kamila B. Muchowska, Elodie Chevallot-Beroux, Joseph Moran To cite this version: Kamila B. Muchowska, Elodie Chevallot-Beroux, Joseph Moran. Recreating ancient metabolic path- ways before enzymes. Bioorganic and Medicinal Chemistry, Elsevier, 2019, 27 (12), pp.2292-2297. 10.1016/j.bmc.2019.03.012. hal-02516541 HAL Id: hal-02516541 https://hal.archives-ouvertes.fr/hal-02516541 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered. Recreating ancient metabolic pathways Leave this area blank for abstract info. before enzymes Kamila B. Muchowskaa* , Elodie Chevallot-Berouxa, and Joseph Morana* University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com Recreating ancient metabolic pathways before enzymes Kamila B. Muchowska,a* Elodie Chevallot-Beroux,a and Joseph Morana* a University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France. ARTICLE INFO ABSTRACT Article history: The biochemistry of all living organisms uses complex, enzyme-catalyzed metabolic reaction Received networks.
    [Show full text]
  • Evaluation of Locked Nucleic Acid–Modified Small Interfering RNA in Vitro and in Vivo
    833 Evaluation of locked nucleic acid–modified small interfering RNA in vitro and in vivo Olaf R. Mook, Frank Baas, Marit B. de Wissel, model. Therefore, LNA-modified siRNA should be pre- and Kees Fluiter ferred over unmodified siRNA. [Mol Cancer Ther 2007; 6(3):833–43] Department of Neurogenetics, Academic Medical Center, Amsterdam, the Netherlands Introduction RNA interference (RNAi) is a natural process that affects Abstract gene silencing in eukaryotic systems at transcriptional, RNA interference has become widely used as an experi- posttranscriptional, and/or translational levels (1). Small mental tool to study gene function. In addition, small interfering RNA (siRNA) molecules are the key intermedi- interfering RNA (siRNA) may have great potential for the ates in this process, which can potentially inhibit the treatment of diseases. Recently, it was shown that siRNA expression of any given target gene. siRNA molecules hold can be used to mediate gene silencing in mouse models. great promise as biological tools and as potential thera- Locally administered siRNAs entered the first clinical trials, peutic agents for targeted inhibition of disease-causing but strategies for successful systemic delivery of siRNA genes. are still under development. Challenges still exist about the To optimize the use of siRNA as a therapeutic therapy, stability, delivery, and therapeutic efficacy of siRNA. In several modes of delivery have been tested in vivo. the present study, we compare the efficacy of two Improved delivery in animals has been achieved by methods of systemic siRNA delivery and the effects of complexation with cationic liposomes (2), polyethyleni- siRNA modifications using locked nucleic acids (LNA) in a mine (3), and Arg-Gly-Asp–polyethylene glycol–polyethy- xenograft cancer model.
    [Show full text]
  • Locked Nucleic Acid
    lysi ana s & io B B io f m o e l d a Journal of Mishra and Mukhopadhyay, J Bioanal Biomed 2013, 5:2 i n c r i n u e DOI: 10.4172/1948-593X.1000e114 o J ISSN: 1948-593X Bioanalysis & Biomedicine Editorial OpenOpen Access Access Locked Nucleic Acid (LNA)-based Nucleic Acid Sensors Sourav Mishra and Rupa Mukhopadhyay* Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India In recent times, much developments in the field of ‘nucleic acid may prevent interactions with the solid substrates, [15] and it can have sensors’, especially using alternative nucleic acid probes like peptide multiple water bridges that provide it with extra stability compared to nucleic acid (PNA) and locked nucleic acid (LNA), have taken place. DNA or RNA. It has been shown that both the highest Tm increase Although most of these are concerned with ‘solution phase’ studies, per LNA modification and the best mismatch discrimination are some reports have been made on ‘on-surface’ detection. The latter type achieved for short LNA sequences [16]. In addition to that, LNA of detection is particularly important to nurture, considering clinical phosphoramidites and their oligomers are commercially available, diagnostic applications using microarrays. In this article, we’ll briefly and LNA nucleotides can be mixed with those of the natural nucleic present the primary developments reported in the past two decades, acids for generating heterogeneous probe molecules. These properties along with possibilities for future developments, in case of the LNA- of LNA hold the promise that it can be a potentially better alternative based sensors.
    [Show full text]