Steroid Hormone Bioavailability Is Controlled by the Lymphatic System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Collection
Research Collection Doctoral Thesis Some reactions in the D-ring of the steroids Author(s): Boyce, Sam Framroze Publication Date: 1958 Permanent Link: https://doi.org/10.3929/ethz-a-000089222 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Prom. Nr. 2111 SOME REACTIONS IN THE D-RING 0! THE STEROIDS Thesis presented to The Swiss Federal Institute of Technology Zurich for the Degree of Doctor of Technical Science by SAM FRAMROZE BOYCE Indian Citizen Accepted on the recommendation of Prof. Dr. L. Ruzicka Priv. Doz. Dr. H. Heusser The Commercial Printing Press Private Ltd., Bombay 1958 TO THE MEMORY OF MY DEAR PARENTS ACKNOWLEDGEMENTS For giving me the opportunity to carry out this work, for his encouragement and keen interest during its progress, I here express my deep gratitude to Prof. L. Ruzicka. I am also indebted to Prof. L. Ruzicka and Prof. PI. A. Plattner for guidance of this work. My sincere thanks are also due to P. D. Dr. H. Heussor for his continued co-operation and helpful suggestions during the course of this work. To Prof. V. Prelog, I am obliged for the valuable discussions and critical comments. Finally, I am indebted to Prof. M. Giinthard for the infra-red spectra and to Mr. W. Manser for the micro-analysis. m CONTENTS GENERAL INTRODUCTION 1 Pabt I REARRANGEMENT OF a-HALOGENO-20-KETOSTEROIDS Theoretical Part 3 Experimental Part 10 Pabt Ha BASE CATALYSED REACTIONS WITH A16-3 jS-ACETOXY- 14,15 0-EPOXY-5-ALLOETIOCHOLENIC ACID METHYL ESTER Theoretical Part 18 Experimental Part 27 Pabt lib BASE AND ACID CATALYSED REACTIONS WITH A16-3j3- ACETOXY-14,15/3-EPOXY-20-KETO-5-ALLOPREGNENE Theoretical Part .. -
Intratumoral Estrogen Disposition in Breast Cancer
Published OnlineFirst March 9, 2010; DOI: 10.1158/1078-0432.CCR-09-2481 Published Online First on March 9, 2010 as 10.1158/1078-0432.CCR-09-2481 Clinical Human Cancer Biology Cancer Research Intratumoral Estrogen Disposition in Breast Cancer Ben P. Haynes1, Anne Hege Straume3,4, Jürgen Geisler6, Roger A'Hern7, Hildegunn Helle5, Ian E. Smith2, Per E. Lønning3,5, and Mitch Dowsett1 Abstract Purpose: The concentration of estradiol (E2) in breast tumors is significantly higher than that in plas- ma, particularly in postmenopausal women. The contribution of local E2 synthesis versus uptake of E2 from the circulation is controversial. Our aim was to identify possible determinants of intratumoral E2 levels in breast cancer patients. Experimental Design: The expression of genes involved in estrogen synthesis, metabolism, and sig- naling was measured in 34 matched samples of breast tumor and normal breast tissue, and their corre- lation with estrogen concentrations assessed. Results: ESR1 (9.1-fold; P < 0.001) and HSD17B7 (3.5-fold; P < 0.001) were upregulated in ER+ tumors compared with normal tissues, whereas STS (0.34-fold; P < 0.001) and HSD17B5 (0.23-fold; P < 0.001) were downregulated. Intratumoral E2 levels showed a strong positive correlation with ESR1 expression in all patients (Spearman r = 0.55, P < 0.001) and among the subgroups of postmenopausal (r = 0.76, P < 0.001; n = 23) and postmenopausal ER+ patients (r = 0.59, P = 0.013; n = 17). HSD17B7 expression showed a significant positive correlation (r =0.59,P < 0.001) whereas HSD17B2 (r = −0.46, P = 0.0057) and HSD17B12 (r = −0.45, P = 0.0076) showed significant negative correlations with intratumoral E2 in all patients. -
ACAT) in Cholesterol Metabolism: from Its Discovery to Clinical Trials and the Genomics Era
H OH metabolites OH Review Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era Qimin Hai and Jonathan D. Smith * Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-444-2248 Abstract: The purification and cloning of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzymes and the sterol O-acyltransferase (SOAT) genes has opened new areas of interest in cholesterol metabolism given their profound effects on foam cell biology and intestinal lipid absorption. The generation of mouse models deficient in Soat1 or Soat2 confirmed the importance of their gene products on cholesterol esterification and lipoprotein physiology. Although these studies supported clinical trials which used non-selective ACAT inhibitors, these trials did not report benefits, and one showed an increased risk. Early genetic studies have implicated common variants in both genes with human traits, including lipoprotein levels, coronary artery disease, and Alzheimer’s disease; however, modern genome-wide association studies have not replicated these associations. In contrast, the common SOAT1 variants are most reproducibly associated with testosterone levels. Keywords: cholesterol esterification; atherosclerosis; ACAT; SOAT; inhibitors; clinical trial Citation: Hai, Q.; Smith, J.D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its 1. Introduction Discovery to Clinical Trials and the The acyl-coenzyme A:cholesterol acyltransferase (ACAT; EC 2.3.1.26) enzyme family Genomics Era. Metabolites 2021, 11, consists of membrane-spanning proteins, which are primarily located in the endoplasmic 543. https://doi.org/10.3390/ reticulum [1]. -
Hsd17b1) Inhibitor for Endometriosis
DEVELOPMENT OF HYDROXYSTEROID (17-BETA) DEHYDROGENASE TYPE 1 (HSD17B1) INHIBITOR FOR ENDOMETRIOSIS Niina Saarinen1,2, Tero Linnanen1, Jasmin Tiala1, Camilla Stjernschantz1, Leena Hirvelä1, Taija Heinosalo2, Bert Delvoux3, Andrea Romano3, Gabriele Möller4, Jerzy Adamski4, Matti Poutanen2, Pasi Koskimies1 1Forendo Pharma Ltd, Finland; 2Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Finland; 3Department of Obstetrics and Gynaecology; GROW, School for Oncology and Developmental Biology; Maastricht University Medical Centre, The Netherlands; 4Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Germany BACKGROUND OBJECTIVE Local activation of estrogens in endometriosis tissue The main objective of the present work was to assess is considered important for growth of the lesions. the preclinical efficacy of the novel HSD17B1 inhibitor, Hydroxysteroid (17-beta) dehydrogenase type 1 FOR-6219 (HSD17B1) is expressed in endometriosis tissue and converts the biologically low-active estrogen, estrone (E1), to the highly active estradiol (E2), while hydroxysteroid (17-beta) dehydrogenase type 2 (HSD17B2), catalyzes the opposite reaction. In contrast to eutopic endometrium, in endometriotic lesions the HSD17B1/HSD17B2 expression ratio is increased and E2 levels are higher than those of E1 throughout the menstrual cycle. Thus, inhibition of HSD17B1 is considered as a feasible strategy for lowering local E2 production in endometriosis. MAIN RESULTS FOR-6219 inhibits human HSD17B1 Ø FOR-6219 is a potent and FOR-6219 does not trigger estrogenic fully selective inhibitor of response in immature rat uterine human HSD17B1 over growth assay HSD17B2 Ø FOR-6219 does not bind to estrogen receptor α or β, and exhibits no estrogen-like response in immature rat uterotrophic assay Ø FOR-6219 inhibits HSD17B1 in cynomolgus monkey, dog and rabbit i.e. -
Functional Silencing of HSD17B2 in Prostate Cancer Promotes Disease Progression
Published OnlineFirst September 18, 2018; DOI: 10.1158/1078-0432.CCR-18-2392 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Functional Silencing of HSD17B2 in Prostate Cancer Promotes Disease Progression Xiaomei Gao1,2, Charles Dai3, Shengsong Huang4, Jingjie Tang1,2, Guoyuan Chen1, Jianneng Li3, Ziqi Zhu3, Xuyou Zhu5, Shuirong Zhou1,2, Yuanyuan Gao1,2, Zemin Hou1,2, Zijun Fang1,2, Chengdang Xu4, Jianyang Wang1,2, Denglong Wu4, Nima Sharifi3,6,7, and Zhenfei Li1,2 Abstract Purpose: Steroidogenic enzymes are essential for prostate (DHT) to each of their upstream precursors. HSD17B2 over- cancer development. Enzymes inactivating potent androgens expression suppressed androgen-induced cell proliferation were not investigated thoroughly, which leads to limited inter- and xenograft growth. Multiple mechanisms were involved ference strategies for prostate cancer therapy. Here we charac- in HSD17B2 functional silencing including DNA methylation terizedtheclinical relevance,significance, andregulation mech- and mRNA alternative splicing. DNA methylation decreased anism of enzyme HSD17B2 in prostate cancer development. the HSD17B2 mRNA level. Two new catalytic-deficient iso- Experimental Design: HSD17B2 expression was detected forms, generated by alternative splicing, bound to wild-type with patient specimens and prostate cancer cell lines. Function 17bHSD2 and promoted its degradation. Splicing factors of HSD17B2 in steroidogenesis, androgen receptor (AR) sig- SRSF1 and SRSF5 participated in the generation of new naling, and tumor growth was investigated with prostate isoforms. cancer cell lines and a xenograft model. DNA methylation Conclusions: Our findings provide evidence of the clinical and mRNA alternative splicing were investigated to unveil the relevance, significance, and regulation of HSD17B2 in prostate mechanisms of HSD17B2 regulation. -
Effect of Isopregnanolone on Rapid Tolerance to the Anxiolytic Effect of Ethanol Influência Da Isopregnenolona Na Tolerância R
18 ORIGINAL ARTICLE Effect of isopregnanolone on rapid tolerance to the anxiolytic effect of ethanol Influência da isopregnenolona na tolerância rápida ao efeito ansiolítico do etanol Thaize Debatin,1 Adriana Dias Elpo Barbosa2 Original version accepted in Portuguese Abstract Objective: It has been shown that neurosteroids can either block or stimulate the development of chronic and rapid tolerance to the incoordination and hypothermia caused by ethanol consumption. The aim of the present study was to investigate the influence of isopregnanolone on the development of rapid tolerance to the anxiolytic effect of ethanol in mice. Method: Male Swiss mice were pretreated with isopregnanolone (0.05, 0.10 or 0.20 mg/kg) 30 min before administration of ethanol (1.5 g/kg). Twenty-four hours later, all animals we tested using the plus-maze apparatus. The first experiment defined the doses of ethanol that did or did not induce rapid tolerance to the anxiolytic effect of ethanol. In the second, the influence of pretreatment of mice with isopregnanolone (0.05, 0.10 or 0.20 mg/kg) on rapid tolerance to ethanol (1.5 g/kg) was studied. Conclusions: The results show that pretreatment with isopregnanolone interfered with the development of rapid tolerance to the anxiolytic effect of ethanol. Keywords: Ethanol; Drug tolerance; Anti-anxiety agents; Mice; Alcoholism Resumo Objetivo: Estudos prévios têm mostrado que os neuroesteróides podem bloquear ou estimular o desenvolvimento da tolerância rápida e crônica aos efeitos de incoordenação e hipotermia produzidos pelo etanol. O objetivo do presente estudo foi investigar a influência da isopregnenolona sobre o desenvolvimento da tolerância rápida ao efeito ansiolítico do etanol em camundongos. -
Supplementary Table 1 List of 335 Genes Differentially Expressed Between Primary (P) and Metastatic (M) Tumours
Supplementary Table 1 List of 335 genes differentially expressed between primary (P) and metastatic (M) tumours Spot ID I.M.A.G.E. UniGene Symbol Name Clone ID Cluster 296529 296529 In multiple clusters 731356 731356 Hs.140452 M6PRBP1 mannose-6-phosphate receptor binding protein 1 840942 840942 Hs.368409 HLA-DPB1 major histocompatibility complex, class II, DP beta 1 142122 142122 Hs.115912 AFAP actin filament associated protein 1891918 1891918 Hs.90073 CSE1L CSE1 chromosome segregation 1-like (yeast) 1323432 1323432 Hs.303154 IDS iduronate 2-sulfatase (Hunter syndrome) 788566 788566 Hs.80296 PCP4 Purkinje cell protein 4 591281 591281 Hs.80680 MVP major vault protein 815530 815530 Hs.172813 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 825312 825312 Hs.246310 ATP5J ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 784830 784830 Hs.412842 C10orf7 chromosome 10 open reading frame 7 840878 840878 Hs.75616 DHCR24 24-dehydrocholesterol reductase 669443 669443 Hs.158195 HSF2 heat shock transcription factor 2 2485436 2485436 Data not found 82903 82903 Hs.370937 TAPBP TAP binding protein (tapasin) 771258 771258 Hs.85258 CD8A CD8 antigen, alpha polypeptide (p32) 85128 85128 Hs.8986 C1QB complement component 1, q subcomponent, beta polypeptide 41929 41929 Hs.39252 PICALM phosphatidylinositol binding clathrin assembly protein 148469 148469 Hs.9963 TYROBP TYRO protein tyrosine kinase binding protein 415145 415145 Hs.1376 HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 810017 810017 Hs.179657 PLAUR plasminogen activator, -
Epipregnanolone and a Novel Synthetic Neuroactive Steroid Reduce Reduce Alcohol Self- Administration in Rats
University of Texas at El Paso From the SelectedWorks of Laura Elena O'Dell 2005 Epipregnanolone and a novel synthetic neuroactive steroid reduce reduce alcohol self- administration in rats. Laura O'Dell, University of Texas at El Paso Available at: https://works.bepress.com/laura_odell/23/ Pharmacology, Biochemistry and Behavior 81 (2005) 543 – 550 www.elsevier.com/locate/pharmbiochembeh Epipregnanolone and a novel synthetic neuroactive steroid reduce alcohol self-administration in rats L.E. O’Della,b, R.H. Purdya,c,d, D.F. Coveye, H.N. Richardsona, M. Robertoa, G.F. Kooba,* aDepartment of Neuropharmacology, The Scripps Research Institute, CVN-7, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA bDepartment of Psychology, The University of Texas at El Paso, El Paso, TX, USA cDepartment of Psychiatry, University of California San Diego, La Jolla, CA, USA dDepartment of Veterans Affairs Medical Center and Veterans Medical Research Foundation, San Diego, CA, USA eDepartment of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA Received 6 September 2004; received in revised form 14 March 2005; accepted 31 March 2005 Available online 9 June 2005 Abstract This study was designed to compare the effects of several neuroactive steroids with varying patterns of modulation of g-aminobutyric acid (GABA)A and NMDA receptors on operant self-administration of ethanol or water. Once stable responding for 10% (w/v) ethanol was achieved, separate test sessions were conducted in which male Wistar rats were allowed to self-administer ethanol or water following pre-treatment with vehicle or one of the following neuroactive steroids: (3h,5h)-3-hydroxypregnan-20-one (epipregnanolone; 5, 10, 20 mg/kg; n =12), (3a,5h)-20-oxo-pregnane-3-carboxylic acid (PCA; 10, 20, 30 mg/kg; n =10), (3a,5h)-3-hydroxypregnan-20-one hemisuccinate (pregnanolone hemisuccinate; 5, 10, 20 mg/kg; n =12) and (3a,5a)-3-hydroxyandrostan-17-one hemisuccinate (androsterone hemisuccinate; 5, 10, 20 mg/kg; n =11). -
Download Product Insert (PDF)
PRODUCT INFORMATION Epipregnanolone Item No. 34295 CAS Registry No.: 128-21-2 O Formal Name: (5β)-3β-hydroxy-pregnan-20-one Synonyms: NSC 21450, 5β-Pregnan-3β-ol-20-one MF: C21H34O2 FW: 318.5 H Purity: ≥98% H H Supplied as: A solid Storage: -20°C HO Stability: ≥2 years H Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Epipregnanolone is supplied as a solid. A stock solution may be made by dissolving the epipregnanolone in the solvent of choice, which should be purged with an inert gas. Epipregnanolone is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of epipregnanolone in ethanol is approximately 5 mg/ml and approximately 30 mg/ml in DMSO and DMF. Description Epipregnanolone is a neurosteroid and an active metabolite of the steroid hormone pregnenolone (Item No. 19864).1 It is enzymatically formed from prognenolone via the intermediates progesterone (Item No. 15876) and 5β-dihydroprogesterone in the placenta.2 Epipregnanolone inhibits spontaneous 3 contractions in myometrial strips isolated from at-term pregnant women (IC50 = 156 µM). Epipregnanolone (10 and 20 mg/kg) decreases operant alcohol self-administration in rats.4 Maternal plasma levels of epipregnanolone increase over the duration of pregnancy. References 1. Prince, R.J. and Simmonds, M.A. 5β-pregnan-3β-ol-20-one, a specific antagonist at the neurosteroid site of the GABAA receptor-complex. Neurosci. Lett. 135(2), 273-275 (1992). 2. Hill, M., Cibula, D., Havlíkova, H., et al. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. -
Neurosteroid Metabolism in the Human Brain
European Journal of Endocrinology (2001) 145 669±679 ISSN 0804-4643 REVIEW Neurosteroid metabolism in the human brain Birgit Stoffel-Wagner Department of Clinical Biochemistry, University of Bonn, 53127 Bonn, Germany (Correspondence should be addressed to Birgit Stoffel-Wagner, Institut fuÈr Klinische Biochemie, Universitaet Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany; Email: [email protected]) Abstract This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now ®rmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5a-reductase, 3a-hydroxysteroid dehydrogenase and 17b-hydroxysteroid dehydrogenase in human brain. The functions attributed to speci®c neurosteroids include modulation of g-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The ®rst clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and -
Convergence of Multiple Mechanisms of Steroid Hormone Action
Review 569 Convergence of Multiple Mechanisms of Steroid Hormone Action Authors S. K. Mani 1 * , P. G. Mermelstein 2 * , M. J. Tetel 3 * , G. Anesetti 4 * Affi liations 1 Department of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX, USA 2 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA 3 Neuroscience Program, Wellesley College, Wellesley, MA, USA 4 Departamento de Hostologia y Embriologia, Facultad de Medicine, Universidad de la Republica, Montevideo, Uruguay Key words Abstract receptors can also be activated in a “ligand-inde- ● ▶ estrogen ▼ pendent” manner by other factors including neu- ● ▶ progesterone Steroid hormones modulate a wide array of rotransmitters. Recent studies indicate that rapid, ▶ ● signaling physiological processes including development, nonclassical steroid eff ects involve extranuclear ● ▶ cross-talk metabolism, and reproduction in various species. steroid receptors located at the membrane, which ● ▶ ovary ● ▶ brain It is generally believed that these biological eff ects interact with cytoplasmic kinase signaling mol- are predominantly mediated by their binding to ecules and G-proteins. The current review deals specifi c intracellular receptors resulting in con- with various mechanisms that function together formational change, dimerization, and recruit- in an integrated manner to promote hormone- ment of coregulators for transcription-dependent dependent actions on the central and sympathetic genomic actions (classical mechanism). In addi- nervous systems. tion, to their cognate ligands, intracellular steroid Abbreviations gene expression and function. Interestingly, not ▼ all the “classical” receptors are intranuclear and CBP CREB binding protein can be associated at the membrane. As described CRE CREB response element in this review, extranuclear ERs and PRs at the DAR Dopamine receptor (DAR) membrane or in the cytoplasm can interact with ER Estrogen receptor G proteins and signaling kinases, and other G received 13 . -
University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN
This dissertation has been Mic 61-2820 microfilmed exactly as received BESCH, Paige Keith. ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG. The Ohio State University, Ph.D., 1961 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Paige Keith Besch, B. S., M. S. The Ohio State University 1961 Approved by Katharine A. Brownell Department of Physiology DEDICATION This work is dedicated to my wife, Dr. Norma F. Besch. After having completed her graduate training, she was once again subjected to almost social isolation by the number of hours I spent away from home. It is with sincerest appreciation for her continual encouragement that I dedi cate this to her. ACKNOWLEDGMENTS I wish to acknowledge the assistance and encourage ment of my Professor, Doctor Katharine A. Brownell. Equally important to the development of this project are the experience and information obtained through the association with Doctor Frank A. Hartman, who over the years has, along with Doctor Brownell, devoted his life to the development of many of the techniques used in this study. It is also with extreme sincerity that I wish to ac knowledge the assistance of Mr. David J. Watson. He has never complained when asked to work long hours at night or weekends. Our association has been a fruitful one. I also wish to acknowledge the encouragement of my former Professor, employer and good friend, Doctor Joseph W.