Treating Endometriosis

Total Page:16

File Type:pdf, Size:1020Kb

Treating Endometriosis ADVERTISEMENT FEATURE Forendo Pharma forendo.com Treating endometriosis By using a tissue-specific hormone inhibitor to rebalance local estrogen metabolism, Forendo Pharma could provide long-term treatment to millions of women suffering from endometriosis. With its expertise in tissue-specific hormone O OH therapies, the Finnish company Forendo Pharma HSD17B1 is tackling endometriosis, a condition that affects 10% of women of childbearing age. “Endometriosis is a difficult condition to treat, mainly because the estrogen-deficiency symptoms generated by HSD17B2 the currently used drugs prevent long-term use. HO HO profile Unlike these therapies, our strategy uses novel Estrone (E1) Estradiol (E2) 17-β-hydroxysteroid dehydrogenase (HSD17B) * Low activity * Highly active inhibitors which act locally, without impacting the Figure 1: Forendo’s FOR-6219. The basic concept behind the HSD17B1 inhibitor involves blockage of the systemic estrogen level,” said company CEO Risto conversion of estrone to estradiol. Lammintausta. The company was founded in 2013 by Finnish estrogen action, by converting non-active estrone cannot be controlled with hormonal therapies or drug development pioneers to exploit the find- into active estradiol within endometrial cells. When even surgery. “Whilst more efficient tools for diagno- ings of leading endocrinology researchers Matti this pathway is blocked, the build-up of high levels sis also need to be developed in order to provide an Poutanen and Antti Perheentupa, from the University of the estrogenic hormone estradiol is prevented, opportunity to treat women at an earlier stage and of Turku and Turku University Hospital, Finland. Led which will limit the ability of endometrial cells to form prevent these problems, HSD17B1 inhibitors offer a by Lammintausta, who has over 30 years of experi- endometriotic lesions. treatment option that could be offered before reach- ence in pharmaceutical R&D, and with substantial “Using HSD17B1 inhibitors we have shown that we ing these stages,” said Perheentupa. international investment from funds including Novo can inhibit estradiol production inside human endo- “Effective therapies for relief of endometriosis- Seeds, Karolinska Development, Novartis Venture metriosis samples ex vivo,” explained Lammintausta. associated pain that have minimal side effects com- Fund, Merck Ventures and Innovestor, the company Forendo’s potent and selective lead compounds prise the ‘holy grail’ of endometriosis management as is growing and expects its first endometriosis drug to have also demonstrated in vivo proof of efficacy in a stand-alone approaches or adjunctively with surgery. enter clinical development in 2018. primate disease model of endometriosis. Novel inhibition of HSD17B1 offers great promise in Endometriosis occurs when endometrial tissue, this field, which has significant morbidity and unmet normally formed in the lining of the uterus, starts to clinical needs in those affected,” said Linda Giudice, grow outside the uterine cavity, creating endome- Novel inhibition of professor of obstetrics, gynecology and reproductive triotic lesions. This can lead to painful periods and HSD17B1 offers sciences at the University of California, San Francisco, ovulation, pain during or after sexual intercourse, and chair of Forendo’s Advisory Board. abnormal bleeding, chronic pelvic pain, fatigue and great promise in this field, Forendo Pharma’s HSD17B1-inhibitor drug can- infertility. There is no known cure for the condition, which has significant didate, FOR-6219, is now progressing into clinical which is estimated to affect 170 million women and development. The company plans to take the drug teen girls. morbidity and unmet through clinical proof of concept before partnering “Efficient drug treatments are currently based on clinical“ needs for further development stages. Forendo’s pipeline suppression of ovarian estrogen synthesis or antago- also includes fispemifene, a selective estrogen- nizing estrogen action,” explained Poutanen. “These receptor modulator that is a phase 2 asset for the systemic therapies lead to estrogen deprivation Linda Giudice, professor of obstetrics, treatment of male urological conditions. The com- but often offer only modest efficacy. They also have gynecology and reproductive sciences, pany is open to opportunities to use its expertise harmful safety profiles, and can cause loss of bone University of California in tissue-specific hormone mechanisms for other density and several menopause-like side effects that applications and in 2018 will seek series B funding preclude long-term use.” There are potentially multiple benefits to this to broaden its women’s health pipeline. “With our inhibition, including reduced endometrial cell prolif- tissue-specific hormone therapeutics approach, Endometriosis development candidate eration and diminished inflammation, but one of the Forendo is well placed to make a real difference to Forendo Pharma has developed a novel clinical biggest advantages will be the reduction in off-target women’s health in the near future, and we look for- candidate compound that blocks the formation of effects. “Selectivity is a critical feature, and inhibiting ward to working with partners to make this happen,” high levels of the potent estrogen estradiol, which the local estradiol production with HSD17B1 inhibi- said Lammintausta. is responsible for the proliferation of endometriotic tors is likely to have long-term tolerability, providing lesions and contributes to pain. Most important, a long-term treatment option for the often young it does this without affecting ovarian hormone and active women who suffer from the condition,” Maarit Merla, Head of production. The concept, developed together with Lammintausta added. Business Development the University of Turku scientists, is based on the pre- Part of the problem with the disease has been Forendo Pharma viously unexploited drug target HSD17B1. the delay in diagnosis and treatment, which leads Turku, Finland contact The endometriotic tissue of women with endo- to further complications and often means that the Tel: +358 40 3108023 metriosis shows high estrogen levels. The enzyme disease has progressed. In such cases the patient may Email: [email protected] HSD17B1 is part of the mechanism that regulates present with infertility symptoms or chronic pain that ADVERTISER RETAINS SOLE RESPONSIBILITY FOR CONTENT biopharmadealmakers.nature.com | September 2017 | B25 ©2017 Mac millan Publishers Li mited. All ri ghts reserved. .
Recommended publications
  • Intratumoral Estrogen Disposition in Breast Cancer
    Published OnlineFirst March 9, 2010; DOI: 10.1158/1078-0432.CCR-09-2481 Published Online First on March 9, 2010 as 10.1158/1078-0432.CCR-09-2481 Clinical Human Cancer Biology Cancer Research Intratumoral Estrogen Disposition in Breast Cancer Ben P. Haynes1, Anne Hege Straume3,4, Jürgen Geisler6, Roger A'Hern7, Hildegunn Helle5, Ian E. Smith2, Per E. Lønning3,5, and Mitch Dowsett1 Abstract Purpose: The concentration of estradiol (E2) in breast tumors is significantly higher than that in plas- ma, particularly in postmenopausal women. The contribution of local E2 synthesis versus uptake of E2 from the circulation is controversial. Our aim was to identify possible determinants of intratumoral E2 levels in breast cancer patients. Experimental Design: The expression of genes involved in estrogen synthesis, metabolism, and sig- naling was measured in 34 matched samples of breast tumor and normal breast tissue, and their corre- lation with estrogen concentrations assessed. Results: ESR1 (9.1-fold; P < 0.001) and HSD17B7 (3.5-fold; P < 0.001) were upregulated in ER+ tumors compared with normal tissues, whereas STS (0.34-fold; P < 0.001) and HSD17B5 (0.23-fold; P < 0.001) were downregulated. Intratumoral E2 levels showed a strong positive correlation with ESR1 expression in all patients (Spearman r = 0.55, P < 0.001) and among the subgroups of postmenopausal (r = 0.76, P < 0.001; n = 23) and postmenopausal ER+ patients (r = 0.59, P = 0.013; n = 17). HSD17B7 expression showed a significant positive correlation (r =0.59,P < 0.001) whereas HSD17B2 (r = −0.46, P = 0.0057) and HSD17B12 (r = −0.45, P = 0.0076) showed significant negative correlations with intratumoral E2 in all patients.
    [Show full text]
  • Hsd17b1) Inhibitor for Endometriosis
    DEVELOPMENT OF HYDROXYSTEROID (17-BETA) DEHYDROGENASE TYPE 1 (HSD17B1) INHIBITOR FOR ENDOMETRIOSIS Niina Saarinen1,2, Tero Linnanen1, Jasmin Tiala1, Camilla Stjernschantz1, Leena Hirvelä1, Taija Heinosalo2, Bert Delvoux3, Andrea Romano3, Gabriele Möller4, Jerzy Adamski4, Matti Poutanen2, Pasi Koskimies1 1Forendo Pharma Ltd, Finland; 2Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Finland; 3Department of Obstetrics and Gynaecology; GROW, School for Oncology and Developmental Biology; Maastricht University Medical Centre, The Netherlands; 4Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Germany BACKGROUND OBJECTIVE Local activation of estrogens in endometriosis tissue The main objective of the present work was to assess is considered important for growth of the lesions. the preclinical efficacy of the novel HSD17B1 inhibitor, Hydroxysteroid (17-beta) dehydrogenase type 1 FOR-6219 (HSD17B1) is expressed in endometriosis tissue and converts the biologically low-active estrogen, estrone (E1), to the highly active estradiol (E2), while hydroxysteroid (17-beta) dehydrogenase type 2 (HSD17B2), catalyzes the opposite reaction. In contrast to eutopic endometrium, in endometriotic lesions the HSD17B1/HSD17B2 expression ratio is increased and E2 levels are higher than those of E1 throughout the menstrual cycle. Thus, inhibition of HSD17B1 is considered as a feasible strategy for lowering local E2 production in endometriosis. MAIN RESULTS FOR-6219 inhibits human HSD17B1 Ø FOR-6219 is a potent and FOR-6219 does not trigger estrogenic fully selective inhibitor of response in immature rat uterine human HSD17B1 over growth assay HSD17B2 Ø FOR-6219 does not bind to estrogen receptor α or β, and exhibits no estrogen-like response in immature rat uterotrophic assay Ø FOR-6219 inhibits HSD17B1 in cynomolgus monkey, dog and rabbit i.e.
    [Show full text]
  • Forendo Pharma Announces the US Licensing of Fispemifene to Apricus Biosciences Targeting Urological Conditions in Men
    Forendo Pharma announces the US licensing of fispemifene to Apricus Biosciences targeting urological conditions in men STOCKHOLM, October 20, 2014. Forendo Pharma Oy, a Karolinska Development AB portfolio company, announced today that it has entered into a definitive agreement to out- license the US development and commercialization rights for fispemifene to Apricus Biosciences Inc. Forendo is entitled to success driven milestone payments totaling up to of $305 million plus sales royalties. Karolinska Development has an ownership of 21 percent in Forendo Pharma. Under the terms of the agreement, Apricus will make a $5 million upfront cash payment to Forendo, and will transfer approximately 3.6 million Apricus common shares, representing $7.5 million in value based on the 360-day average market price of the Apricus stock. The agreement includes additional potential clinical and regulatory milestones payments to Forendo for up to $45 million, including FDA approval, as well as commercial milestone payments totaling up to $260 million based on achieving specified annual net sales of fispemifene levels up to $1 billion in the US. Apricus will also pay tiered double-digit royalties based on net sales once the product is commercialized. Apricus will be responsible for the clinical development and costs of the program, as well as all future commercialization in the US. Apricus anticipates to commence a Phase IIb clinical trial during the first half of 2015 to confirm the optimal fispemifene doses to treat men with secondary hypogonadism, and provide proof-of-concept data to evaluate the anti-estrogenic and anti-inflammatory effects on the lower urinary tract and prostate in aging men.
    [Show full text]
  • Functional Silencing of HSD17B2 in Prostate Cancer Promotes Disease Progression
    Published OnlineFirst September 18, 2018; DOI: 10.1158/1078-0432.CCR-18-2392 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Functional Silencing of HSD17B2 in Prostate Cancer Promotes Disease Progression Xiaomei Gao1,2, Charles Dai3, Shengsong Huang4, Jingjie Tang1,2, Guoyuan Chen1, Jianneng Li3, Ziqi Zhu3, Xuyou Zhu5, Shuirong Zhou1,2, Yuanyuan Gao1,2, Zemin Hou1,2, Zijun Fang1,2, Chengdang Xu4, Jianyang Wang1,2, Denglong Wu4, Nima Sharifi3,6,7, and Zhenfei Li1,2 Abstract Purpose: Steroidogenic enzymes are essential for prostate (DHT) to each of their upstream precursors. HSD17B2 over- cancer development. Enzymes inactivating potent androgens expression suppressed androgen-induced cell proliferation were not investigated thoroughly, which leads to limited inter- and xenograft growth. Multiple mechanisms were involved ference strategies for prostate cancer therapy. Here we charac- in HSD17B2 functional silencing including DNA methylation terizedtheclinical relevance,significance, andregulation mech- and mRNA alternative splicing. DNA methylation decreased anism of enzyme HSD17B2 in prostate cancer development. the HSD17B2 mRNA level. Two new catalytic-deficient iso- Experimental Design: HSD17B2 expression was detected forms, generated by alternative splicing, bound to wild-type with patient specimens and prostate cancer cell lines. Function 17bHSD2 and promoted its degradation. Splicing factors of HSD17B2 in steroidogenesis, androgen receptor (AR) sig- SRSF1 and SRSF5 participated in the generation of new naling, and tumor growth was investigated with prostate isoforms. cancer cell lines and a xenograft model. DNA methylation Conclusions: Our findings provide evidence of the clinical and mRNA alternative splicing were investigated to unveil the relevance, significance, and regulation of HSD17B2 in prostate mechanisms of HSD17B2 regulation.
    [Show full text]
  • TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub
    US 20200187851A1TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0187851 A1 Offenbacher et al. (43 ) Pub . Date : Jun . 18 , 2020 ( 54 ) PERIODONTAL DISEASE STRATIFICATION (52 ) U.S. CI. AND USES THEREOF CPC A61B 5/4552 (2013.01 ) ; G16H 20/10 ( 71) Applicant: The University of North Carolina at ( 2018.01) ; A61B 5/7275 ( 2013.01) ; A61B Chapel Hill , Chapel Hill , NC (US ) 5/7264 ( 2013.01 ) ( 72 ) Inventors: Steven Offenbacher, Chapel Hill , NC (US ) ; Thiago Morelli , Durham , NC ( 57 ) ABSTRACT (US ) ; Kevin Lee Moss, Graham , NC ( US ) ; James Douglas Beck , Chapel Described herein are methods of classifying periodontal Hill , NC (US ) patients and individual teeth . For example , disclosed is a method of diagnosing periodontal disease and / or risk of ( 21) Appl. No .: 16 /713,874 tooth loss in a subject that involves classifying teeth into one of 7 classes of periodontal disease. The method can include ( 22 ) Filed : Dec. 13 , 2019 the step of performing a dental examination on a patient and Related U.S. Application Data determining a periodontal profile class ( PPC ) . The method can further include the step of determining for each tooth a ( 60 ) Provisional application No.62 / 780,675 , filed on Dec. Tooth Profile Class ( TPC ) . The PPC and TPC can be used 17 , 2018 together to generate a composite risk score for an individual, which is referred to herein as the Index of Periodontal Risk Publication Classification ( IPR ) . In some embodiments , each stage of the disclosed (51 ) Int. Cl. PPC system is characterized by unique single nucleotide A61B 5/00 ( 2006.01 ) polymorphisms (SNPs ) associated with unique pathways , G16H 20/10 ( 2006.01 ) identifying unique druggable targets for each stage .
    [Show full text]
  • WO 2018/190970 Al 18 October 2018 (18.10.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/190970 Al 18 October 2018 (18.10.2018) W !P O PCT (51) International Patent Classification: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, CI2Q 1/32 (2006.01) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (21) International Application Number: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, PCT/US2018/021 109 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (22) International Filing Date: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 06 March 2018 (06.03.2018) KM, ML, MR, NE, SN, TD, TG). (25) Filing Language: English Declarations under Rule 4.17: (26) Publication Langi English — as to applicant's entitlement to apply for and be granted a patent (Rule 4.1 7(H)) (30) Priority Data: — as to the applicant's entitlement to claim the priority of the 62/484,141 11 April 2017 ( 11.04.2017) US earlier application (Rule 4.17(Hi)) (71) Applicant: REGENERON PHARMACEUTICALS, Published: INC. [US/US]; 777 Old Saw Mill River Road, Tarrytown, — with international search report (Art. 21(3)) New York 10591-6707 (US). — with sequence listing part of description (Rule 5.2(a)) (72) Inventors: STEVIS, Panayiotis; 777 Old Saw Mill Riv er Road, Tarrytown, New York 10591-6707 (US).
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • The Regulation of Hydroxysteroid 17Β-Dehydrogenase Type 1 and 2
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 37), pp: 62183-62194 Research Paper The regulation of hydroxysteroid 17β-dehydrogenase type 1 and 2 gene expression in breast cancer cell lines by estradiol, dihydrotestosterone, microRNAs, and genes related to breast cancer Erik Hilborn1, Olle Stål1, Andrey Alexeyenko2,3 and Agneta Jansson1 1Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden 2Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden 3National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Solna, Sweden Correspondence to: Erik Hilborn, email: [email protected] Keywords: breast cancer, HSD17B1, HSD17B2, miRNA Received: September 23, 2016 Accepted: June 01, 2017 Published: July 10, 2017 Copyright: Hilborn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Aim: To investigate the influence of estrogen, androgen, microRNAs, and genes implicated in breast cancer on the expression of HSD17B1 and HSD17B2. Materials: Breast cancer cell lines ZR-75-1, MCF7, T47D, SK-BR-3, and the immortalized epithelial cell line MCF10A were used. Cells were treated either with estradiol or dihydrotestosterone for 6, 24, 48 hours, or 7 days or treated with miRNAs or siRNAs predicted to influence HSD17B expression. Results and discussion: Estradiol treatment decreased HSD17B1 expression and had a time-dependent effect on HSD17B2 expression. This effect was lost in estrogen receptor-α down-regulated or negative cell lines.
    [Show full text]
  • The Resilience of a Potent Androgen in Prostate Cancer Patients After Castration
    11-Ketotestosterone: the resilience of a potent androgen in prostate cancer patients after castration Gido Snaterse, … , Martijn P. Lolkema, Johannes Hofland JCI Insight. 2021. https://doi.org/10.1172/jci.insight.148507. Clinical Medicine In-Press Preview Endocrinology Oncology Graphical abstract Find the latest version: https://jci.me/148507/pdf 1 1 11-Ketotestosterone: the resilience of a potent androgen in prostate cancer patients after 2 castration 3 Gido Snaterse MSc1,a, Lisanne F. van Dessel MD2,a, Job van Riet BSc2, Angela E. Taylor PhD3, 4 Michelle van der Vlugt-Daane BSc2, Paul Hamberg MD4, Prof Ronald de Wit MD PhD, Jenny A. 1 3 2 5 Visser PhD , Prof Wiebke Arlt MD DSc. , Martijn P. Lolkema MD PhD , Johannes Hofland MD 6 PhD1# 7 1. Department of Internal Medicine, Section of Endocrinology, Erasmus MC, Rotterdam, The 8 Netherlands 9 2. Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, 10 The Netherlands 11 3. Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, 12 United Kingdom 13 4. Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the 14 Netherlands 15 a These authors contributed equally 16 # Corresponding author 17 18 Address for correspondence: Johannes Hofland, Department of Internal Medicine, Erasmus MC, 19 Rg5, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. 20 Tel.: +31 10 704 0446. 21 E-mail: [email protected] 22 Keywords: Androgens, CRPC, LC-MS/MS, Prostate cancer, Testosterone 23 Financial Disclosure: 24 Dr Hamberg reported being on an advisory board of Astellas. 25 Dr de Wit reported receiving speaker fees from Merck and Sanofi, advisory fees from Sanofi, 26 Merck, Janssen, Astellas, Roche and Bayer, and institutional research grants from Sanofi and 2 27 Bayer.
    [Show full text]
  • Forendo Pharma Initiates Phase I Study for Potential New, Targeted Treatment for Endometriosis
    PRESS RELEASE Forendo Pharma initiates phase I study for potential new, targeted treatment for endometriosis Turku, Finland, July 4 2018: Forendo Pharma, a drug development company focusing on novel oral treatments for endometriosis patients, today announces it has received clinical trial authorisation (CTA) from the UK’s Medicines and Healthcare products Regulatory Agency (MHRA) to commence a study for its lead program FOR-6219. Endometriosis is a chronic condition that affects up to 10% of women in reproductive age and causes repeated pain symptoms, infertility and impaired quality of life. Currently available treatments for endometriosis have limitations in efficacy or cause harmful side effects. They often lead to systemic estrogen depletion, with known safety issues on bone mineral density and menopausal symptoms. Forendo Pharma has developed a potential new treatment for endometriosis based on inhibition of the HSD17B1 enzyme, a novel drug target for tissue specific regulation of hormone activity. Proof of efficacy for this novel mechanism has been demonstrated in primate model of endometriosis. The clinical compound FOR-6219 inhibits the conversion of low potency estrone into highly potent estradiol in endometriotic tissues. The most important expected differentiator of FOR-6219 compared to currently available treatments is its selective activity and the ability to act locally in the target tissues, without impacting systemic hormone levels. The Phase Ia trial is a randomised, double-blind, placebo-controlled study in healthy postmenopausal women aged between 45 and 65 years. The primary objectives of the study will investigate the safety, tolerability and pharmacokinetics of single and multiple ascending oral doses of FOR-6219.
    [Show full text]
  • Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG And
    cancers Article Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG and SRD5A1 Testosterone Tetrad Modulate Therapy Response and Susceptibility to Disease Relapse in Patients with Prostate Cancer Oluwaseun Adebayo Bamodu 1,2,3,* , Kai-Yi Tzou 1,4, Chia-Da Lin 1,4, Su-Wei Hu 1,4, Yuan-Hung Wang 2,5, Wen-Ling Wu 1,4, Kuan-Chou Chen 1,4,5,6 and Chia-Chang Wu 1,4,5,6,* 1 Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; [email protected] (K.-Y.T.); [email protected] (C.-D.L.); [email protected] (S.-W.H.); [email protected] (W.-L.W.); [email protected] (K.-C.C.) 2 Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; [email protected] 3 Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan 4 TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan 5 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan 6 Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Citation: Bamodu, O.A.; Tzou, K.-Y.; Taipei City 11031, Taiwan Lin, C.-D.; Hu, S.-W.; Wang, Y.-H.; * Correspondence: [email protected] (O.A.B.); [email protected] (C.-C.W.); Wu, W.-L.; Chen, K.-C.; Wu, C.-C. Tel.: +886-02-22490088 (ext.
    [Show full text]
  • Studies of Protein S-Nitrosylation in Prostate Cancer Focused on Integrin Alpha 6, Proliferating Cell Nuclear Antigen and Estrogen Receptor Beta
    Studies of Protein S-nitrosylation in Prostate Cancer focused on Integrin Alpha 6, Proliferating Cell Nuclear Antigen and Estrogen Receptor Beta By Jared Isaac, B.Sc. Biochemistry, Lee University, Cleveland, TN 2005 For partial requirement of Doctorate of Philosophy in Biomedical Research degree from the University of Cincinnati College of Medicine Thesis Committee: Shuk-Mei Ho, PhD; Thesis Advisor Robert Brackenbury, PhD; Thesis Committee Chair Susan Waltz, PhD Shao-Chun Wang, PhD Ying-Wai Lam, PhD i ABSTRACT Prostate cancer is the second most common cancer and cause of cancer related death of men in the United States of America. Given the proportion of men who will be entering the fifth decade, the number of prostate cancer cases will only increase in the next 10-20 years. Therefore, it is imperative to understand and develop treatment for prostate cancer. Prostate cancers typically have the accumulation of free radicals such as reactive oxygen and nitrogen species. These free radicals can damage the cell and alter its normal cellular processes. The purpose of this body of work is to understand the affect of one free radical, nitric oxide (NO) and how it affects the function of proteins by post- translationally modifying them in a process called S-nitrosylation. Chapter 1 gives a brief background on the prostate’s function in the reproductive system, diseases that affect the prostate, prostate cancer, the role of reactive nitrogen species in the prostate, S-nitrosylation, and a mass spectrometry based profiling study identifying S-nitrosylated proteins in the normal prostate epithelial cells. Chapter 2 focuses on integrin alpha 6, ITGα6, which becomes S-nitrosylated after exposure to iNOS.
    [Show full text]