Journal of Early Intervention

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Early Intervention Journal of Early Intervention http://jei.sagepub.com The Effectiveness of Cochlear Implants for Children With Prelingual Deafness Ann M. McKinley and Steven F. Warren Journal of Early Intervention 2000; 23; 252 DOI: 10.1177/10538151000230040501 The online version of this article can be found at: http://jei.sagepub.com/cgi/content/abstract/23/4/252 Published by: http://www.sagepublications.com On behalf of: Division for Early Childhood of the Council for Exceptional Children Additional services and information for Journal of Early Intervention can be found at: Email Alerts: http://jei.sagepub.com/cgi/alerts Subscriptions: http://jei.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations (this article cites 31 articles hosted on the SAGE Journals Online and HighWire Press platforms): http://jei.sagepub.com/cgi/content/refs/23/4/252 Downloaded from http://jei.sagepub.com by M Peterson on May 28, 2008 © 2000 Division for Early Childhood of the Council for Exceptional Children. All rights reserved. Not for commercial use or unauthorized distribution. Journal of Early Intervention, 2000 Vol. 23, No. 4, 252–263 Copyright 2000 by the Division of Early Childhood, Council for Exceptional Children The Effectiveness of Cochlear Implants for Children With Prelingual Deafness ANN M. McKINLEY Vanderbilt University STEVEN F. WARREN University of Kansas No longer considered an experimental procedure, cochlear implantation in young children with profound hearing loss has become almost commonplace. This paper reviews the efficacy of cochlear implantation in children with prelingual deafness. First, a brief introduction to cochlear implants is provided. Second, research regarding the effects of cochlear implantation in children with prelingual deafness on speech perception, speech production, and language development is reviewed. Finally, implications for early childhood educators are discussed. The development of cochlear implants is one fessionals view deafness as a condition to be of the most significant interdisciplinary bio- diagnosed and treated, the Deaf community medical achievements to date (Clark, Cowen, sees deafness as a difference, not a deficit. Ac- & Dowell, 1997). This therapeutic break- cording to Lane and Bahan (1998), Deaf peo- through has been the subject of widespread ple have a language and are a cultural minor- media attention in recent years as its effects ity, and the world of deafness is distinctive, have been increasingly reported in scientific rewarding, and worth preserving. journals (e.g., Balkany, 1993; Bonn, 1998; Many deaf advocates consider cochlear im- Osberger, Maso, & Sam, 1993). As technolo- plants as genocidal to the Deaf culture (Lane gy continues to improve, public awareness in- & Bahan, 1998). They argue that implantation creases, and the age of implantation lowers, of children conflicts with the right of the Deaf young children with cochlear implants are be- cultural minority to exist and flourish. Al- coming common in various types of early though these issues have been raised, this pa- per is written simply to evaluate the perfor- childhood educational settings. mance of children who have received cochlear This paper reviews the empirical evidence implants. We do not wish to discredit the Deaf of the efficacy of cochlear implantation in community or the potential value of manual children with prelingual deafness. We ac- communication. Instead, we recognize that knowledge that it is almost impossible to write there are parents of deaf children who desire a paper on this topic without addressing the that their child learn verbal communication. controversy surrounding the use of cochlear With this in mind, we have provided a critical implants for children. Cochlear implant pro- review of the research literature, examining fessionals have met tremendous opposition the effectiveness of cochlear implants on the from the Deaf community. Members of the development of verbal communication skills Deaf community differentiate the term ‘‘deaf’’ in children with prelingual deafness. In addi- that is used to describe a pathology, from the tion, we addressed issues that early childhood term ‘‘Deaf,’’ which denotes a culture and a educators, who come in contact with children sense of pride. Whereas many medical pro- with cochlear implants, might face. 252 JEI, 2000, 23:4 Downloaded from http://jei.sagepub.com by M Peterson on May 28, 2008 © 2000 Division for Early Childhood of the Council for Exceptional Children. All rights reserved. Not for commercial use or unauthorized distribution. Figure 1. Internal and external components as worn by the cochlear implant recipient. A Primer on Cochlear Implants ternal components consist of a microphone, a A cochlear implant is an electronic device speech processor, and a transmitter, which providing auditory information to individuals sends the signal to the internal components who have severe to profound sensorineural (see Figure 2). Cochlear implant surgery is hearing loss in both ears and receive limited usually a 2- to 3-hour procedure, performed or no benefit from conventional hearing aids. by an otolaryngologist (ear, nose, and throat Typically, these individuals have pure-tone surgeon). The child typically spends 1 night thresholds of 100 dB HL or greater. The origin in the hospital following cochlear implant sur- of profound deafness is usually damaged or gery. Approximately 4 weeks following sur- diminished hair cells in the inner ear (Hen- gery, the child returns to the implant center derson, Salvi, Boettcher, & Clock, 1994). Be- for the initial stimulation of the device. This cause of the amount of hair cell damage, initial ‘‘tune-up’’ session usually takes 2 to 3 merely amplifying sound does not enable peo- days depending on the child’s age and level ple with profound deafness to process sound. of cooperation. An audiologist stimulates each Unlike conventional hearing aids, which de- of the implanted electrodes and determines the liver amplified sound to the ear, a cochlear child’s threshold and comfort levels. Once implant bypasses damaged hair cells and stim- threshold levels and comfort levels have been ulates the auditory nerve directly with electri- obtained for each of the electrodes, a map of cal current. Cochlear implants have been used these levels is created and programmed onto in research trials with adult patients since the the child’s speech processor. Initially, the child mid-1970s but did not receive Food and Drug will have to make frequent visits to the audi- Administration (FDA) approval for clinical ologist to fine-tune the map. After that, ad- use in children until 1989. Currently, children justments to the child’s map will be made pe- over the age of 18 months who have profound riodically as perceptual performance changes. bilateral sensorineural hearing loss and dem- Several modifications have been made to onstrate limited benefit from conventional the cochlear implant device components and hearing aids might be considered candidates speech processing strategies as the technology for cochlear implants. More than 20,000 peo- has evolved. Currently, three cochlear implant ple around the world, half of them children, devices have been cleared by the FDA for have received cochlear implants since the clinical use. The Cochlear Corporation re- clinical introduction of the device (Bonn, ceived FDA approval for clinical use of the 1998). Nucleus 22 cochlear implant in children in A cochlear implant is comprised of internal 1989. This device was subsequently replaced and external components (see Figure 1). The by the Nucleus 24 cochlear implant in 1998. internal components consist of electrodes, In 1997, the Advanced Bionics Corporation which are surgically placed in the cochlea (in- received FDA approval for the use of the Clar- ner ear), and a receiver or stimulator, which ion cochlear implant in children. A fourth de- lies beneath the skin behind the ear. The ex- vice, the COMBI 40ϩ, manufactured by the McKinley & Warren 253 Downloaded from http://jei.sagepub.com by M Peterson on May 28, 2008 © 2000 Division for Early Childhood of the Council for Exceptional Children. All rights reserved. Not for commercial use or unauthorized distribution. Figure 2. Illustration of the external device of a cochlear implant. Med. El. Cooperation, is currently undergoing onset of deafness, age of implantation, speech clinical trials. The most significant advance- processor type, number of implanted elec- ment in cochlear implant technology has been trodes, duration of deafness, communication in speech processing. Whereas the cochlear mode, and duration of implant use (Miyamoto implant devices of the early 1990s encoded et al., 1994). In addition, it is possible that only specific features of speech, the current implant success is affected by the physiolog- devices encode the entire speech signal. ical functioning of the surviving neurons in In addition to device alterations, there have the auditory nerve, the position of the elec- been changes in the demographic character- trodes in relation to excitable tissue, neural istics of children undergoing cochlear implant supply to the cochlea, the central processing surgery. Specifically, children are receiving abilities, and the child’s cognitive and linguis- implants at a younger age because research tic abilities. Furthermore, the quality of audi- has continued to suggest superior performance tory training, parental motivation, and teacher
Recommended publications
  • A New Age in the Genetics of Deafness
    , September/October 1999. Vol. 1 . No. 6 invited review/cme article A new age in the genetics of deafness Heidi L. Rehtu, MMSC' ot~dCytltllia C. Morton, PAD' Over the last several years, an understanding of the genetics SYNDROMIC AND NONSYNDROMIC DEAFNESS of hearing and deafness has grown exponentially. This progress , The prevalence of severe to profound bilateral congenital has been fueled by fast-paced developments in gene mapping hearing loss is estimated at 1 in 1000 births? When milder I and discovery, leading to the recent cloning and characteriza- forms of permanent hearing impairment at birth are included, tion of many genes critical in the biology of hearing. Among this estimate increases four-fold. Congenital deafness refers to the most significant advances, especially from a clinical per- deafness present at birth, though the cause of such hearing spective, is the discovery that up to 50% of nonsyndromic re- impairment may be genetic (hereditary) or environmental (ac- cessive deafness is caused by mutations in the GIB2 gene, which quired). Various studies estimate that approximately one-half encodes the connexin 26 protein (Cx26).I.' The clinical use of of the cases of congenital deafness are due to genetic factor^,^ screening for mutations in Cx26 and other genes involved in and these factors can be further subdivided by mode of inher- hearing impairment is still a new concept and not widely avail- itance. Approximately 77% of cases of hereditary deafness are able. However, the eventual availability of an array of genetic autosomal recessive, 22% are autosomal dominant, and 1% are tests is likely to have a major impact on the medical decisions X-linked.-l In addition, a small fraction of hereditary deafness made by hearing-impaired patients, their families, and their (< 1%) represents those families with mitochondria1 inheri- physicians.
    [Show full text]
  • Structural Neuroimaging of the Altered Brain Stemming from Pediatric and Adolescent Hearing Loss—Scientific and Clinical Challenges
    Received: 12 April 2019 Revised: 1 October 2019 Accepted: 13 October 2019 DOI: 10.1002/wsbm.1469 ADVANCED REVIEW Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss—Scientific and clinical challenges J. Tilak Ratnanather1,2,3 1Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland Abstract 2Institute for Computational Medicine, Johns There has been a spurt in structural neuroimaging studies of the effect of hearing Hopkins University, Baltimore, Maryland loss on the brain. Specifically, magnetic resonance imaging (MRI) and diffusion 3Department of Biomedical Engineering, tensor imaging (DTI) technologies provide an opportunity to quantify changes in Johns Hopkins University, Baltimore, gray and white matter structures at the macroscopic scale. To date, there have been Maryland 32 MRI and 23 DTI studies that have analyzed structural differences accruing from Correspondence pre- or peri-lingual pediatric hearing loss with congenital or early onset etiology J. Tilak Ratnanather, Center for Imaging Science, Johns Hopkins University, Clark and postlingual hearing loss in pre-to-late adolescence. Additionally, there have 301, 3400 N Charles Street, Baltimore, MD been 15 prospective clinical structural neuroimaging studies of children and adoles- 21218. cents being evaluated for cochlear implants. The results of the 70 studies are sum- Email: [email protected] marized in two figures and three tables. Plastic changes in the brain are seen to be Funding information multifocal rather than diffuse, that is, differences are consistent across regions National Institute of Biomedical Imaging and implicated in the hearing, speech and language networks regardless of modes of Bioengineering, Grant/Award Number: P41 EB015909; National Institute on Deafness communication and amplification.
    [Show full text]
  • Senescence Disorder Literacy Among Prelingual/Culturally Deaf Individuals Age 50 and Older
    Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2017 Senescence Disorder Literacy Among Prelingual/ Culturally Deaf Individuals Age 50 and Older J. Delores Hart Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Family, Life Course, and Society Commons, Public Health Education and Promotion Commons, and the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Social and Behavioral Sciences This is to certify that the doctoral dissertation by J. Delores Hart has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Leann Stadtlander, Committee Chairperson, Psychology Faculty Dr. Mary Enright, Committee Member, Psychology Faculty Dr. Tracy Mallett, University Reviewer, Psychology Faculty Chief Academic Officer Eric Riedel, Ph.D. Walden University 2017 Abstract Senescence Disorder Literacy Among Prelingual/Culturally Deaf Individuals Age 50 and Older by J. Delores Hart MA, New York University, 2002 BS, Lincoln University, 1977 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Psychology Walden University August 2017 Abstract The preferred method of communication for most prelingual/culturally Deaf individuals is American Sign Language (ASL), and members of this linguistic/cultural minority community are often not recognized as being bilingual.
    [Show full text]
  • Hearing Loss in Infectious and Contagious Diseases
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 3,700 108,500 1.7 M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 5 Hearing Loss in Infectious and Contagious Diseases Luiz Alberto Alves Mota, Paula Cristina Alves Leitão, Paulo Marcelo Freitas de Barros and Ana Maria dos Anjos Carneiro Leão Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61818 Abstract Hearing loss can occur for various reasons, whether it is of a genetic, congenital or ac‐ quired character. Infectious diseases stand out among those causing this type of deficien‐ cy and account for approximately 25% of all cases of profound hearing loss. Of these, one-fifth are due to congenital causes. As to classifying hearing loss, this can be done ac‐ cording to where this is in the hearing system, to whether the loss is unilateral or bilater‐ al, and to its intensity or degree. Regarding where the hearing system is affected, hearing loss can be about transmission (or conduction), perception (sensorineural), or mixed. Hearing losses arising from any affection of the outer and middle ear are called transmis‐ sion or conductive losses.
    [Show full text]
  • English Language Teaching Learning for Deaf Student (A Descriptive Study
    CHAPTER II ENGLISH LANGUAGE TEACHING LEARNING FOR DEAF STUDENTS A. Deafness 1. Definition Hearing ability is an important function of human life. In the five senses system, hearing sense is an organ that complete information captured by sight sense. So that losing hearing ability drives great affect to human life, including in educational aspect. The primary consequence of childhood with hearing impairment is that it blocks the spoken language.1 Deafness is a general term which shows hard of hearing from mild until profound hard of hearing. 2 Mohammad Effendi3 defines the deafness as the dysfunction of ear caused by damage in one or more inner ear, middle ear and outer ear because of illness, accident or another reason. Different definition of deafness may come from psychological and educational point of view. Hallahan & Kauffman4 stated in “Exceptional Children: Introduction to Special Education”: Those maintaining a strictly psychological viewpoint is interested primarily the measurable degree of hearing loss. Children who cannot hear sounds at or above a certain intensity (loudness) level are classified as deaf; others with a hearing loss are considered hard of hearing. Hearing sensitivity is measured in decibels (units of relative loudness of sounds). Psychologist generally consider those with hearing losses of about 90 dB or greater to be deaf, those with less to be hard of hearing. People with an educational viewpoint are concerned with how much the hearing loss is likely to affect the child‟s ability to speak and develop language. Because of the close causal link between hearing 1 Mayberry, Rachel. I, “Cognitive Development in Deaf Children: The Interface of language and perception in Neuropsychology”, in S.J Segalowitz and I.
    [Show full text]
  • Risk Factors for Congenital Deafness in Pediatric Patients Who Underwent Otoaccoustic Emission (OAE) and Auditory Brainstem Resp
    Bioscientia Medicina: Journal of Biomedicine & Translational Research eISSN (Online): 2598-0580 Bioscientia Medicina: Journal of Biomedicine & Translational Research Risk Factors for Congenital Deafness in Pediatric Patients Who Underwent Otoaccoustic Emission (OAE) and Auditory Brainstem Response (ABR) Examinations in General Hospital Mohammad Hoesin Palembang, Indonesia Fiona Widyasari1, Fani Paulina1*, Ahmad Hifni1, Abla Ghanie1, Erial Bahar1 1Department of Ear Nose Throat Head and Neck Surgery, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia A R T I C L E I N F O A B S T R A C T Keywords: Congenital Hearing Loss Introduction : Congenital deafness is a hearing loss that occurs at birth. Congenital Hearing Screening deafness in neonates can be caused by risk factors during pregnancy and during the birth process. The tests carried out for hearing screening for neonates in hospital up Otoacustic Emissions to 1 month old are Otoaccoustic Emission (OAE) and Auditory Brainstem Response Auditory Brainstem Response (ABR) examinations. Objective: Determining the relationship between family history of deafness, syndromes associated with sensorineural hearing loss, TORCH infection and *Corresponding author: prenatal syphilis, use of ototoxic drugs during pregnancy, prematurity, low birth weight, asphyxia, and hyperbilirubinemia with the incidence of congenital deafness in Fani Paulina children Methods: This cross-sectional study was conducted based on medical record datas from children who underwent OAE and ABR examinations at Dr. Mohammad Hoesin Palembang hospital from January 2019 to February 2021. Results: From the E-mail address: 349 children, 180 (51.6%) had bilateral OAE and ABR pass results, 161 (46.1%) had [email protected] bilateral referrals and 8 (2.3%) children received unilateral refer results.
    [Show full text]
  • Impact of Cochlear Implant on Auditory and Speech Perception and Language Development in Prelingual Deaf Children
    Journal of ENT Care and Otolaryngology Research Review Article Volume: 2, Issue: 1 Scientific Knowledge Impact of Cochlear Implant on Auditory and Speech Perception and Language Development in Prelingual Deaf Children Nazia Begam1 and MD Abu Bashar2* 1Government Medical College, Raigarh, CHATTISGARH, India 2MM Institute of Medical Sciences and Research, MM Deemed University, Mullana, India 1. Abstract simply amplify sound, i.e. make it louder. On the other Profound deafness during childhood affects the normal hand, cochlear implant provides useful sound development of auditory and speech perception, speech information by directly stimulating the surviving production and language skills. Cochlear implants (CIs) auditory nerve fibres in the inner ear (cochlea) [4]. The have revolutionized the scenario of rehabilitation of observation that electrical stimulation of the auditory profoundly deaf individuals. A prelingual deaf is one pathway can create the perception of sound was who is congenitally deaf or whose hearing loss occurred discovered in 1790 by Alessandro Volta [5]. before speech development. The current review was Cochlear implants enable deaf people to receive and undertaken to assess the impact of cochlear implants process sounds and speech. However, it is important to (CIs) in prelingual deaf children on their hearing and note that these devices do not restore normal hearing. speech perception, speech production and language Sound and speech are allowed to be processed and sent development. to brain by these devices [6]. 2. Keywords: Prelingual deafness; Cochlear implants; Cochlear implants are usually made up of two parts. One Speech perception; Speech production; Language part of the device is surgically inserted into the temporal development bone surrounding the ear.
    [Show full text]
  • LANGUAGE and LITERACY DEVELOPMENT in PRELINGUALLY-DEAF CHILDREN By
    ARTICLES LANGUAGE AND LITERACY DEVELOPMENT IN PRELINGUALLY-DEAF CHILDREN By MOHAMMAD ALI SALMANI NODOUSHAN* * English Department, University of Zanjan, Iran ABSTRACT This paper attempts to address the issue of language development in hearing impaired children. It argues that interpreters, teachers or peers can provide deaf children with language exposure so that they can acquire their native languages more easily. It also argues that the provision of a developmentally appropriate print-rich environment is the key to literacy success and that providing deaf students with the opportunity to respond to and ask questions in the classroom will help them acquire language. It is noted that if peers learn to sign, and if teachers teach them to sign, it will increase the opportunity for social interaction for deaf students whereby affecting their learning outcomes. It stresses the point that the presence of deaf students in a class should be a learning experience for everyone. It also discusses strategies that can be incorporated into teaching by teachers for helping children with hearing impairments achieve more. Keywords: Prelingual deafness, Hearing impairment, Language Development, Literacy development, Sign language, Signed English. INTRODUCTION children show a delay in the commencement of A person who is not able to hear is called deaf and one communication. It then provides suggestions about who hears with great difficulty is called hearing impaired. appropriate classroom techniques that can help to Deafness is a kind of physical disability which may be with alleviate this situation. the infant at birth or may occur at a later time in life. If 1. Troubles of Deaf children in hearing families deafness is with the child from birth or if it happens before Language development requires exposure.
    [Show full text]
  • Cochlear Implants
    UnitedHealthcare® Commercial Medical Policy Cochlear Implants Policy Number: 2021T0070Z Effective Date: July 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policies Coverage Rationale ........................................................................... 1 • Durable Medical Equipment, Orthotics, Medical Documentation Requirements......................................................... 2 Supplies and Repairs/ Replacements Definitions ........................................................................................... 2 • Hearing Aids and Devices Including Wearable, Applicable Codes .............................................................................. 2 Bone-Anchored and Semi-Implantable Description of Services ..................................................................... 3 Benefit Considerations ..................................................................... 4 Community Plan Policy Clinical Evidence ............................................................................... 4 • Cochlear Implants U.S. Food and Drug Administration ..............................................17 Medicare Advantage Coverage Summary References .......................................................................................19 • Policy History/Revision Information..............................................22 Hearing Aids, Auditory Implants and Related Instructions for Use .........................................................................23 Procedures Coverage Rationale See Benefit
    [Show full text]
  • For Prelingual Deafness: the Relevance of Studies of Brain Organization and the Role of first Language Acquisition in Considering Outcome Success
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW ARTICLE published: 17 October 2014 HUMAN NEUROSCIENCE doi: 10.3389/fnhum.2014.00834 Cochlear implantation (CI) for prelingual deafness: the relevance of studies of brain organization and the role of first language acquisition in considering outcome success Ruth Campbell 1*, Mairéad MacSweeney 1,2 and Bencie Woll 1 1 Deafness Cognition and Language Research Centre, University College London, London, UK 2 Institute of Cognitive Neuroscience, University College London, London, UK Edited by: Cochlear implantation (CI) for profound congenital hearing impairment, while often Jean Vroomen, University of successful in restoring hearing to the deaf child, does not always result in effective Tilburg, Netherlands speech processing. Exposure to non-auditory signals during the pre-implantation period Reviewed by: Heather Bortfeld, University of is widely held to be responsible for such failures. Here, we question the inference that Connecticut, USA such exposure irreparably distorts the function of auditory cortex, negatively impacting Brendan Costello, Basque Center the efficacy of CI. Animal studies suggest that in congenital early deafness there is on Cognition, Brain and Language, a disconnection between (disordered) activation in primary auditory cortex (A1) and Spain activation in secondary auditory cortex (A2). In humans, one factor contributing to this *Correspondence: Ruth Campbell, Deafness Cognition functional decoupling is assumed to be abnormal activation of A1 by visual projections— and Language Research Centre, including exposure to sign language. In this paper we show that that this abnormal University College London, 49 activation of A1 does not routinely occur, while A2 functions effectively supramodally Gordon Square, London WC1H and multimodally to deliver spoken language irrespective of hearing status.
    [Show full text]
  • Deafness and Hereditary Hearing Loss Overview - Genereviews™ - NCBI Bookshelf Page 1 of 25
    Deafness and Hereditary Hearing Loss Overview - GeneReviews™ - NCBI Bookshelf Page 1 of 25 NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-. Bookshelf ID: NBK1434 PMID: 20301607 Deafness and Hereditary Hearing Loss Overview Richard JH Smith, MD Department of Otolaryngology University of Iowa Hospitals and Clinics Iowa City, Iowa [email protected] A Eliot Shearer Department of Otolaryngology University of Iowa Hospitals and Clinics Iowa City, Iowa [email protected] Michael S Hildebrand, PhD Department of Otolaryngology University of Iowa Hospitals and Clinics Iowa City, Iowa [email protected] Guy Van Camp, PhD Department of Genetics University of Antwerp Antwerp, Belgium [email protected] Initial Posting: February 14, 1999; Last Revision: January 5, 2012. Summary Disease characteristics. Hereditary hearing loss and deafness may be conductive, sensorineural, or a combination of both; syndromic (associated with malformations of the external ear or other organs or with medical problems involving other organ systems) or nonsyndromic (no associated visible abnormalities of the external ear or any related medical problems); and prelingual (before language develops) or postlingual (after language develops). Diagnosis/testing. Genetic forms of hearing loss must be distinguished from acquired (non-genetic) causes of hearing loss. The genetic forms of hearing loss are diagnosed by otologic, audiologic, and physical examination, family history, ancillary testing (e.g., CT examination of the temporal bone), and molecular genetic testing. Molecular genetic testing, available in clinical laboratories for many types of syndromic and nonsyndromic deafness, plays a prominent role in diagnosis and genetic counseling.
    [Show full text]
  • The Evaluation and Treatment of Hearing Loss
    BlindnessBlindness separates separates us us from from things things but but deafnessdeafness separates separates us us from from people people.. ~~HelenHelen Keller Keller the evaluation and treatment of Hearing Loss Wayne K. Robbins, D.O., F.A.O.C.O. Assistant Clinical Professor Michigan State University College of Osteopathic Medicine Clinical Situations • 45 YO female who has noted hearing loss in the right ear for 2 to 3 years now. Initially this was mild but it seems to have progressed. She does note occasional ringing in the right ear only. There has been no drainage or dizziness • 6 YO male brought to your office because he failed a hearing screening at school. Parents state that he seems to have selective hearing at home. He had one or two ear infections when he was younger but never required tubes or surgery. He has not had ear pain or fevers in the past 6 months. • 50 YO male on vacation in Florida 1 week ago. He was drinking from a fountain when he noted the hearing in his right ear was severely diminished. He now hears a loud roaring in his ear. No pain, fever or dizziness. • 30 YO female who has noted bilateral hearing loss which seems to fluctuate. This has progressively become worse in the last 2 years. She is now having difficulty using the phone at work. There has been no pain, drainage or dizziness Anatomy of Hearing Central Processing Weber and Rinne Middle Ear • Congenital – Atresia, Ossicular Fixation, Syndromic: Treacher Collins • Infectious – AOM, OME, COM • Tumor – Cholesteatoma, Otosclerosis, Squamous Cell • Trauma – TM Perforation, Ossicular Disruption • Endocrine • Neurologic • Systemic – OI, Pagets Inner Ear • Congenitial – Dysplasia, Aplasia, Familial • Infectious – TORCH, Syphilis – Meningitis – Viral Cochleitis • Tumor – Acoustic Neuroma, Squamous Cell CA • Trauma – Noise induced, Acoustic Trauma, Barotrauma • Endocrine – Diabetes, Hyper / Hypothyroid, Anemia, • Neurologic – Presbycusis, MS, Arnold-Chiari • Systemic – Autoimmune IED, Cogan Syndrome, Wegeners, Ototoxic Medications 50 YO male on vacation in Florida 1 week ago.
    [Show full text]