Deaf Identity Development : Construction and Validation of a Theoretical Model

Total Page:16

File Type:pdf, Size:1020Kb

Deaf Identity Development : Construction and Validation of a Theoretical Model University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1993 Deaf identity development : construction and validation of a theoretical model. Neil Stephen Glickman University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Glickman, Neil Stephen, "Deaf identity development : construction and validation of a theoretical model." (1993). Doctoral Dissertations 1896 - February 2014. 1201. https://scholarworks.umass.edu/dissertations_1/1201 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. DEAF IDENTITY DEVELOPMENT: CONSTRUCTION AND VALIDATION OF A THEORETICAL MODEL A Dissertation Presented by NEIL STEPHEN GLICKMAN Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 1993 School of Education ©Copyright by Neil S. Glickman 1993 All Rights Reserved DEAF IDENTITY DEVELOPMENT: CONSTRUCTION AND VALIDATION OF A THEORETICAL MODEL A Dissertation Presented by NEIL STEPHEN GLICKMAN Approyecl as to style and content by: Hl^L^'E. Ivey, Chair/ C. Carey, Me Theodore Slovin, Member Brunilda de Leon, Member \ 7 / r Bai^^ey W. Jackson, Dean Schpol of Education^ ^ / DEDICATION For my mother, Sally Claire Glickman, and father, Sidney Glickman for giving me the gift of education. ACKNOWLEDGEMENTS For me, writing this dissertation was a humbling experience. As someone who cherishes independence, I was faced at every stage of this research process with my dependency upon others. This would have been true, I am sure, even if I were not attempting a kind of cross-cultural research where I belong to the dominant, oppressor group. A Hearing person like myself can not possibly do meaningful research into aspects of the Deaf experience without many Deaf people giving generously (and, given the nature of research into the Deaf community to date, somewhat courageously) of their time, energies, insights and perspectives. Anyone who has completed a doctoral dissertation will appreciate just how grateful I am both to those who helped with the technical aspects of empirical research and those who gave me access to the Deaf experience and Hearing It is a pleasure to recognize the Deaf classmates in people who contributed to this project. My Turriago, Alisa Beaver, Dr. Ivey's research seminar, Luis early drafts of Evelyn Brooks and Paulette Dalpes, reviewed revisions. Invaluable my proposal and suggested critical Zitter, Dr. consultation was also received from Sherry Upshaw, Susan Salinas, Michael Harvey, Gail Isenberg, Carrie Moore, Greg Fisher, Steven Kimball, Mark Geiger, Ruth Leferriere and Jeannette Constance Gould, Mark Dore, Lorna V . Costa. I received very helpful written suggestions from Dr. Michael Strong of the University of California Center on Deafness, Dr. Glenn Anderson of the Arkansas Research and Training Center on Deafness and Dr. Jeff Lewis from Gallaudet University. The two people who have contributed most to my understanding of Deaf culture, Betty Colonomos and MJ Bievenue, now of The Bicultural Center in Riverdale, Maryland, consulted with me on my instrument items and theory and gave meticulous and thorough reviews of two translations of the Deaf Identity Development Scale. Betty and MJ set the highest national standards for the field of sign language teaching and interpreter education. I cannot claim to have satisfied these standards, yet my work is enriched by having them always before me. The English language version of the DIDS was translated into ASL twice: first by Steven Kimball, who also helped me think about the translatability of items; and again by Lorna Leferriere. Barb Walker produced a superb back-translation into English while working under considerable time pressure. Bill Russell filmed, edited, refilmed and re-edited several versions of the DIDS, and kept his sense of humor while putting up with my technical incompetence in video production Arnos and Pat At Gallaudet University, Drs . Kathleen facilitated the Spencer of the Institutional Review Board VI . process of obtaining approval for my research at Gallaudet. Dr, Neil Reynolds from the Psychology Department welcomed this research and gave me the use of Psychology Department resources. Ms. Tammy Weiner served as Gallaudet faculty sponsor. Becky Piepho did a masterful and conscientious job of recruiting subjects and administering the DIDS. She also made many insightful comments on the research. Bob Weinstock also provided invaluable assistance in recruiting Deaf subjects I am indebted to the Board of Directors of ALDA-Boston, especially Marilyn Howe, for supporting this research project. Their enthusiastic letter of support certainly contributed to the 75% return rate from ALDA-Boston members. Ms. Howe also contributed generously of her time in implementing a large mailing of the DIDS. This research was partially funded by a grant from the American Psychological Association whose generosity is deeply appreciated On my dissertation committee, Dr. Brunilda de Leon and and a Dr. Ted Slovin provided consistent encouragement, John supportive and constructive review of this work. Dr. statistics, Carey lead me gently through the mine field of helping me conceptualize, organize and present my chair, Dr statistical procedures and results. My committee picture and cautioned Allen Ivey, kept my focus on the big vii . me helpfully about the ethical dilemmas of cross-cultural research. Dr. Ivey's skill in summarizing and synthesizing theoretical perspectives, his sensitivity to multicultural issues, his own model of developmental counseling and his willingness to nurture creativity and professionalism in students made working under his guidance an enriching life experience On the home front, I want to thank my life partner Steven for his meticulous proof-reading of the manuscript, his many invaluable suggestions, and for his constant love and support viii ABSTRACT DEAF IDENTITY DEVELOPMENT: CONSTRUCTION AND VALIDATION OF A THEORETICAL MODEL MAY 1993 NEIL GLICKMAN, B.A., CORNELL UNIVERSITY M.A., GALLAUDET COLLEGE Ph.D., UNIVERSITY OF MASSACHUSETTS Directed by Professor Allen E. Ivey Cultural identity is a construct from the literature on Minority Identity Development Theory. One^s cultural identity provides one means of understanding one's psychological relationship to cultural communities with which one has ties. A new paradigm has been presented for understanding deafness as a cultural difference rather than a medical pathology. To draw out one implication of this new paradigm, a theory is presented for how audiologically deaf people develop culturally Deaf identities. Four stages of cultural identity development are described. Culturally hearing refers to people who hold the dominant culture's attitudes and beliefs about deafness. Culturally marginal refers to people who experience shifting loyalties or profound confusion regarding their relationship to the Deaf and hearing worlds. Immersion identity refers ix . to a radical or militant Deaf stance. Bicultural deaf people have integrated their Deaf pride in a balanced way into their full h\amanity. Different paths of development are outlined dependent on the circximstances surrounding the hearing loss An instrument, the Deaf Identity Development Scale (DIDS) is developed in both English and American Sign Language to measure Deaf cultural identity. The DIDS is administered to 161 subjects: 105 students from Gallaudet University and 56 members from an organization of late deafened adults. Support for the existence of the four distinct kinds of cultural identity is provided by acceptable reliability, interscale and item-to-scale correlations. Thirteen hypotheses pertaining to instrument construction and theory and test validity are tested. Test results are used to illuminate further the paths of deaf identity development. Suggestions for improvement in the DIDS are presented. TABLE OF CONTENTS Page ACKNOWLEDGMENTS ^ ABSTRACT •••••••••••• JLX LIST OF TABLES ^civ LIST OF FIGURES xv Chapter 1. INTRODUCTION 1 Purpose 1 Background to the Study 1 Importance of the Study 6 Research Questions and Goals 12 Dissertation Outline 13 2. REVIEW OF THE LITERATURE 16 Introduction 16 Minority Identity Development Theory 17 Black Identity Development 17 Cultural Marginality 29 Other Minority Identity Development Models . 33 Summary of Minority Identity Development Theory 38 Deaf Culture 40 An Oral Educator's Perspective 40 Schowe's Identity Crisis in Deafness 41 Contemporary Discussions of Deaf Culture ... 44 Deaf Culture : Summary 59 3. THEORY OF DEAF IDENTITY DEVELOPMENT 62 Introduction 62 Stage 1: Culturally Hearing 66 Stage 2: Culturally Marginal 75 Stage 3: Immersion in the Deaf World 93 Stage 4: Bicultural 100 Deaf Identity Development: Summary 10 9 Research Hypotheses HI xi 4 . METHODOLOGY 118 Introduction 118 Construction of the DIDS: Item Selection 118 A Model for the English to ASL Translation Process 123 Translation Dilemmas 124 Review of the Back-translation 130 Sample 134 Description of the DIDS ' 135 Administration of the DIDS 136 Statistical Analysis 137 5. RESULTS 142 Observations of the Process of Administering the DIDS 142 Description
Recommended publications
  • A New Age in the Genetics of Deafness
    , September/October 1999. Vol. 1 . No. 6 invited review/cme article A new age in the genetics of deafness Heidi L. Rehtu, MMSC' ot~dCytltllia C. Morton, PAD' Over the last several years, an understanding of the genetics SYNDROMIC AND NONSYNDROMIC DEAFNESS of hearing and deafness has grown exponentially. This progress , The prevalence of severe to profound bilateral congenital has been fueled by fast-paced developments in gene mapping hearing loss is estimated at 1 in 1000 births? When milder I and discovery, leading to the recent cloning and characteriza- forms of permanent hearing impairment at birth are included, tion of many genes critical in the biology of hearing. Among this estimate increases four-fold. Congenital deafness refers to the most significant advances, especially from a clinical per- deafness present at birth, though the cause of such hearing spective, is the discovery that up to 50% of nonsyndromic re- impairment may be genetic (hereditary) or environmental (ac- cessive deafness is caused by mutations in the GIB2 gene, which quired). Various studies estimate that approximately one-half encodes the connexin 26 protein (Cx26).I.' The clinical use of of the cases of congenital deafness are due to genetic factor^,^ screening for mutations in Cx26 and other genes involved in and these factors can be further subdivided by mode of inher- hearing impairment is still a new concept and not widely avail- itance. Approximately 77% of cases of hereditary deafness are able. However, the eventual availability of an array of genetic autosomal recessive, 22% are autosomal dominant, and 1% are tests is likely to have a major impact on the medical decisions X-linked.-l In addition, a small fraction of hereditary deafness made by hearing-impaired patients, their families, and their (< 1%) represents those families with mitochondria1 inheri- physicians.
    [Show full text]
  • Structural Neuroimaging of the Altered Brain Stemming from Pediatric and Adolescent Hearing Loss—Scientific and Clinical Challenges
    Received: 12 April 2019 Revised: 1 October 2019 Accepted: 13 October 2019 DOI: 10.1002/wsbm.1469 ADVANCED REVIEW Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss—Scientific and clinical challenges J. Tilak Ratnanather1,2,3 1Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland Abstract 2Institute for Computational Medicine, Johns There has been a spurt in structural neuroimaging studies of the effect of hearing Hopkins University, Baltimore, Maryland loss on the brain. Specifically, magnetic resonance imaging (MRI) and diffusion 3Department of Biomedical Engineering, tensor imaging (DTI) technologies provide an opportunity to quantify changes in Johns Hopkins University, Baltimore, gray and white matter structures at the macroscopic scale. To date, there have been Maryland 32 MRI and 23 DTI studies that have analyzed structural differences accruing from Correspondence pre- or peri-lingual pediatric hearing loss with congenital or early onset etiology J. Tilak Ratnanather, Center for Imaging Science, Johns Hopkins University, Clark and postlingual hearing loss in pre-to-late adolescence. Additionally, there have 301, 3400 N Charles Street, Baltimore, MD been 15 prospective clinical structural neuroimaging studies of children and adoles- 21218. cents being evaluated for cochlear implants. The results of the 70 studies are sum- Email: [email protected] marized in two figures and three tables. Plastic changes in the brain are seen to be Funding information multifocal rather than diffuse, that is, differences are consistent across regions National Institute of Biomedical Imaging and implicated in the hearing, speech and language networks regardless of modes of Bioengineering, Grant/Award Number: P41 EB015909; National Institute on Deafness communication and amplification.
    [Show full text]
  • Senescence Disorder Literacy Among Prelingual/Culturally Deaf Individuals Age 50 and Older
    Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2017 Senescence Disorder Literacy Among Prelingual/ Culturally Deaf Individuals Age 50 and Older J. Delores Hart Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Family, Life Course, and Society Commons, Public Health Education and Promotion Commons, and the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Social and Behavioral Sciences This is to certify that the doctoral dissertation by J. Delores Hart has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Leann Stadtlander, Committee Chairperson, Psychology Faculty Dr. Mary Enright, Committee Member, Psychology Faculty Dr. Tracy Mallett, University Reviewer, Psychology Faculty Chief Academic Officer Eric Riedel, Ph.D. Walden University 2017 Abstract Senescence Disorder Literacy Among Prelingual/Culturally Deaf Individuals Age 50 and Older by J. Delores Hart MA, New York University, 2002 BS, Lincoln University, 1977 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Psychology Walden University August 2017 Abstract The preferred method of communication for most prelingual/culturally Deaf individuals is American Sign Language (ASL), and members of this linguistic/cultural minority community are often not recognized as being bilingual.
    [Show full text]
  • Hearing Loss in Infectious and Contagious Diseases
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 3,700 108,500 1.7 M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 5 Hearing Loss in Infectious and Contagious Diseases Luiz Alberto Alves Mota, Paula Cristina Alves Leitão, Paulo Marcelo Freitas de Barros and Ana Maria dos Anjos Carneiro Leão Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61818 Abstract Hearing loss can occur for various reasons, whether it is of a genetic, congenital or ac‐ quired character. Infectious diseases stand out among those causing this type of deficien‐ cy and account for approximately 25% of all cases of profound hearing loss. Of these, one-fifth are due to congenital causes. As to classifying hearing loss, this can be done ac‐ cording to where this is in the hearing system, to whether the loss is unilateral or bilater‐ al, and to its intensity or degree. Regarding where the hearing system is affected, hearing loss can be about transmission (or conduction), perception (sensorineural), or mixed. Hearing losses arising from any affection of the outer and middle ear are called transmis‐ sion or conductive losses.
    [Show full text]
  • English Language Teaching Learning for Deaf Student (A Descriptive Study
    CHAPTER II ENGLISH LANGUAGE TEACHING LEARNING FOR DEAF STUDENTS A. Deafness 1. Definition Hearing ability is an important function of human life. In the five senses system, hearing sense is an organ that complete information captured by sight sense. So that losing hearing ability drives great affect to human life, including in educational aspect. The primary consequence of childhood with hearing impairment is that it blocks the spoken language.1 Deafness is a general term which shows hard of hearing from mild until profound hard of hearing. 2 Mohammad Effendi3 defines the deafness as the dysfunction of ear caused by damage in one or more inner ear, middle ear and outer ear because of illness, accident or another reason. Different definition of deafness may come from psychological and educational point of view. Hallahan & Kauffman4 stated in “Exceptional Children: Introduction to Special Education”: Those maintaining a strictly psychological viewpoint is interested primarily the measurable degree of hearing loss. Children who cannot hear sounds at or above a certain intensity (loudness) level are classified as deaf; others with a hearing loss are considered hard of hearing. Hearing sensitivity is measured in decibels (units of relative loudness of sounds). Psychologist generally consider those with hearing losses of about 90 dB or greater to be deaf, those with less to be hard of hearing. People with an educational viewpoint are concerned with how much the hearing loss is likely to affect the child‟s ability to speak and develop language. Because of the close causal link between hearing 1 Mayberry, Rachel. I, “Cognitive Development in Deaf Children: The Interface of language and perception in Neuropsychology”, in S.J Segalowitz and I.
    [Show full text]
  • Risk Factors for Congenital Deafness in Pediatric Patients Who Underwent Otoaccoustic Emission (OAE) and Auditory Brainstem Resp
    Bioscientia Medicina: Journal of Biomedicine & Translational Research eISSN (Online): 2598-0580 Bioscientia Medicina: Journal of Biomedicine & Translational Research Risk Factors for Congenital Deafness in Pediatric Patients Who Underwent Otoaccoustic Emission (OAE) and Auditory Brainstem Response (ABR) Examinations in General Hospital Mohammad Hoesin Palembang, Indonesia Fiona Widyasari1, Fani Paulina1*, Ahmad Hifni1, Abla Ghanie1, Erial Bahar1 1Department of Ear Nose Throat Head and Neck Surgery, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia A R T I C L E I N F O A B S T R A C T Keywords: Congenital Hearing Loss Introduction : Congenital deafness is a hearing loss that occurs at birth. Congenital Hearing Screening deafness in neonates can be caused by risk factors during pregnancy and during the birth process. The tests carried out for hearing screening for neonates in hospital up Otoacustic Emissions to 1 month old are Otoaccoustic Emission (OAE) and Auditory Brainstem Response Auditory Brainstem Response (ABR) examinations. Objective: Determining the relationship between family history of deafness, syndromes associated with sensorineural hearing loss, TORCH infection and *Corresponding author: prenatal syphilis, use of ototoxic drugs during pregnancy, prematurity, low birth weight, asphyxia, and hyperbilirubinemia with the incidence of congenital deafness in Fani Paulina children Methods: This cross-sectional study was conducted based on medical record datas from children who underwent OAE and ABR examinations at Dr. Mohammad Hoesin Palembang hospital from January 2019 to February 2021. Results: From the E-mail address: 349 children, 180 (51.6%) had bilateral OAE and ABR pass results, 161 (46.1%) had [email protected] bilateral referrals and 8 (2.3%) children received unilateral refer results.
    [Show full text]
  • Impact of Cochlear Implant on Auditory and Speech Perception and Language Development in Prelingual Deaf Children
    Journal of ENT Care and Otolaryngology Research Review Article Volume: 2, Issue: 1 Scientific Knowledge Impact of Cochlear Implant on Auditory and Speech Perception and Language Development in Prelingual Deaf Children Nazia Begam1 and MD Abu Bashar2* 1Government Medical College, Raigarh, CHATTISGARH, India 2MM Institute of Medical Sciences and Research, MM Deemed University, Mullana, India 1. Abstract simply amplify sound, i.e. make it louder. On the other Profound deafness during childhood affects the normal hand, cochlear implant provides useful sound development of auditory and speech perception, speech information by directly stimulating the surviving production and language skills. Cochlear implants (CIs) auditory nerve fibres in the inner ear (cochlea) [4]. The have revolutionized the scenario of rehabilitation of observation that electrical stimulation of the auditory profoundly deaf individuals. A prelingual deaf is one pathway can create the perception of sound was who is congenitally deaf or whose hearing loss occurred discovered in 1790 by Alessandro Volta [5]. before speech development. The current review was Cochlear implants enable deaf people to receive and undertaken to assess the impact of cochlear implants process sounds and speech. However, it is important to (CIs) in prelingual deaf children on their hearing and note that these devices do not restore normal hearing. speech perception, speech production and language Sound and speech are allowed to be processed and sent development. to brain by these devices [6]. 2. Keywords: Prelingual deafness; Cochlear implants; Cochlear implants are usually made up of two parts. One Speech perception; Speech production; Language part of the device is surgically inserted into the temporal development bone surrounding the ear.
    [Show full text]
  • LANGUAGE and LITERACY DEVELOPMENT in PRELINGUALLY-DEAF CHILDREN By
    ARTICLES LANGUAGE AND LITERACY DEVELOPMENT IN PRELINGUALLY-DEAF CHILDREN By MOHAMMAD ALI SALMANI NODOUSHAN* * English Department, University of Zanjan, Iran ABSTRACT This paper attempts to address the issue of language development in hearing impaired children. It argues that interpreters, teachers or peers can provide deaf children with language exposure so that they can acquire their native languages more easily. It also argues that the provision of a developmentally appropriate print-rich environment is the key to literacy success and that providing deaf students with the opportunity to respond to and ask questions in the classroom will help them acquire language. It is noted that if peers learn to sign, and if teachers teach them to sign, it will increase the opportunity for social interaction for deaf students whereby affecting their learning outcomes. It stresses the point that the presence of deaf students in a class should be a learning experience for everyone. It also discusses strategies that can be incorporated into teaching by teachers for helping children with hearing impairments achieve more. Keywords: Prelingual deafness, Hearing impairment, Language Development, Literacy development, Sign language, Signed English. INTRODUCTION children show a delay in the commencement of A person who is not able to hear is called deaf and one communication. It then provides suggestions about who hears with great difficulty is called hearing impaired. appropriate classroom techniques that can help to Deafness is a kind of physical disability which may be with alleviate this situation. the infant at birth or may occur at a later time in life. If 1. Troubles of Deaf children in hearing families deafness is with the child from birth or if it happens before Language development requires exposure.
    [Show full text]
  • Cochlear Implants
    UnitedHealthcare® Commercial Medical Policy Cochlear Implants Policy Number: 2021T0070Z Effective Date: July 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policies Coverage Rationale ........................................................................... 1 • Durable Medical Equipment, Orthotics, Medical Documentation Requirements......................................................... 2 Supplies and Repairs/ Replacements Definitions ........................................................................................... 2 • Hearing Aids and Devices Including Wearable, Applicable Codes .............................................................................. 2 Bone-Anchored and Semi-Implantable Description of Services ..................................................................... 3 Benefit Considerations ..................................................................... 4 Community Plan Policy Clinical Evidence ............................................................................... 4 • Cochlear Implants U.S. Food and Drug Administration ..............................................17 Medicare Advantage Coverage Summary References .......................................................................................19 • Policy History/Revision Information..............................................22 Hearing Aids, Auditory Implants and Related Instructions for Use .........................................................................23 Procedures Coverage Rationale See Benefit
    [Show full text]
  • For Prelingual Deafness: the Relevance of Studies of Brain Organization and the Role of first Language Acquisition in Considering Outcome Success
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW ARTICLE published: 17 October 2014 HUMAN NEUROSCIENCE doi: 10.3389/fnhum.2014.00834 Cochlear implantation (CI) for prelingual deafness: the relevance of studies of brain organization and the role of first language acquisition in considering outcome success Ruth Campbell 1*, Mairéad MacSweeney 1,2 and Bencie Woll 1 1 Deafness Cognition and Language Research Centre, University College London, London, UK 2 Institute of Cognitive Neuroscience, University College London, London, UK Edited by: Cochlear implantation (CI) for profound congenital hearing impairment, while often Jean Vroomen, University of successful in restoring hearing to the deaf child, does not always result in effective Tilburg, Netherlands speech processing. Exposure to non-auditory signals during the pre-implantation period Reviewed by: Heather Bortfeld, University of is widely held to be responsible for such failures. Here, we question the inference that Connecticut, USA such exposure irreparably distorts the function of auditory cortex, negatively impacting Brendan Costello, Basque Center the efficacy of CI. Animal studies suggest that in congenital early deafness there is on Cognition, Brain and Language, a disconnection between (disordered) activation in primary auditory cortex (A1) and Spain activation in secondary auditory cortex (A2). In humans, one factor contributing to this *Correspondence: Ruth Campbell, Deafness Cognition functional decoupling is assumed to be abnormal activation of A1 by visual projections— and Language Research Centre, including exposure to sign language. In this paper we show that that this abnormal University College London, 49 activation of A1 does not routinely occur, while A2 functions effectively supramodally Gordon Square, London WC1H and multimodally to deliver spoken language irrespective of hearing status.
    [Show full text]
  • Deafness and Hereditary Hearing Loss Overview - Genereviews™ - NCBI Bookshelf Page 1 of 25
    Deafness and Hereditary Hearing Loss Overview - GeneReviews™ - NCBI Bookshelf Page 1 of 25 NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-. Bookshelf ID: NBK1434 PMID: 20301607 Deafness and Hereditary Hearing Loss Overview Richard JH Smith, MD Department of Otolaryngology University of Iowa Hospitals and Clinics Iowa City, Iowa [email protected] A Eliot Shearer Department of Otolaryngology University of Iowa Hospitals and Clinics Iowa City, Iowa [email protected] Michael S Hildebrand, PhD Department of Otolaryngology University of Iowa Hospitals and Clinics Iowa City, Iowa [email protected] Guy Van Camp, PhD Department of Genetics University of Antwerp Antwerp, Belgium [email protected] Initial Posting: February 14, 1999; Last Revision: January 5, 2012. Summary Disease characteristics. Hereditary hearing loss and deafness may be conductive, sensorineural, or a combination of both; syndromic (associated with malformations of the external ear or other organs or with medical problems involving other organ systems) or nonsyndromic (no associated visible abnormalities of the external ear or any related medical problems); and prelingual (before language develops) or postlingual (after language develops). Diagnosis/testing. Genetic forms of hearing loss must be distinguished from acquired (non-genetic) causes of hearing loss. The genetic forms of hearing loss are diagnosed by otologic, audiologic, and physical examination, family history, ancillary testing (e.g., CT examination of the temporal bone), and molecular genetic testing. Molecular genetic testing, available in clinical laboratories for many types of syndromic and nonsyndromic deafness, plays a prominent role in diagnosis and genetic counseling.
    [Show full text]
  • The Evaluation and Treatment of Hearing Loss
    BlindnessBlindness separates separates us us from from things things but but deafnessdeafness separates separates us us from from people people.. ~~HelenHelen Keller Keller the evaluation and treatment of Hearing Loss Wayne K. Robbins, D.O., F.A.O.C.O. Assistant Clinical Professor Michigan State University College of Osteopathic Medicine Clinical Situations • 45 YO female who has noted hearing loss in the right ear for 2 to 3 years now. Initially this was mild but it seems to have progressed. She does note occasional ringing in the right ear only. There has been no drainage or dizziness • 6 YO male brought to your office because he failed a hearing screening at school. Parents state that he seems to have selective hearing at home. He had one or two ear infections when he was younger but never required tubes or surgery. He has not had ear pain or fevers in the past 6 months. • 50 YO male on vacation in Florida 1 week ago. He was drinking from a fountain when he noted the hearing in his right ear was severely diminished. He now hears a loud roaring in his ear. No pain, fever or dizziness. • 30 YO female who has noted bilateral hearing loss which seems to fluctuate. This has progressively become worse in the last 2 years. She is now having difficulty using the phone at work. There has been no pain, drainage or dizziness Anatomy of Hearing Central Processing Weber and Rinne Middle Ear • Congenital – Atresia, Ossicular Fixation, Syndromic: Treacher Collins • Infectious – AOM, OME, COM • Tumor – Cholesteatoma, Otosclerosis, Squamous Cell • Trauma – TM Perforation, Ossicular Disruption • Endocrine • Neurologic • Systemic – OI, Pagets Inner Ear • Congenitial – Dysplasia, Aplasia, Familial • Infectious – TORCH, Syphilis – Meningitis – Viral Cochleitis • Tumor – Acoustic Neuroma, Squamous Cell CA • Trauma – Noise induced, Acoustic Trauma, Barotrauma • Endocrine – Diabetes, Hyper / Hypothyroid, Anemia, • Neurologic – Presbycusis, MS, Arnold-Chiari • Systemic – Autoimmune IED, Cogan Syndrome, Wegeners, Ototoxic Medications 50 YO male on vacation in Florida 1 week ago.
    [Show full text]