Mathematics and the Built Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Polycons: the Sphericon (Or Tetracon) Has Found Its Family
The polycons: the sphericon (or tetracon) has found its family David Hirscha and Katherine A. Seatonb a Nachalat Binyamin Arts and Crafts Fair, Tel Aviv, Israel; b Department of Mathematics and Statistics, La Trobe University VIC 3086, Australia ARTICLE HISTORY Compiled December 23, 2019 ABSTRACT This paper introduces a new family of solids, which we call polycons, which generalise the sphericon in a natural way. The static properties of the polycons are derived, and their rolling behaviour is described and compared to that of other developable rollers such as the oloid and particular polysphericons. The paper concludes with a discussion of the polycons as stationary and kinetic works of art. KEYWORDS sphericon; polycons; tetracon; ruled surface; developable roller 1. Introduction In 1980 inventor David Hirsch, one of the authors of this paper, patented `a device for generating a meander motion' [9], describing the object that is now known as the sphericon. This discovery was independent of that of woodturner Colin Roberts [22], which came to public attention through the writings of Stewart [28], P¨oppe [21] and Phillips [19] almost twenty years later. The object was named for how it rolls | overall in a line (like a sphere), but with turns about its vertices and developing its whole surface (like a cone). It was realised both by members of the woodturning [17, 26] and mathematical [16, 20] communities that the sphericon could be generalised to a series of objects, called sometimes polysphericons or, when precision is required and as will be elucidated in Section 4, the (N; k)-icons. These objects are for the most part constructed from frusta of a number of cones of differing apex angle and height. -
Sphericons and D-Forms: a Crocheted Connection
March 21, 2017 Journal of Mathematics and the Arts sphericonsdformsfeb17arxiv To appear in the Journal of Mathematics and the Arts Vol. 00, No. 00, Month 20XX, 1{14 Sphericons and D-forms: a crocheted connection Katherine A. Seatona∗ aDepartment of Mathematics and Statistics, La Trobe University VIC 3086, Australia (Received 00 Month 20XX; final version received 00 Month 20XX) Sphericons and D-forms are 3D objects created and described by artists, which have separately received attention in the mathematical literature in the last 15 or so years. The attempt to classify a seamed, crocheted form geometrically led to the observation, which appears not to have been previously made explicit, that these objects are related. General results concerning (N; k)-icons and seam-, D- and pita-forms are given. Instructions to crochet such forms are provided in the Appendix. Keywords: sphericon, D-form, pita-form, developable surface, crochet AMS Subject Classification: 51M04; 97M80 1. Introduction In January 2016, a crocheter on the social networking site Ravelry [1] posted images of a coin purse she had made as a Christmas present, and started a discussion thread asking readers of a particular forum if they could help her identify the name of its 3D shape (hereafter termed The Shape). The purse, shown in Figure 1, had been constructed following a pattern [4] by making a flat oval, and attaching a zipper to its edge in such a way that when the zipper closed, the purse was not folded over exactly in half onto itself (flat), but sat up, enclosing an intriguingly- shaped volume. -
Regarding “Space Walk on the Earth” with Ellipsoidal Rolling Plane
Journal for Geometry and Graphics Volume 15 (2011), No. 2, 203–212. The Construction of a Rideable Geometric Object Based on a Conical Form: Regarding “Space Walk on the Earth” With Ellipsoidal Rolling Plane Toshio Muramatsu The University of Yamanashi 4-4-37, Takeda, Kofu, Yamanashi 400-8510 Japan email: [email protected] Abstract. Under the theme “art object rolling smoothly on the floor” the author has thus far created large moving objects using stainless steel pipes from a sculptural perspective. Thus a series of objects has been designed wherein a participatory audience can feel the movement and changes in forms by directly touching the objects with their hands and using their bodies. In this study, the author has constructed a hands-on solid geometric object with an ellipsoidal rolling plane based on conical form. This art form is one that people can sit on, balance, and roll on the ground by providing the driving power to roll it. Key Words: Formative theory, form composition, kinetic art MSC 2010: 00A66, 51N05 1. Introduction There are well-known examples of objects created by focusing on the fact that both roll in a consistent directional manner on planes in three-dimensional space, the “Two-Circle-Roller” (Fig. 1) and the “Sphericon” (Fig. 2) [2, 3]. The Two-Circle-Roller is a special case of the “Oloid” invented by Paul Schatz (1898–1979) that consists of two mutually intruding perfect circular discs in orthogonal planes [7, 1]. The Sphericon was invented by Colin Roberts 1970. These objects roll on planes while moving. -
Movable Thin Glass Elements in Façades
Challenging Glass 6 - Conference on Architectural and Structural Applications of Glass Louter, Bos, Belis, Veer, Nijsse (Eds.), Delft University of Technology, May 2018. 6 Copyright © with the authors. All rights reserved. ISBN 978-94-6366-044-0, https://doi.org/10.7480/cgc.6.2133 Movable Thin Glass Elements in Façades Jürgen Neugebauer, Markus Wallner-Novak, Tim Lehner, Christian Wrulich, Marco Baumgartner University of Applied Sciences, FH-Joanneum, Josef Ressel Center for Thin Glass Technology for Structural Glass Application, Austria, [email protected] Façades play an important role in the control of energy flow and energy consumption in buildings as they represent the interface between the outdoor environment and the indoor occupied space. The option of regulating internal and external conditions acquires great relevance in new approaches to sustainable building solutions. Studies on climate adaptive façades show a very high potential for improved indoor environmental quality conditions and energy savings by moveable façades. A number of movable façades were realized in the past, but the use of thin glass with a thickness of 0.5 mm to 3 mm opens a brand-new field, that allows for playing with the geometry of the outer skin and the opportunity to make it adaptive by movement. Thin glass requires for curved surfaces in order to gain structural stiffness in static use. In kinetic façades the high flexibility of thin glass allows for new options for changes in size and position by bending of elements rather than implementing hinges in a system of foldable rigid panels. The geometry is based on the known theory of developable surfaces for keeping a low stress-level during movement. -
Arxiv:1603.08409V1 [Math.HO] 1 Mar 2016 On-Line Discussion and Brain-Storming About the Shape
October 4, 2021 Journal of Mathematics and the Arts sphericonsdformsarxiv To appear in the Journal of Mathematics and the Arts Vol. 00, No. 00, Month 20XX, 1{9 Sphericons and D-forms: a crocheted connection Katherine A. Seatona∗ aDepartment of Mathematics and Statistics, La Trobe University VIC 3086, Australia (Received 00 Month 20XX; final version received 00 Month 20XX) Sphericons and D-forms are 3D objects created and described by artists, which have separately received attention in the mathematical literature in the last 15 or so years. The attempt to classify a seamed, crocheted form geometrically led to the observation, which appears not to have been previously made explicit, that these objects are related. Instructions to crochet D-forms are given in the Appendix. Keywords: sphericon, D-form, pita form, developable surface, Ravelry, crochet AMS Subject Classification: 51M04; 97M80 1. Introduction In January 2015, a crocheter on the social networking site Ravelry[1] posted images of a coin purse she had made as a Christmas present, and started a discussion thread asking readers of a particular forum if they could help her identify the name of its 3D shape (hereafter termed The Shape). The purse, shown in Figure 1, had been constructed following a pattern[4] by making a flat oval, and attaching a zipper to its edge in such a way that when the zipper closed, the purse was not folded over exactly in half onto itself (flat), but sat up, enclosing an intriguingly-shaped volume. The crocheter had read the German version[19] of an Ian Stewart column on the sphericon[25], and believed that The Shape might be sort-of-but-not-quite a sphericon.