Dissertation Submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg Dissertation submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg. Germany for the degree of Doctor of Natural Sciences Put forward by Mykola G. Malygin born in Cherkasy (Ukraine) Oral examination: 03.02.2016 Gas Opacity in Planet and Star Formation Referees: PD. Dr. Hubert Klahr Prof. Dr. Andreas Quirrenbach Gas Opacity in Planet and Star Formation M G. M T D P A D P A R C U¨ H, B-W¨ F 2016 c 2016 – M G. M . Abstract D G O P- S Die Opazität von Gas und Staub spielt eine Schlüsselrolle bei der Bestimmung von Struktur und Strahlenspektrum von Staub-Gas-Wolken um Sterne (CSM), da hier Strahlentransport den Hauptübertragungsprozess für Energie darstellt. Das Vorherrschen von Staub in Kontinuumabsorbtion und die rechnerische Komplexität bei der Verwendung von molekularen Linienspektren hat bisher verhindert das letztere in den meisten Studien zur Planeten und Sternenentstehung Berücksichtigung fand. Diese Arbeit präsentiert die Berechnung von Gasopazitäten im entscheidenden Parameterraum, eine Methode um diese in Strahlungstransportberechnungen zu nutzen und erste Resultate von Strahlungstransport- und Temperaturausgleichsberechnungen. Die größte Satz an staubfreien CSM-Opazitäten zeigt dank verbesserter Frequenzabtastung bis zu 104 mal größere mittlere Planckopazitäten im Vergleich zu früheren Arbeiten. Mittlere Zweitemperaturplanckopazitäten sind für die Bestimmung vor allem in optisch dünnen angestrahlten Gasen wichtig. Die mittlere Temperatur, mit tabellarisierter Opazitäten bestimmt, in solchen Gasen ist degeneriert und von der Vergangenheit des Mediums abhängig. Das vorgestellte Verfahren zur Bestimmung von Temperaturausgleichszeiten berücksichtigt Stoßwechselwirkung, die den Ausgleich der Temperatur in Regionen mit wenig Gas beschränken. Eine grundsätzliche untere Schranke der Temperaturausgleichszeiten ist durch LTE-Emissionen gegeben. Die Geschwindigkeit des Temperaturausgleich beeinusst wichtige hydrodynamische Instabilitäten die für Turbulenz in magnetisch inaktiven Zonen eine Rolle spielen. G Opacity plays a key role in determining the structure of the heterogeneous circumstellar medium (CSM) and its observable spectrum. Planet and star formation changes dust density on various spatial and time scales through gravity and turbulence, radiation eld and chemistry. The following thesis presents calculations of gas opacity in the suitable parameter space, a methodology of utilising it in hybrid-type radiative transfer schemes, as well as rst results on radiative transfer and thermal relaxation calculations. The largest set of dust-free opacity in the CSM regime is presented. Improved frequency sampling yielded substantially larger (up to a factor of 104 in comparison to some previous works) Planck means. The two-temperature Planck means important for determining the temperatures in the optically thin irradiated gases were tabulated. The equilibrium temperature in such media is degenerate and depends on the thermal history of the gas. The suggested recipe to estimate the thermal relaxation time accounts for collisional coupling, which limits the relaxation in low-density regions. A fundamental lower limit to the relaxation time is set − by the LTE emissivity giving Ωt ∼ 10 4 at the T Tau phase. The locations of onset of linear and the locations of operation of subcritical hydrodynamic instabilities, reckoned as turbulence drivers in magnetically inactive zones, are constrained by the relaxation criterion. Contents A 1 C 2 0 I 6 0.1 Gas Spectroscopy .................................. 6 0.2 Context & Motivation ............................... 7 0.2.1 Radiative Feedback from Star Formation ................. 8 0.2.2 Accretion Discs .............................. 9 0.2.2.1 Transport in Accretion Discs . 10 0.2.2.2 Gravitational Instability .................... 10 0.2.2.3 Core accretion ......................... 13 0.2.2.4 Core migration ........................ 14 0.3 Radiative energy transfer .............................. 14 0.3.1 Radiative transfer and energy evolution equations . 14 0.3.2 LTE .................................... 16 0.3.3 Optically Thin Limit ........................... 18 0.4 Dissertation outline ................................. 18 1 M G O 19 1.1 Motivation & disclaimer .............................. 19 1.2 Calculations .................................... 20 1.3 Line absorption ................................... 21 1.4 Frequency averages ................................. 23 1.5 Results ....................................... 23 1.5.1 Single-temperature Planck mean ..................... 23 1.5.2 Two-temperature Planck mean ...................... 25 2 CONTENTS Page 3 of 111 1.5.3 Metallicity ................................. 25 1.5.4 Connection to low temperature atmospheric opacity . 26 1.5.5 Comparison to other studies ....................... 28 2 E T D O T G 31 2.1 Radiative Instability In Optically Thin Limit .................... 32 2.2 Illustrative example ................................. 33 2.3 Equilibrium gas temperature as a function of radiation temperature . 35 2.4 Discussion ..................................... 36 3 T R T 38 3.1 Denition ..................................... 38 3.2 Optically thin relaxation regime .......................... 39 3.3 Optically thick relaxation regime .......................... 40 3.4 Set-up ........................................ 41 3.4.1 Density model ............................... 41 3.4.2 Temperature model ............................ 42 3.4.3 Opacities ................................. 42 3.5 Results ....................................... 44 3.5.1 Relaxation regimes: recipe verication . 44 3.5.2 Constituent times ............................. 46 3.5.3 Perturbation wavelength ......................... 47 3.5.4 Radial and vertical modes ......................... 50 3.5.5 Dust-to-gas mass ratio ........................... 52 3.5.6 Disc mass ................................. 54 3.6 Discussion ..................................... 55 3.6.1 Temperature relaxation, not disc cooling . 55 3.6.2 On ux limiter .............................. 57 3.6.3 Stochastic nature of density perturbations . 58 3.6.4 The method: thin and thick ........................ 59 4 C H & G I 61 4.1 Birthplaces of hydrodynamic instabilities ...................... 61 4.1.1 Zombie vortices instability (ZVI) ..................... 62 4.1.2 Vortices: an instability growing from linear convective overstability (COV) 62 4.1.3 Vertical shear instability (VSI) ....................... 63 4.2 Uniform Q = 1 disc ................................. 64 3 CONTENTS Page 4 of 111 4.2.1 Setup ................................... 64 4.2.2 Thermal relaxation in a Q = 1 disc .................... 65 4.2.3 Comparisons to other studies ....................... 67 5 F- G O 69 5.1 Motivation & challenge ............................... 69 5.2 Opacity probability distribution function ..................... 71 5.3 Opacity sampling .................................. 71 5.4 Planck & Rosseland bin averaging ......................... 72 6 S 75 A 78 A A O 80 A.1 Basic equations ................................... 80 A.2 Linear analysis ................................... 82 A.3 Energy or temperature evolution time? ....................... 83 A B O 85 B.1 Thermal emission time ............................... 85 B.2 Collisional coupling ................................ 86 B.3 Dust-to-gas collisions ................................ 86 B.4 Gas-to-gas collisions at low temperatures ...................... 86 N 88 L 90 R 94 4 CONTENTS Page 5 of 111 T . 5 The secret of getting ahead getting started. Mark Twain 0 Introduction 0.1 G S William Hyde Wollaston was the rst one to publish a notice of absorption features in dispersed light from the Sun as well as from candle re, which he revealed during his foreshadowing experiments with prisms [Wollaston, 1802, p. 378]. Shortly aferwards, Joseph Fraunhofer duly noted 574 “starke¨ und schwache vertikale Linien” he observed in a difracted solar light [Fraunhofer, 1817, p. 279]. A complementary information from later experiments held in Heidelberg by Gustav Robert Kirchhof and Robert Wilhelm Bunsen on candle light spectrum [Kirchhof & Bunsen, 1860], established a new eld in physics: spectroscopy. Balmer identied a series of spectral lines from Hydrogen [Balmer, 1885]. Hydrogen and Helium absorption lines in solar spectrum [Lockyer, 1869, pp.432-434] as well as both absorption and emission lines from other objects [Pickering et al., 1901; Pickering, 1901d,c] and other phenomena [Pickering, 1901b]. Observations of absorption lines in binary stars [“spectroscopic binaries” Pickering, 1901a] enabled mass estimate and the radial velocity measurements, now in heart of the main ground-based exoplanet search method. It was not until ∗ 1913, when Bohr made a genuine intuitive step that founded quantum mechanics [Bohr, 1913a,b,c] . Spectroscopy became a revolutionary technique in astrophysics. Spectra turned to be ’biometric’ ∗ The story tells that Bohr’s interpretation was anticipated by three years in a 1910 work by an Austrian physi- cist Arthur Erich Haas, but the publication got rejected. 6 0.2. CONTEXT & MOTIVATION Page 7 of 111 databases of stellar properties allowing deciphering such information as efective, kinetic and excitation temperatures, gravitational attraction in photospheres, abundances of various species, microturbulent (non-thermal) motions, rotational velocities,
Recommended publications
  • The Detached Dust Shells of AQ Andromedae, U Antliae, and TT Cygni,
    A&A 518, L140 (2010) Astronomy DOI: 10.1051/0004-6361/201014633 & c ESO 2010 Astrophysics Herschel: the first science highlights Special feature Letter to the Editor The detached dust shells of AQ Andromedae, U Antliae, and TT Cygni, F. Kerschbaum1,D.Ladjal2, R. Ottensamer1,5,M.A.T.Groenewegen3, M. Mecina1,J.A.D.L.Blommaert2, B. Baumann1,L.Decin2,4, B. Vandenbussche2 , C. Waelkens2, T. Posch1, E. Huygen2, W. De Meester2,S.Regibo2, P. Royer 2,K.Exter2, and C. Jean2 1 University of Vienna, Department of Astronomy, Türkenschanzstraße 17, 1180 Vienna, Austria e-mail: [email protected] 2 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium 3 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium 4 Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 Amsterdam, The Netherlands 5 Institute of Computer Vision and Graphics, TU Graz, Inffeldgasse 16/II, A-8010 Graz, Austria Received 31 March 2010 / Accepted 12 May 2010 ABSTRACT Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found. Key words. stars: AGB and post-AGB – stars: carbon – stars: evolution – stars: mass-loss – infrared: stars 1.
    [Show full text]
  • Reduced Maximum Mass-Loss Rate of OH/IR Stars Due to Overlooked Binary Interaction
    The University of Manchester Research Reduced maximum mass-loss rate of OH/IR stars due to overlooked binary interaction DOI: 10.1038/s41550-019-0703-5 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Decin, L., Homan, W., Danilovich, T., de Koter, A., Engels, D., Waters, L. B. F. M., Muller, S., Gielen, C., Garca- Hernandez, D. A., Stancliffe, R., Van de Sande, M., Molenberghs, G., Kerschbaum, F., Zijlstra, A., & El Mellah, I. (2019). Reduced maximum mass-loss rate of OH/IR stars due to overlooked binary interaction. Nature Astronomy, 3(5), 408-415. https://doi.org/10.1038/s41550-019-0703-5 Published in: Nature Astronomy Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:08. Oct. 2021 Reduced maximum mass-loss rate of OH/IR stars due to overlooked binary interaction L.
    [Show full text]
  • Stellar Life Cycle
    1 23 45 6 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Stellar Cycles Post Assessment Activity - Image Descriptions The name and type of object and/or artist illustration for each of the images is listed below. The stage of stellar evolution is indicated by the bold type. The URL for each of the deep sky objects is listed. For more specific information concerning the sequencing or selection of the images please refer to the Teacher Guide and Answer Key. 1. The Sun is a mid-sized main sequence star. 9. The Sagittarius A black hole in the center of the Milky Way Galaxy. [Solar and Heliospheric Observatory (SOHO) image] NOTE: This image is included for a specific reason, to address a http://antwrp.gsfc.nasa.gov/apod/ap981212.html common misconception that all black holes are the end result of the collapse of a massive star. Sagittarius A is the massive black 2. Sirius B (dim object in the background) is a white dwarf in a hole at the center of the Milky Way Galaxy. This type of black hole binary system with Sirius A (bright object in the foreground) - is not involved with stellar evolution. You can use this image as an a 2 solar mass main sequence star. assessment of student understanding of different types of black [McDonald Observatory image] holes, or simply for discussion. http://antwrp.gsfc.nasa.gov/apod/ap960902.html [Chandra X-Ray Observatory image] http://chandra.harvard.edu/photo/2003/0203long/more.html 3.
    [Show full text]
  • Reduced Maximum Mass-Loss Rate of OH-IR Stars Ariv
    UvA-DARE (Digital Academic Repository) Reduction of the maximum mass-loss rate of OH/IR stars due to unnoticed binary interaction Decin, L.; Homan, W.; Danilovich, T.; de Koter, A.; Engels, D.; Waters, L.B.F.M.; Muller, S.; Gielen, C.; García-Hernández, D.A.; Stancliffe, R.J.; Van de Sande, M.; Molenberghs, G.; Kerschbaum, F.; Zijlstra, A.A.; El Mellah, I. DOI 10.1038/s41550-019-0703-5 Publication date 2019 Document Version Submitted manuscript Published in Nature Astronomy Link to publication Citation for published version (APA): Decin, L., Homan, W., Danilovich, T., de Koter, A., Engels, D., Waters, L. B. F. M., Muller, S., Gielen, C., García-Hernández, D. A., Stancliffe, R. J., Van de Sande, M., Molenberghs, G., Kerschbaum, F., Zijlstra, A. A., & El Mellah, I. (2019). Reduction of the maximum mass-loss rate of OH/IR stars due to unnoticed binary interaction. Nature Astronomy, 3, 408-415. https://doi.org/10.1038/s41550-019-0703-5 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands.
    [Show full text]
  • Mira (Omicron Ceti)
    Das Projekt ALMA Mater* Teil 3: Eine Beobachtung, die es in sich hat: kosmischer Baustofftransport *Wir verwenden die Bezeichnung Alma Mater als Synonym für eine Universität. Seinen Ursprung hat das Doppelwort im Lateinischen (alma: nähren, mater: Mutter). Im übertragenen Sinne ernährt die (mütterliche) Universität ihre Studenten mit Wissen. Und weiter gesponnen ernährt das Projekt ALMA auch die Schüler und Studenten mit Anreizen für das Lernen. (Zudem bedeutet das spanische Wort ‚Alma‘: Seele.) In Bezug zum Beitrag „Rote Riesen und das größte Radioteleskop der Welt“ in der Zeitschrift „Sterne und Weltraum“ (SuW) 3/2015, unter der Kategorie »Blick in die Forschung: Kurzberichte«, WIS-ID: 1285851 Olaf Fischer Schon die ersten Beobachtungen mit ALMA zeigen, welch enormer Zuwachs an Wissen möglich wird. Im Folgenden steht der Massenabfluss von solchen Sternen im Blickpunkt, die sich in einer späten Lebensphase befinden, welche sich entsprechend ihrer Zustandswerte im HRD im AGB-Gebiet (Asymp- totic Giant Branch) befinden. Diese Sterne stellen die wichtigste Quelle für die Anreicherung des inter- stellaren Mediums mit schweren Elementen dar (bedeutender als Supernovae). Folglich muss man den Massenabfluss, sozusagen einen kosmischen Baustofftransport, studieren, um etwas über die Bildung folgender Sterngenerationen samt ihrer Planeten und vielleicht sogar möglichen Lebewesen zu lernen. Im folgenden WIS-Beitrag steht ein aktuelles Forschungsergebnis von ALMA im Brennpunkt – die Entdeckung einer Spiralstruktur im Massenabfluss des AGB-Sterns R Sculptoris (R Scl). Ausgehend von der Veröffentlichung dieser Entdeckung in der Zeitschrift „Nature“ wird eine Brücke zur Schule gebaut. Wir wollen dabei den Gedankengängen der Autoren folgen und dies anhand der unten aufgeführten Fragen tun. Es wird gezeigt, dass man mit dem Schulwissen etliche Aspekte des Nature-Beitrags (Begriffe, Aussagen Abbildungen) verstehen kann.
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos March November EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN H BUDAPEST XI I Box HUNGARY HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS E PAUNZEN G HANDLER Pulsation of HD and HD :::: E PAUNZEN WW WEISS R KUSCHNIG Nonvariability among Bo o Star I ESO and Data :::::::::::::::::::::::::::::::::: PA HECKERT Photometry of SV Camelopardalis :::::::::::::::: M WOLF L SAROUNOVA P MOLIK Period Changes in V Ophiuchi ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::: RM ROBB MD GLADDERS Optical Observations of the Active Star FF Cancri ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::: U BASTIAN E BORN F AGERER M DAHM V GROSSMANN V MAKAROV Conrmation of the
    [Show full text]
  • MEMORIA IAC 2010 SUBCOMITES - Finanzas 2 9 - Operación Del Obs
    MEMORIA 2010 “INSTITUTO DE ASTROFISICA DE CANARIAS” “INSTITUTO DE ASTROFISICA DE CANARIAS” GABINETE DE DIRECCIÓN INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC) MAQUETACIÓN: Ana M. Quevedo PORTADA: Gotzon Cañada PREIMPRESIÓN E IMPRESIÓN: Producciones Gráficas S.L. DEPÓSITO LEGAL: TF-1905/94 Indice general 7- PRESENTACIÓN 8- CONSORCIO PÚBLICO IAC 11- LOS OBSERVATORIOS DE CANARIAS 12- - Observatorio del Teide (OT) 13- - Observatorio del Roque de los Muchachos (ORM) 14- COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 18- ACUERDOS 20- Gran Telescopio CANARIAS (GTC) 25- ÁREA DE INVESTIGACIÓN 28- - Estructura del Universo y Cosmología 50- - El Universo Local 88- - Física de las estrellas, Sistemas Planetarios y Medio Interestelar 124- - El Sol y el Sistema Solar 146- - Instrumentación y Espacio 180- - Otros 202- ÁREA DE INSTRUMENTACIÓN 202- - Ingeniería 214- - Producción 222- - Oficina de Transferencia de Resultados de Investigación (OTRI) 234- ÁREA DE ENSEÑANZA 234- - Cursos de doctorado 235- - Seminarios científicos 239- - Coloquios 239- - Becas 241- - XXII Escuela de Invierno: ”Astrosismología” 243- ADMINISTRACIÓN DE SERVICIOS GENERALES 243- - Instituto de Astrofísica 244- - Observatorio del Teide 245- - Observatorio del Roque de los Muchachos 246- - Centro de Astrofísica de la Palma 247- - Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) 249- - Ejecución del Presupuesto 2010 250- GABINETE DE DIRECCIÓN 250- - Ediciones 252- - Comunicación y divulgación 263- - Web 265- - Visitas a las instalaciones del IAC 268- SERVICIOS INFORMÁTICOS
    [Show full text]
  • Meteor 11. Évf. 2. Sz. (1981.)
    1981.2.sz./ll.évf.6l./ KÖRLEVÉL HU ISSN 0133-249X Kézirat gyanánt A TIT C sillagászat Baráti Köre m egfigyelési tájék oztatója csillagászati szakkörök és észlelő amatőrök számára. Kiadja a TIT budapesti Uránia Bemutató C silla gvizsg á lója 1016 Budapest, Sánc utca 3/b. Az évi kilenc szám téritési dija 45,-Ft. Levélbeli kérésére b e fiz e té s i lapot küldünk. Számonként nem vásárolható. Szerkesztőbizottság: Dr.Horváth András, ifj.dr.Kálmán Béla, —------------------------------------ dr.Kelemen János, Nagy Sándor, Ponori Thewrewk Aurél, dr.Szabados László, Zombori Ottó Rovatvezetők: Gombos Gábor, Iskum József, Karászi ------------------------- István, Keszthelyi Sándor, Mátis András, Mezősi Csaba, Mizser Attila, Orha Zoltán, Szőke Balázs, Ujvárosy Antal Seaaat A Seaaat nevű mesterséges holdat 1978.június 27-én bo- csátotta fel az Egyesült Államok. Fő feladatként a tengereket éa az óceánokat kutatta /tenger áramok, aarkvidéki jégmozgás, tengerezint méréa a tb./. Stabilitáai problémák miatt azonban ma már caak paaaziv objektumként haaználható. Alakja henger, hossza 21 méter, átmérője 1,9 m, 4 db napelemtáblájának fesz- távolsága 11 m. Tekintélyes méretei miatt puszta szemmel is észrevehető. Nappal szemben /p ld .t e le h o ld / pedig fényes c s i l ­ lagként ragyog. Pályája közel kör, a földfelszíntől 800 km-re. In k lin ációja 108 fok, igy a pályasik mozgása közel napszink­ ron. Táblázatunk a penci megfigyelőállomásra adja meg - vi­ szonylag régi pályaelemek alapján- a műhold koordinátáit, így néhány percnyi időhiba lehetséges. A megfigyelő hely függ­ vényében pedig a p o z ició t is néhány fokkal korrigálni k e ll. A táblázat időpontot, azimutot, magasságot és árnyék adatot tartalmaz.
    [Show full text]
  • Mass Loss of Stars on the Asymptotic Giant Branch Mechanisms, Models and Measurements
    Astron Astrophys Rev (2018) 26:1 https://doi.org/10.1007/s00159-017-0106-5 REVIEW ARTICLE Mass loss of stars on the asymptotic giant branch Mechanisms, models and measurements Susanne Höfner1 · Hans Olofsson2 Received: 30 June 2017 © The Author(s) 2017. This article is an open access publication Abstract As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly- formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular- resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind- forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular- resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants.
    [Show full text]
  • Carnegie Institution of Washington
    CARNEGIE INSTITUTION OF WASHINGTON MOUNT WILSON OBSERVATORY PASADENA, CALIFORNIA LIST OF LANTERN SLIDES AND PHOTOGRAPHS 1932 PRICES ADD S PER CENT FOR POSTAGE AND PACKING SLIDES 4x 3 ~ IN., 75 CENTS EACH CERTAIN SLIDES HAY BE COLORED TO ORDER AT AN ADDITIONAL CHARGE OF 75 CENTS EACH PAPER PRINTS 8x10 IN., 50 CENTS EACH 16x20 IN. FROM ALL M!•RKED•, $2.01) EACH OTHER ENLARGEMENTS WILL Bl! MADE TO ORDER TRANSPARENCIES GLASS 8xl0 IN., $2.00 10x12 IN., 3.00 14x17 IN., 6.00 16x20 IN., 8.00 TRANSPARENCIES MOUNTED WITH GROUND-CLASS 20 PER CENT EXTRA FILM SxlO IN., $1.50 10x12 IN., 2.50 14x17 IN., 4.00 16x20 IN., 5.00 LIST OF SLIDES AND PHOTOGRAPHS SERIES A. INSTRUMENTS AND BUILDINGS A 2 Snow telescope building from the southeast Snow coelostat and second mirror from the southeast 4 Snow coelostat and second mirror from inside the rolling shelter 5 Interior of the Snow telescope showing concave mirror 6 Five-foot spectroheliograph showing the slit end 7 Five-foot spectroheliograph showing the optical train 10 Sixty-foot tower telescope from the northeast 16 Interior of the physical laboratory in Pasadena 17 Diagram of the one-hundred-fifty-foot tower telescope 18 Diagram of the upper end of the one-hundred-fifty-foot tower telescope and dome 20 Sixty-foot dome from the east 21 Sixty-foot dome from the sixty-foot tower 22 Sixty-inch reflecting telescope from the west 25 Sixty-inch reflecting telescope show ing plate-holder attachment 26 Sixty-inch mirror on grinding machine tipped forward for testing 27 Sixty-inch reflecting telescope with Cassegrain spectrograph •28 Dome of the one-hundred-inch Hooker reflector from the south showing shutter open 29 One-hundred-fifty-foot tower telescope from the sixty-foot tower tele- scope •30 One-hundred-fifty-foot tower telescope from the northeast 31 Top of the seventy-five-foot spectrograph 32 One-hundred-foot dome from the one-hundred-fifty-foot tower 33 Model of top of Mt.
    [Show full text]
  • AB Aurigae 106, 107 Absolute Magnitude 3–4, 211 Absorption
    Cambridge University Press 978-1-107-63612-5 - Observing Variable Stars, Novae, and Supernovae Gerald North Index More information Index AB Aurigae 106, 107 AR subtype stars 158 absolute magnitude 3–4, 211 Arbour, Ron 197 absorption spectra 90, 94, 148 Arcturus 97, 163 accretion disk 162, 162–163, 164, Argelander, Friedrich 7, 155 176–179, 180–181, 183, 186, 187, 193, Armstrong, Mark xi, 197, 203 200, 208, 209, 211 autocollimating eyepiece 51 active galactic nuclei 1, 203–210, 211 active galaxies see active galactic nuclei Baade, Walter 130 AC Herculis 145 back-illuminated CCDs 61, 64 ACV stars see rotating variable stars Bailey, S. I. 131 ACVO stars see rotating variable stars Balmer lines 94, 95 ACYG stars 123, 144 band spectra 92 adaptive optics unit 69 barycentre 154, 153–154, 173, 212 AGN see active galactic nuclei Bayer, Johann 133 AIP4WIN software 75 BCEP stars 10, 101, 144 Algol 155–157, 159, 162 BCEPS stars 123, 144 Algol-type stars see EA stars Belopolsky, A. A. 121–122 Alnilam 56 BeppoSAX satellite 201, 202 Alnitak 56 ␤ Canis Majoris stars 10 ␣ Canis Majoris see Procyon ␤ Cephei stars see BCEP stars ␣ Cygni stars see ACYG stars ␤ Geminorum see Pollux ␣ Ursae Minoris see Polaris ␤ Lyrae 159 American Association of Variable Star ␤ Lyrae stars see EB stars Observers (AAVSO) 12–13, 14, 219 ␤ Persei see Algol AM Herculis 186 Betelgeuse xii, 1, 62, 96, 137–139 AM Herculis stars see AM Her stars Bevis, John 192 AM Her stars 185–186 bias frame 71, 72, 73 Andromeda, Great Galaxy in see M31 binary star systems 152, 153–171, anomalous
    [Show full text]
  • An Extension of the DUSTY Radiative Transfer Code and an Application to OH 26.5 and TT Cygni
    A&A 543, A36 (2012) Astronomy DOI: 10.1051/0004-6361/201218965 & c ESO 2012 Astrophysics An extension of the DUSTY radiative transfer code and an application to OH 26.5 and TT Cygni M. A. T. Groenewegen Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussel, Belgium e-mail: [email protected] Received 6 February 2012 / Accepted 2 May 2012 ABSTRACT For the best-studied nearby Galactic asymptotic giant branch (AGB) stars a wealth of observational data is typically available in the form of photometry, often extending into the sub-mm, spectra covering a wide wavelength range, and often also visibility curves. Almost 100 AGB stars and red super giants have been imaged as part of the MESS Herschel guaranteed time key program. This does not only add photometry points between 60 and 500 micron, but also intensity profiles at these wavelengths. Dust radiative transfer models are often used to analyse these types of datasets, but there are very many input parameters and therefore it is not straightforward how to derive a best fit. In order to facilitate this, the publicly available one-dimensional (1D) dust radiative transfer code DUSTY was modified and extended, and included as a subroutine in a minimazation code. The code allows a certain parameter set (typically luminosity, dust optical depth, dust temperature at the inner radius and slope of the density law) to be minimised against photometric and spectroscopic data, visibility curves and 1D intensity profiles as constraints. The code is described and first results are presented on the MESS targets OH 26.5 and TT Cyg.
    [Show full text]