Cavity Roosting, Philopatry, and Cooperative Breeding in the Green Woodhoopoe May Reflect a Physiological Trait

Total Page:16

File Type:pdf, Size:1020Kb

Cavity Roosting, Philopatry, and Cooperative Breeding in the Green Woodhoopoe May Reflect a Physiological Trait CAVITY ROOSTING, PHILOPATRY, AND COOPERATIVE BREEDING IN THE GREEN WOODHOOPOE MAY REFLECT A PHYSIOLOGICAL TRAIT J. DAVID LIGON, • CYNTHIA CAREY,2 AND SANDRA H. LIGON• •Departmentof Biology,University of New Mexico,Albuquerque, New Mexico87131 USA, and 2Departmentof EPO Biology,University of Colorado,Boulder, Colorado 80309 USA ABSTRACT.--Cooperativebreeding in birds generally is related to a critical resource.A critical limiting factor for the Green Woodhoopoe(Phoeniculus purpureus) is the availability of roost cavities.Although predation at roost holes is the major sourceof mortality, wood- hoopoesinvariably roost in cavitiesor under loosebark. This dependenceon cavitiesappears to be relatedto the birds' inability to copephysiologically with low nighttime temperatures. This is the first evidenceto suggestthat a physiologicallimitation has played a major role in the evolutionof philopattyand possiblycooperative breeding in an avian species.Received 2 April 1987, accepted8 October1987. THEprevalent view of the basisof cooperative Ligon 1982), the returning woodhoopoesusu- breeding in birds is that it is related to some ally flew to a secondarycavity. In the absence kind of resource(e.g. Brown 1974, Koenig and of a backuproost hole, the birds crawled under Pitelka 1981, Emlen 1982). In some cases the loosebark to spend the night. There is no evi- putative critical resource is territorial space dencethat they ever roostedin the open. More- (Woolfenden and Fitzpatrick 1984), while in over, becausewoodhoopoes do not excavate others it may be costly self-constructedstruc- their own cavities and must compete for holes, tures suchas food storagesites (Stacey and Koe- often unsuccessfully,with numerousother cav- nig 1984) or roostcavities excavatedinto living ity-dwelling animals (J. D. Ligon and S. H. Li- trees(Ligon 1970).Although the selectivebasis gon 1982, 1988), high-quality (i.e. relatively of the nondispersalelement of avian coopera- predator-proof)roost sites are scarce.The severe tive breeding is unresolved (Staceyand Ligon interspecific competition for cavities (honey- 1987), the specificfactors prohibiting dispersal bees, rodents, other birds) means that safe cav- or, alternatively, favoring group living vary ities vary in number both spatially and tem- from speciesto species,and nondispersal of porally. Becauseof the frequent takeover of young birds is a necessaryprecondition for the cavities by other species,a key element of ter- evolution of cooperativebreeding. ritory quality is the number of potential backup We studied the behavior and ecology of the or reserve roost sites. cooperatively breeding Green Woodhoopoe Although the woodhoopoesthus require cav- (Phoeniculuspurpureus) near Lake Naivasha in ities in which to roost,this behavior appearsto the Rift Valley of Kenya (0ø40'S,36ø23'E) for be costlybecause the holes used often are in several years, 1975-1984, and found that for weak wood not chosenby other species,and thesebirds tree cavitiessuitable for roosting are the birds are vulnerable to arboreal nocturnal a critical limiting factor (J. D. Ligon and S. H. mammalian predators, such as large-spotted Ligon 1978, 1982, 1988). We followed several genets(Genetta tigrina) and possiblycats (Felis hundred birds to their roosts,usually to capture libycaand F. domesticus;Ligon and Ligon 1978). them for individual marking (386 woodhoo- Driver ants (tribe Dorylini) also capture adult poes banded). Without exception, the wood- woodhoopoesin their roost holes. Primarily as hoopoesroosted under cover. They almost al- a result of nocturnal predation at roost sites, ways entered a tree cavity and usually roosted Green Woodhoopoessuffer annual mortality in groups; as many as eight birds have been ratesabout twice as high as some other well- recorded in a single cavity (J. D. Ligon and S. studied cooperatively breeding species,about H. Ligon 1982). If, during the day, the roost 40% per year for males and 30% per year for cavity was occupied by another species,e.g. females (Ligon 1981, 1983; Ligon and Ligon honeybees(Apis mellifera; S. H. Ligon and J. D. 1988). 123 The Auk 105: 123-127. January1988 124 LIGON,CAREY, AND LIGON [Auk,Vol. 105 T^BLE1. Metabolic rates and body temperaturesof h. During this perioddried air flowed continuously Green Woodhoopoesat different ambient temper- throughthe chamberat approximately725 ml/min. atures (T•). Measurementof •rO2 was conductedin a manner Male Male Fe- similarto that describedby Dawsonand Carey(1976). I 2 male Dry air was channeledthrough flow meters,into the metabolicchambers, through tubes containing As- Body mass(g) 71.0 66.1 52.3 carite and Drierite for removal of CO2 and water va- Daytime body temperature por, respectively,and then into a Beckmanmodel 755 (øC) at Ta 27øC 42ø 42ø 40ø paramagnetic oxygen analyzer for analysis. The air Metabolic rate (ml O2.g-•.h -•) from each chamberwas sampledsequentially for 5 At T• 30.5øC 1.33 1.67 1.14 min, and room air was sampled once an hour. After At T• 27øC 1.35 1.40 1.09 steady values were obtained at the chamber air tem- At T• 19øO 1.92 2.54 1.31 perature of 30.5øC,the temperature of the constant- Body temperature (øC) at Ta temperaturebox was lowered to 27øC,and finally to 19øC, at 2400 36 ø 35 ø 33 ø 19øC.The birds were exposedto 27øCand 19øCfor at • Metabolic rates at i9øC were taken as the birds moved about. We least I h after the temperature in the chamber had were unable to obtain "resting" rates. stabilizedbefore measurementsof •O2 were made. Two or three measurements were taken at 30.5øC and 27øCand averaged to represent the value for that In view of the high risk of mortality associ- individual at those temperatures. atedwith roostingin cavities,the obviousques- Body temperatureswere taken cloacallywith a YSI tion is why woodhoopoesdo not roost among telethermometerused in conjunctionwith a YS! small- animal probe. the thorny branches and twigs of the acacia trees(Acacia xanthophloea) on the study site, as do mostother small birds,including someother RESULTS group-living speciesof similar masssuch as two Average oxygen consumption of the three speciesof Turdoidesbabblers (pets. obs.) and the birds at 30.5øCfell within 5% of the value pre- Grey-backed Fiscal Shrike (Laniusexcubitorius; dictedby the equationof Aschoffand Pohl (1970) Zack 1986). The low, 7-10øC, nighttime tem- for nonpasserinebirds measuredin the inactive peraturescharacteristic of the study site at 1,860 phase of their daily cycle (Table 1). Although m above sea level, together with the extreme we did not measure•O2 at a wideenough va- agitationshown by woodhoopoeswhen denied riety of temperaturesto describea thermoneu- accessto their roostsat dusk, suggestedthey tral zone, the similarity between the predicted might be physiologically incapable of coping and measured values and information about successfullywith low nocturnal ambient tem- typical lower critical temperatures in birds of peratures (Ligon and Ligon 1978). To address similar body mass(Calder and King 1974) sug- this possibility, we investigated thermoregu- gest that these birds were in what would be latory responsesof three captiveGreen Wood- termeda thermallyneutral condition. The hoopoesto low nocturnal ambient tempera- tures. of thesebirds remained relatively stableas am- bient temperaturewas lowered to 27øC,but in- creasedsharply when air temperaturedropped METHODS to 19øC.Although the birds were totally inac- We borrowed 2 adult male Green Woodhoopoes tive at 30.5 ø and 27øC, the elevated rates at 19øC from the Denver Zoo and 1 young female from the were coincident with frantic hopping and flut- Rio GrandeZoo in Albuquerque,New Mexico. One tering movements of the bird against the sides of the males and the female had been hatched in and roof of the metabolic chambers. These captivity;the other male was capturedfrom the wild. movements became progressively more fre- Measurementof oxygenconsumption (•O2) was quent the longer the birds remained at 19øC.To conductedusing 3.8-1metabolic chambers with black- avoid damage to the woodhoopoes,we termi- ened inner surfaces.Air temperatures within the nated the experiment at 2400 and immediately chamber were measuredwith a copper-constantan removed them from the environmental cham- thermocouple connectedto a Soltex millivolt record- er. The birdswere placedindividually in the cham- ber. The body temperature of each woodhoo- bers at 1600. The chamberswere then placed in a poe, measuredas it was taken from the chamber, constant-temperaturebox, and the birds were allowed indicatedthat despitethe increasedactivity, the to adjust to conditions in the chamber at 30.5øCfor 4 birdswere becominghypothermic (Table 1). The January1988] GreenWoodhoopoe Physiology 125 hypothermia was not an adaptive response to turnal metaboliccosts. Early selectionfor cavity low ambient temperatures; rather, it occurred roostingcould have led to an eventualloss of despite the metabolic heat production associ- thermoregulatoryabilities at low ambient tem- ated with intense locomotor activity. peratures. If cavityroosting is adaptive,low metabolic DISCUSSION rates make for more efficient use of cavities, in that 02 uptake and CO2 production in the cav- Compared with the Temperate Zone avian ities is lessthan if the birds had higher rates. speciesthat have been studied (mostly passer- This could be an important considerationin an ines), these tropical coraciiform birds demon- environment where cavities are in limited sup- strated a very different and apparently inap- ply and where several
Recommended publications
  • Allomaternal Investments and Child Outcomes in the United Kingdom
    Allomaternal Investments and Child Outcomes in the United Kingdom Emily Hazuki Emmott Doctor of Philosophy Department of Anthropology University College London 2014 p. 1 Declaration I, Emily Hazuki Emmott, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Emily H. Emmott p. 2 Abstract Due to the fact that human mothers often have multiple, vulnerable offspring with long periods of dependency, it is argued that mothers need assistance from allomothers to successfully provide and care for their children. Cross-cultural observations and quantitative research converge on support for the idea that mothers in high fertility, high mortality populations need assistance from other individuals for successful childrearing. It is also clear within the literature that there is variation across populations in terms of who matters: who provides the help, how they help, and how much impact they have on childrearing. The current thesis extends from previous studies by exploring the effects of allomothers on childrearing in a contemporary developed context: With economic development and the demographic transition, questions arise regarding the importance of allomothers for successful childrearing, and whether humans in these settings still operate as cooperative breeders. This thesis specifically focuses on quantitatively investigating the effects of fathers, stepfathers and grandparents on child development in the UK. First, using the Avon Longitudinal Study of Parents and Children, I investigate how direct investments from fathers and stepfathers affect multiple child outcomes. Second, using the UK Millennium Cohort Study, I investigate how direct and indirect investments from maternal and paternal grandparents affect parental investment levels, as well as multiple child outcomes.
    [Show full text]
  • Cooperative Breeding in Azure-Winged Magpies, Cyanopica Cyana, Living in a Region of Heavy Snowfall ’
    The Condor89:835-841 0 The CooperOrnithological Society 1987 COOPERATIVE BREEDING IN AZURE-WINGED MAGPIES, CYANOPICA CYANA, LIVING IN A REGION OF HEAVY SNOWFALL ’ SHIGEMOTO KOMEDA,~ SATOSHI YAMAGISHI,~ AND MASAHIRO FUJIOKA Department of Biology, Faculty of Science,Osaka City University,Sumiyoshi-ku, Osaka 558, Japan Abstract. The frequencyof occurrenceof helpers, their age and sex, and certain behavior at nests were investigated in Azure-winged Magpies, Cyanopica cyana, living in central Japan, a region of heavy snowfall. One group of 16 birds was a summer visitor and the other two groupsof about 20 birds were resident. Out of 14 nestswe observed in 1983, six had one to two helpers, one had no helper, and at the other seven we could not confirm whether helpers attended or not. Therefore, 43% to 93% of nests had helpers. One helper was known to attend at least four nests, and seven of 14 marked individuals (50%) acted as helpers.These resultsmean that cooperativebreeding occurs regularly in this population. Key words: Cooperativebreeding; helper; Corvidae;group living;feeding; plural nester: Cyanopica cyana. INTRODUCTION amples of regular cooperative breeders in cool- Cooperative breeding, which involves care of temperate zones are the Long-tailed Tit, Aegi- young by individuals other than parents, has been thalos caudatus (Nakamura 1972, 1975; Gaston reported in a few hundred avian speciesin a wide 1973), Pinyon Jay, Gymnorhinus cyanocephalus variety of taxonomic groups. Most cooperative (Balda and Balda 1978), Gray-breasted Jay, breedersoccur in tropical or subtropical regions Aphelocoma ultramarina (Brown 1970, 1972) or in temperate zones with equable climate and Acorn Woodpecker, Melanerpes formicivo- , (Grimes 1976, Rowley 1976, Woolfenden 1976, rus (Stacey 1979, Koenig 198 1, Koenig et al.
    [Show full text]
  • Energetics of Cooperative Breeding in Meerkats Suricata Suricatta
    International Congress Series 1275 (2004) 367–374 www.ics-elsevier.com Energetics of cooperative breeding in meerkats Suricata Suricatta M. Scantleburya,*, T.H. Clutton-Brockb, J.R. Speakmanc,d aMammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa bDepartment of Zoology, University of Cambridge, UK cAberdeen Centre for Energy regulation and Obesity (ACERO), University of Aberdeen, School of Biological Sciences, Aberdeen, UK dACERO, Division of Energy Balance and Obesity, Rowett Research Institute, Aberdeen, UK Abstract. We investigate whether energetic constraints play a role in determining social structure in cooperatively breeding meerkats Suricata suricatta. Energetics may be important at various stages of the reproductive cycle. Peak lactation and peak pup feeding are potentially the most energetically stressful periods for lactating mothers and subordinate helpers, respectively. Here, we review current data on lactation and present additional information on helping behaviour. Daily energy expenditure (DEE) of dominant females, subordinate helpers and pups were not particularly high during peak lactation. However, metabolisable energy intakes of lactating mothers (calculated from isotope-based estimates of offspring milk energy intake) were not significantly different from maximal suggested limits (at around seven times resting metabolic rate). DEEs of lactating mothers also increased with litter size, but decreased with group size. By comparison, during peak pup feeding, DEE values of helpers were not greater than those measured prior to breeding. Nor was there any apparent difference in DEE between bkeenQ and blazyQ helpers, suggesting that helping may not be energetically costly. These results confirm hypotheses that, in cooperatively breeding societies, breeders have high energy costs, which can be reduced by helpers.
    [Show full text]
  • Evolutionary Context of Human Development: the Cooperative Breeding Model
    1 In press for 2004. Attachment and Bonding: A New Synthesis Dahlem Workshop No. 92. C.S. Carter and L. Ahnert (eds). Cambridge: M.I.T. Press EVOLUTIONARY CONTEXT OF HUMAN DEVELOPMENT: THE COOPERATIVE BREEDING MODEL S.B. Hrdy University of California, Department of Anthropology, Davis, CA 95616-8522, U.S.A. (Nov 15, 2003 version) Abstract: According to the Cooperative Breeding Hypothesis, allomaternal assistance was essential for child survival during the Pleistocene. This breeding system — quite novel for an ape — permitted hominid females to produce costly offspring without increasing inter-birth intervals, and allowed humans to move into new habitats, eventually expanding out of Africa. Reliance on allomaternal assistance would make maternal commitment more dependent on the mother’s perception of probable support from others than is the case in most other primates. One artifact of such conditional maternal investment would be newborns who needed to monitor and engage mothers, as well as older infants and juveniles who needed to elicit care from a range of caretakers across the prolonged period of dependence characteristic of young among cooperative breeders. Implications of this evolutionary context for the sociocognitive and emotional development of infants are explored. 2 Introduction: Moving beyond Bowlby John Bowlby was the first evolutionary psychologist to explore how selection pressures encountered by our Pleistocene ancestors (what he termed “the Environment of Evolutionary Adaptedness,” or EEA) shaped the development of human infants. In a now classic book on Attachment, Bowlby (1969) drew on personal and clinical experience with Western childrearing, on such evidence as was then available for hunter-gatherer child-rearing as well as for maternal care in other primates — mostly macaques, baboons, and chimps.
    [Show full text]
  • Urban Life Promotes Delayed Dispersal and Family Living in a Non-Social
    www.nature.com/scientificreports OPEN Urban life promotes delayed dispersal and family living in a non‑social bird species Álvaro Luna1,8, Nicolás A. Lois2,3,8, Sol Rodríguez‑Martinez4, Antonio Palma1, Ana Sanz‑Aguilar5,6, José L. Tella1 & Martina Carrete7* In some vertebrate species, family units are typically formed when sexually mature individuals delay dispersal and independent breeding to remain as subordinates in a breeding group. This behaviour has been intensively studied in gregarious species but has also been described in non‑social species where ecological and evolutionary drivers are less known. Here, we explore factors that favour delayed dispersal and family living and potential benefts associated with this strategy in a non‑social, monogamous species (the burrowing owl, Athene cunicularia) occupying urban and rural habitats. Our results show that family units arise when frst‑year individuals, mainly males, delay their dispersal to stay in their natal nests with their parents. This delayed dispersal, while still uncommon, was more prevalent in urban (7%) than in rural (3%) habitats, and in areas with high conspecifc density and productivity. Birds delaying dispersal contributed to the genetic pool of the ofspring in 25% of the families analysed, but did not increase the productivity of the nests where they remained. However, their presence was related to an improvement in the body condition of chicks, which was ultimately linked to a slightly positive efect in ofspring future survival probabilities. Finally, delayed dispersers were recruited as breeders in high‑quality urban territories and closer to their natal nests than individuals dispersing during their frst year of life.
    [Show full text]
  • AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018
    AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018 No. Page Title 01 02 Split Fork-tailed Swift Apus pacificus into four species 02 05 Restore Canada Jay as the English name of Perisoreus canadensis 03 13 Recognize two genera in Stercorariidae 04 15 Split Red-eyed Vireo (Vireo olivaceus) into two species 05 19 Split Pseudobulweria from Pterodroma 06 25 Add Tadorna tadorna (Common Shelduck) to the Checklist 07 27 Add three species to the U.S. list 08 29 Change the English names of the two species of Gallinula that occur in our area 09 32 Change the English name of Leistes militaris to Red-breasted Meadowlark 10 35 Revise generic assignments of woodpeckers of the genus Picoides 11 39 Split the storm-petrels (Hydrobatidae) into two families 1 2018-B-1 N&MA Classification Committee p. 280 Split Fork-tailed Swift Apus pacificus into four species Effect on NACC: This proposal would change the species circumscription of Fork-tailed Swift Apus pacificus by splitting it into four species. The form that occurs in the NACC area is nominate pacificus, so the current species account would remain unchanged except for the distributional statement and notes. Background: The Fork-tailed Swift Apus pacificus was until recently (e.g., Chantler 1999, 2000) considered to consist of four subspecies: pacificus, kanoi, cooki, and leuconyx. Nominate pacificus is highly migratory, breeding from Siberia south to northern China and Japan, and wintering in Australia, Indonesia, and Malaysia. The other subspecies are either residents or short distance migrants: kanoi, which breeds from Taiwan west to SE Tibet and appears to winter as far south as southeast Asia.
    [Show full text]
  • Cooperative Breeding in Lanius Shrikes
    COOPERATIVE BREEDING IN LANIUS SHRIKES. I. HABITAT AND DEMOGRAPHY OF TWO SYMPATRIC SPECIES STEVEZACK • AND J. DAVID LIGON Departmentof Biology,University of New Mexico,Albuquerque, New Mexico87131 USA ABSTRACT.--Twosyrupattic speciesof Laniusshrikes were studied near Lake Naivasha, Kenya, in an effort to understandthe ecologicalfactors favoring the evolution and mainte- nanceof cooperativebreeding in one of them. The Gray-backedFiscal Shrike (L. excubitorius), a cooperativebreeder, occupied territories of significantlyhigher tree and shrub coverthan did the Common Fiscal Shrike (L. collaris),which is not a cooperativebreeder. Areas with greatervegetational cover held significantlymore insectsin the dry monthsof the year than did relatively open sites. Possiblyassociated with the shrikes' differencesin habitats and resourceswas their significantdifference in disappearancerates during the study. Turnover of individualsamong gray-backs was abouthalf that of commonfiscals. Similarly, territorial stability (asmeasured by the percentof territoriescontinually occupiedduring the 18-month study) was nearly twice as high in the gray-backs.Within the restrictedacacia woodland gray-backswere dominant to commonfiscals, and in four instanceswe observedgray-backs expel common fiscalsfrom the latter's territories. We suggest that cooperative breeding in gray-backsis related to occupancyof a temporally stable,but spatially restricted,habitat of high quality. This in turn may lead to relatively higher survivorshipin gray-backsand, as a result,their habitatbecomes
    [Show full text]
  • Integrating Cooperative Breeding Into Theoretical Concepts of Cooperation
    1 Integrating cooperative breeding into theoretical concepts of cooperation Ralph Bergmuller¨ a,∗, Rufus A. Johnstone b, Andrew F. Russell c, Redouan Bshary a a Department of Eco-Ethology, Institute of Biology, University of Neuchˆatel,Rue Emile Argand 11, CH-2009 Neuchˆatel,Switzerland b Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK c Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK Abstract In cooperative breeding systems, some individuals help to raise offspring that are not their own. While early explanations for such altruistic behaviour were predominantly based on kin selection, recent evidence suggests that direct benefits may be important in the maintenance of cooperation. To date, however, discussions of cooperative breeding have made little reference to more general theories of cooperation between unrelated individuals (while these theories rarely address cooperative breeding). Here, we attempt to integrate the two fields. We identify four key questions that can be used to categorise different mechanisms for the maintenance of cooperative behaviour: (1) whether or not individuals invest in others; (2) whether or not this initial investment elicits a return investment by the beneficiary; (3) whether the interaction is direct, i.e. between two partners, or indirect (involving third parties) and (4) whether only actions that increase the fitness of the partner or also fitness reducing actions (punishment) are involved in the interaction. Asking these questions with regards to concepts in the literature on cooperative breeding, we found that (a) it is often straightforward to relate these concepts to general mechanisms of cooperation, but that (b) a single term (such as ‘pay-to-stay’, ‘group augmentation’ or ‘prestige’) may sometimes subsume two or more distinct mechanisms, and that (c) at least some mechanisms that are thought to be important in cooperative breeding systems have remained largely unexplored in the theoretical literature on the evolution of cooperation.
    [Show full text]
  • The Oxidative Costs of Parental Care in Cooperative and Pair-Breeding
    Oecologia (2018) 188:53–63 https://doi.org/10.1007/s00442-018-4178-3 PHYSIOLOGICAL ECOLOGY - ORIGINAL RESEARCH The oxidative costs of parental care in cooperative and pair‑breeding African starlings Sarah Guindre‑Parker1,3 · Dustin R. Rubenstein1,2 Received: 13 December 2017 / Accepted: 29 May 2018 / Published online: 1 June 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The cost of parental care has long been thought to favor the evolution of cooperative breeding, because breeders can provide reduced parental care when aided by alloparents. Oxidative stress—the imbalance between reactive oxygen species and neutralizing antioxidants—has been proposed to mediate the cost of parental care, though results from empirical studies remain equivocal. We measured changes in oxidative status during reproduction in cooperatively breeding superb starlings (Lamprotornis superbus) to gain insight into the relationships among breeding status, parental care, and oxidative stress. We also compared the oxidative cost of reproduction in the cooperatively breeding superb starling to that in a sympatric non-cooperatively breeding species, the greater blue-eared glossy starling (L. chalybaeus), to determine whether coopera- tively breeding individuals face reduced oxidative costs of parental care relative to non-cooperatively breeding individuals. Breeders and alloparents of the cooperative species did not difer in oxidative status throughout a breeding attempt. How- ever, individuals of the non-cooperative species incurred an increase in reactive oxygen metabolites proportionally to an individual’s workload during ofspring care. These fndings suggest that non-cooperative starlings experience an oxidative cost of parental care, whereas cooperatively breeding starlings do not. It is possible that high nest predation risk and multi- brooding in the cooperatively breeding species may have favored reduced physiological costs of parental care more strongly compared to pair-breeding starlings.
    [Show full text]
  • Cooperative Breeding Theory and an Evaluation of the Methodological Approaches to Understanding the Evolution and Maintenance of Sociality
    University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health January 2017 The right tools for the job: Cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality Martin Hing University of Wollongong, [email protected] Oya S. Klanten University of Technology Sydney, [email protected] Mark P. Dowton University of Wollongong, [email protected] Marian Y. L Wong University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/smhpapers Recommended Citation Hing, Martin; Klanten, Oya S.; Dowton, Mark P.; and Wong, Marian Y. L, "The right tools for the job: Cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality" (2017). Faculty of Science, Medicine and Health - Papers: part A. 5040. https://ro.uow.edu.au/smhpapers/5040 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The right tools for the job: Cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality Abstract Why do we observe so many examples in nature in which individuals routinely delay or completely forgo their own reproductive opportunities in order to join and remain within a group? Cooperative breeding theory provides a rich framework with which to study the factors that may influence the costs and benefits of emainingr philopatric as a non-breeder.
    [Show full text]
  • RCP Have Been Created, Except Two 'Phase In'
    CORACIIFORMES TAG REGIONAL COLLECTION PLAN Third Edition, December 31, 2008 White-throated Bee-eaters D. Shapiro, copyright Wildlife Conservation Society Prepared by the Coraciiformes Taxon Advisory Group Edited by Christine Sheppard TAG website address: http://www.coraciiformestag.com/ Table of Contents Page Coraciiformes TAG steering committee 3 TAG Advisors 4 Coraciiformes TAG definition and taxonomy 7 Species in the order Coraciiformes 8 Coraciiformes TAG Mission Statement and goals 13 Space issues 14 North American and Global ISIS population data for species in the Coraciiformes 15 Criteria Used in Evaluation of Taxa 20 Program definitions 21 Decision Tree 22 Decision tree diagrammed 24 Program designation assessment details for Coraciiformes taxa 25 Coraciiformes TAG programs and program status 27 Coraciiformes TAG programs, program functions and PMC advisors 28 Program narratives 29 References 36 CORACIIFORMES TAG STEERING COMMITTEE The Coraciiformes TAG has nine members, elected for staggered three year terms (excepting the chair). Chair: Christine Sheppard Curator, Ornithology, Wildlife Conservation Society/Bronx Zoo 2300 Southern Blvd. Bronx, NY 10460 Phone: 718 220-6882 Fax 718 733 7300 email: [email protected] Vice Chair: Lee Schoen, studbookkeeper Great and Rhino Hornbills Curator of Birds Audubon Zoo PO Box 4327 New Orleans, LA 70118 Phone: 504 861 5124 Fax: 504 866 0819 email: [email protected] Secretary: (non-voting) Kevin Graham , PMP coordinator, Blue-crowned Motmot Department of Ornithology Disney's Animal Kingdom PO Box 10000 Lake Buena Vista, FL 32830 Phone: (407) 938-2501 Fax: 407 939 6240 email: [email protected] John Azua Curator, Ornithology, Denver Zoological Gardens 2300 Steele St.
    [Show full text]
  • The Human Family—Its Evolutionary Context and Diversity
    social sciences $€ £ ¥ Review The Human Family—Its Evolutionary Context and Diversity Karen L. Kramer Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA; [email protected] Abstract: The family defines many aspects of our daily lives, and expresses a wide array of forms across individuals, cultures, ecologies and time. While the nuclear family is the norm today in developed economies, it is the exception in most other historic and cultural contexts. Yet, many aspects of how humans form the economic and reproductive groups that we recognize as families are distinct to our species. This review pursues three goals: to overview the evolutionary context in which the human family developed, to expand the conventional view of the nuclear family as the ‘traditional family’, and to provide an alternative to patrifocal explanations for family formation. To do so, first those traits that distinguish the human family are reviewed with an emphasis on the key contributions that behavioral ecology has made toward understanding dynamics within and between families, including life history, kin selection, reciprocity and conflict theoretical frameworks. An overview is then given of several seminal debates about how the family took shape, with an eye toward a more nuanced view of male parental care as the basis for family formation, and what cooperative breeding has to offer as an alternative perspective. Keywords: behavioral ecology; family studies; cooperative breeding; patrilineal Citation: Kramer, Karen L. 2021. The 1. Introduction Human Family—Its Evolutionary Family formation shapes many aspects of our daily lives—who we work, eat and sleep Context and Diversity.
    [Show full text]