Thesis Sensory Gating, Habituation

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Sensory Gating, Habituation THESIS SENSORY GATING, HABITUATION, AND ORIENTATION OF P50 AND N100 EVENT-RELATED POTENTIAL (ERP) COMPONENTS IN NEUROLOGICALLY TYPICAL ADULTS AND LINKS TO SENSORY BEHAVIORS Submitted by Catherine L. Greife Department of Occupational Therapy In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2013 Master’s Committee: Advisor: Patricia Davies Karen Atler William Gavin Ashley Blythe LaGasse Copyright by Catherine L. Greife 2013 All Rights Reserved ABSTRACT SENSORY GATING, HABITUATION, AND ORIENTATION OF P50 AND N100 EVENT- RELATED POTENTIAL (ERP) COMPONENTS IN NEUROLOGICALLY TYPICAL ADULTS AND LINKS TO SENSORY BEHAVIORS This thesis project used a novel electroencephalography (EEG) auditory paradigm, the orientation/habituation paradigm, to understand brain processing in response to multiple auditory stimuli. This paradigm allowed the exploration of several neurological processes within one task: sensory gating, orientation to deviant stimulus, and habituation and dishabituation. Sensory gating has been studied extensively in individuals with neurological disorders (Arnfred & Chen, 2004; Boutros, Belger, Campbell, D'Souza, & Krystal, 1999; Kisley et al., 2003) and there are a few studies that have examined habituation and orientation in individuals with epilepsy or schizophrenia (Rosburg et al., 2004; Rosburg et al., 2006; Viswanathan & Jansen, 2010). The construct of dishabituation, referring to the brain’s processing of standard stimuli after the presentation of a deviant stimulus, has not been studied previously. In addition to exploring these neurological phenomena, this project investigated the relationship between brain processing and scores on sensory behavioral inventories, the Adolescent/Adult Sensory Profile (Brown & Dunn, 2002) and the Sensory Gating Inventory (Hetrick, Erickson, & Smith, 2012). Participants were 38 neurologically typical adults (average age 19.6 ±1.46 years). These adults demonstrated significant sensory gating from stimulus 1 to stimulus 2 at all electrode sites (p < .0005). There was also a significant orientation effect of P50 and N100 to the deviant stimuli. There was no habituation of the P50 ERP component over time and there were mixed ii results regarding whether or not the P50 was dishabituated when a deviant tone was presented. In contrast to the P50, there were significant linear trends found for N100 at four of the five electrode sites, demonstrating habituation. Additionally, when presented with a deviant stimulus in the middle of a series of standard stimuli, N100 was not dishabituated, and in some cases demonstrated significant increase in habituation after the deviant stimulus. These results indicate that there is some sort of cognitive control over the suppression of the N100 amplitude that is not seen for the suppression of P50. Finally, when correlated with sensory behavior tasks, sensory gating of N100 amplitude was significantly associated with Sensation Avoiding on the Adolescent/Adult Sensory Profile (A/ASP) (Brown & Dunn, 2002). Increase in P50 amplitude to the deviant stimulus, reflecting orientation, was significantly negatively correlated with both Over-Inclusion and Fatigue and Stress Vulnerability of the Sensory Gating Inventory (Hetrick, Erickson, & Smith, 2012) and positively with the Sensation Seeking quadrant of the A/ASP. Increase in N100 amplitude to the deviant stimulus, reflecting orientation, was significantly related to the Touch Processing subscale of the A/ASP. iii ACKNOWLEDGEMENTS I would like to thank the members of my thesis committee for their support of my research over the past two years. Thanks to Dr. Patricia Davies, who explained and re-explained the complexities of brain processing and research, who supported and nurtured my curiosity, and who gave much time and energy to this project. I would like to thank Dr. Karen Atler for her insights and thoughtful questioning that helped expand my understanding of the occupational therapy connection to what I was researching and reminded me of the big picture when I worried about minutia. Thanks to Dr. William Gavin who shared his enthusiasm for this research. His explanations of research methods and statistical analysis helped me understand and interpret what I read as well as my own findings. Finally, I’d like to thank Dr. Blythe LaGasse who has been a supportive member of the Brainwaves Research Lab, contributing another perspective to our discussions, and who joined this committee with a special interest in the orientation/habituation paradigm. I am thankful for those outside of my committee who have been important to the completion of this project. Thanks to Dr. Anne Cleary who provided insightful questions during my proposal which guided how I interpreted results of my research. And to the members of the Brainwaves Research Lab, especially Kelly Phares-Zook, who endlessly explored ideas and provided support during this process. Finally, I’d like to thank my family for their endless support for my learning. iv TABLE OF CONTENTS ABSTRACT .................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................... iv CHAPTER 1 ....................................................................................................................................1 Benefits of Studying Neurologically Typical Adults .................................................................1 Electroencephalography .............................................................................................................3 Sensory Gating ...........................................................................................................................5 Habituation .................................................................................................................................6 Orientation ..............................................................................................................................10 Brain Regions Associated with Neural Phenomena ................................................................11 Unique Features of the Orientation/Habituation Paradigm .....................................................13 Sensory Inventories ..................................................................................................................14 Adolescent/Adult Sensory Profile......................................................................................14 Sensory Gating Inventory ..................................................................................................16 Conclusion ...............................................................................................................................17 CHAPTER 2 ..................................................................................................................................19 Purpose of this Study ...............................................................................................................24 Research Questions and Hypotheses .......................................................................................24 Sensory Gating ...................................................................................................................24 Habituation .........................................................................................................................25 Orientation .........................................................................................................................25 Methods....................................................................................................................................26 Participants .........................................................................................................................26 Data Collection ..................................................................................................................26 Procedures ....................................................................................................................26 EEG/ERP collection.....................................................................................................26 Orientation/habituation paradigm ..........................................................................27 EEG data reduction ......................................................................................................28 Sensory behavioral tests ...............................................................................................30 Data Analysis .....................................................................................................................30 Dependent measures ....................................................................................................30 Statistical analysis ........................................................................................................31 Results ......................................................................................................................................32 Question 1: Sensory Gating ...............................................................................................33 Question 2: Habituation/Dishabituation ............................................................................34 Question 3: Orientation ......................................................................................................41
Recommended publications
  • A Psychological Approach to Musical Form: the Habituation–Fluency Theory of Repetition
    A Psychological Approach to Musical Form: The Habituation–Fluency Theory of Repetition David Huron With the possible exception of dance and meditation, there appears to be nothing else in common human experience that is comparable to music in its repetitiveness (Kivy 1993; Ockelford 2005; Margulis 2013). Narrative arti- facts like movies, novels, cartoon strips, stories, and speeches have much less internal repetition. Even poetry is less repetitive than music. Occasionally, architecture can approach music in repeating some elements, but only some- times. There appears to be no visual analog to the sort of trance–inducing music that can engage listeners for hours. Although dance and meditation may be more repetitive than music, dance is rarely performed in the absence of music, and meditation tellingly relies on imagining a repeated sound or mantra (Huron 2006: 267). Repetition can be observed in music from all over the world (Nettl 2005). In much music, a simple “strophic” pattern is evident in which a single phrase or passage is repeated over and over. When sung, it is common for successive repetitions to employ different words, as in the case of strophic verses. However, it is also common to hear the same words used with each repetition. In the Western art–music tradition, internal patterns of repetition are commonly discussed under the rubric of form. Writing in The Oxford Companion to Music, Percy Scholes characterized musical form as “a series of strategies designed to find a successful mean between the opposite extremes of unrelieved repetition and unrelieved alteration” (1977: 289). Scholes’s characterization notwithstanding, musical form entails much more than simply the pattern of repetition.
    [Show full text]
  • Modeling the Dishabituation Hierarchy: the Role of the Primordial Hippocampus*
    Biol. Cybern. 67, 535-544 (1992) Biological Cybemetics Springer-Verlag 1992 Modeling the dishabituation hierarchy: The role of the primordial hippocampus* DeLiang Wang and Michael A. Arbib Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089-2520, USA Received January 30, 1992/accepted in revised form April 6, 1992 Abstract. We present a neural model for the organiza- orienting response to a certain stimulus applied at a tion and neural dynamics of the medial pallium, the given location, the response can be released by the same toad's homolog of mammalian hippocampus. A neural stimulus applied at a different retinal locus (Eikmanns mechanism, called cumulative shrinking, is proposed 1955; Ewert and Ingle 1971). (2) Hierarchical stimulus for mapping temporal responses from the anterior tha- specificity. Another stimulus given at the same locus lamus into a form of population coding referenced by may restore the response habituated by a previous spatial positions. Synaptic plasticity is modeled as an stimulus. Only certain stimuli can dishabituate a previ- interaction of two dynamic processes which simulates ously habituated response. Ewert and Kehl (1978) acquisition and both short-term and long-term forget- demonstrated that this dishabituation forms a hierarchy ting. The structure of the medial pallium model plus the (Fig. 1A), where a stimulus can dishabituate the habitu- plasticity model allows us to provide an account of the ated responses of another stimulus if the latter is lower neural mechanisms of habituation and dishabituation. in the hierarchy. Computer simulations demonstrate a remarkable match A model developed by Wang and Arbib (1991a) between the model performance and the original exper- showed how a group of cells in the anterior thalamus imental data on which the dishabituation hierarchy was (AT) could respond to stimuli higher in the hierarchy based.
    [Show full text]
  • The Deficit of Multimodal Perception of Congruent and Non-Congruent Fearful Expressions in Patients with Schizophrenia: the ERP Study
    brain sciences Article The Deficit of Multimodal Perception of Congruent and Non-Congruent Fearful Expressions in Patients with Schizophrenia: The ERP Study Galina V. Portnova 1,2,*, Aleksandra V. Maslennikova 1,3, Natalya V. Zakharova 3 and Olga V. Martynova 1,4 1 Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia; [email protected] (A.V.M.); [email protected] (O.V.M.) 2 The Pushkin State Russian Language Institute, 117485 Moscow, Russia 3 Psychiatric Clinical Hospital No. 1 Named after ON. Alekseeva of the Moscow City Health Department, 117152 Moscow, Russia; [email protected] 4 Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 109548 Moscow, Russia * Correspondence: [email protected] Abstract: Emotional dysfunction, including flat affect and emotional perception deficits, is a specific symptom of schizophrenia disorder. We used a modified multimodal odd-ball paradigm with fearful facial expressions accompanied by congruent and non-congruent emotional vocalizations (sounds of women screaming and laughing) to investigate the impairment of emotional perception and reactions to other people’s emotions in schizophrenia. We compared subjective ratings of emotional state and event-related potentials (EPPs) in response to congruent and non-congruent stimuli in patients with schizophrenia and healthy controls. The results showed the altered multimodal perception of fearful stimuli in patients with schizophrenia. The amplitude of N50 was significantly higher for non-congruent stimuli than congruent ones in the control group and did not differ in patients. The Citation: Portnova, G.V.; P100 and N200 amplitudes were higher in response to non-congruent stimuli in patients than in Maslennikova, A.V.; Zakharova, N.V.; controls, implying impaired sensory gating in schizophrenia.
    [Show full text]
  • Gabab Regulation of Methamphetamine-Induced Associative Learning
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2010 Gabab Regulation of Methamphetamine-Induced Associative Learning Robin Michelle Voigt Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Pharmacology Commons Recommended Citation Voigt, Robin Michelle, "Gabab Regulation of Methamphetamine-Induced Associative Learning" (2010). Dissertations. 38. https://ecommons.luc.edu/luc_diss/38 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2010 Robin Michelle Voigt LOYOLA UNIVERSITY CHICAGO GABAB REGULATION OF METHAMPHETAMINE-INDUCED ASSOCIATIVE LEARNING A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN MOLECULAR PHARMACOLOGY & THERAPEUTICS BY ROBIN MICHELLE VOIGT CHICAGO, IL DECEMBER 2010 Copyright by Robin Michelle Voigt, 2010 All rights reserved ACKNOWLEDGEMENTS Without the support of so many generous and wonderful individuals I would not have been able to be where I am today. First, I would like to thank my Mother for her belief that I could accomplish anything that I set my mind to. I would also like to thank my dissertation advisor, Dr. Celeste Napier, for encouraging and challenging me to be better than I thought possible. I extend gratitude to my committee members, Drs. Julie Kauer, Adriano Marchese, Micky Marinelli, and Karie Scrogin for their guidance and insightful input.
    [Show full text]
  • Journal of Neurobiology, Parametric Studies of The
    JOURNAL OF NEUROBIOLOGY,VOL. 1, NO. 3, PP. 345-360 PARAMETRIC STUDIES OF THE RESPONSE DECREMENT PRODUCED BY MECHANICAL STIMULI IN THE PROTOZOAN, Stentor coeruleus DAVID C. WOOD* Brain Research Laboratory, The University of Michigan, Ann Arbor, Michigan 43104 SUMMARY A decrement in the probability of eliciting a response is observed dur- ing the course of repetitive stimulation in many response systems of both metazoa and protozoa. Those forms of metazoan response decre- ment called habituation have recently been characterized behaviorally. In the studies reported here, the response decrement of the contractile protozoan, Stentor coeruleus, to repeated mechanical stimulation was systemically characterized to provide a comparison with metazoan habit- uation. This change in response probability was closely approximated by a negative exponential function after the first few stimuli. Animals responded to parametric variations of stimulus amplitude, interstimulus interval and retention period in a manner paralleling that observed in metazoa. However, neither interpolated large amplitude mechanical stimuli nor suprathreshold electrical stimuli produced dishabituation in Stentor though these stimuli are among the most effective dishabituating stimuli for metazoan tactile response systems. Behavioral analysis of the response decrement proceeded on the assumption that Stentor con- tains receptor and effector mechanisms only. Since the response decre- ment was not correlated with a change in responsiveness to electrical stimuli, the ability of the animal to contract appears to be unaltered by the process producing the response decrement. On the other hand, weak mechanical prestimuli were found to increase the rate of the response decrement which suggests that a process of receptor adaption is opera- tive.
    [Show full text]
  • Auditory P3a and P3b Neural Generators in Schizophrenia: an Adaptive Sloreta P300 Localization Approach
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC This is an author-edited version of the accepted manuscript published in Schizophrenia Research. The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.schres.2015.09.028 Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach Alejandro Bachiller1, Sergio Romero2,3, Vicente Molina4,5, Joan F. Alonso2,3, Miguel A. Mañanas2,3, Jesús Poza1,5,6 and Roberto Hornero1,6 1 Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, 47011 Valladolid, Spain. {[email protected]; [email protected]; [email protected]} 2 Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain. {[email protected]; [email protected]; [email protected]} 3 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) 4 Psychiatry Department, Hospital Clínico Universitario, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain {[email protected]} 5 INCYL, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, 37007 Salamanca, Spain 6 IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid, 47011 Valladolid, Spain Corresponding author. Alejandro Bachiller, Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, 47011 Valladolid, Spain Tel: +34 983423000 ext. 5589; fax: +34 983423667; Email address: [email protected] Abstract The present study investigates the neural substrates underlying cognitive processing in schizophrenia (Sz) patients.
    [Show full text]
  • ERP Peaks Review 1 LINKING BRAINWAVES to the BRAIN
    ERP Peaks Review 1 LINKING BRAINWAVES TO THE BRAIN: AN ERP PRIMER Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Psychological and Brain Sciences University of Louisville Louisville, Kentucky Short title: ERPs Peak Review. Key Words: ERP, peak, latency, brain activity source, electrophysiology. Please address all correspondence to: Alexandra P. Fonaryova Key, Ph.D. Department of Psychological and Brain Sciences 317 Life Sciences, University of Louisville Louisville, KY 40292-0001. [email protected] ERP Peaks Review 2 Linking Brainwaves To The Brain: An ERP Primer Alexandra Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Abstract This paper reviews literature on the characteristics and possible interpretations of the event- related potential (ERP) peaks commonly identified in research. The description of each peak includes typical latencies, cortical distributions, and possible brain sources of observed activity as well as the evoking paradigms and underlying psychological processes. The review is intended to serve as a tutorial for general readers interested in neuropsychological research and a references source for researchers using ERP techniques. ERP Peaks Review 3 Linking Brainwaves To The Brain: An ERP Primer Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Over the latter portion of the past century recordings of brain electrical activity such as the continuous electroencephalogram (EEG) and the stimulus-relevant event-related potentials (ERPs) became frequent tools of choice for investigating the brain’s role in the cognitive processing in different populations. These electrophysiological recording techniques are generally non-invasive, relatively inexpensive, and do not require participants to provide a motor or verbal response.
    [Show full text]
  • Orienting Response Reinstatement and Dishabituation: the Effects of Substituting
    Orienting Response Reinstatement and Dishabituation: The Effects of Substituting, Adding and Deleting Components of Nonsignificant Stimuli Gershon Ben-Shakar, Itamar Gati, Naomi Ben-Bassat, and Galit Sniper The Hebrew University of Jerusalem Acknowledgments: This research was supported by The Israel Science Foundation founded by The Academy for Sciences and Humanities. We thank Dana Ballas, Rotem Shelef, Limor Bar, and Erga Sinai for their help in the data collection. We also thank John Furedy and an anonymous reviewer for the helpful comments on an earlier version of this manuscript. The article was written while the first author was on a sabbatical leave at Brandeis University. We wish to thank the Psychology Department at Brandeis University for the facilities and the help provided during this period. Address requests for reprints to: Prof. Gershon Ben-Shakhar Department of Psychology, The Hebrew University, Jerusalem, 91905, ISRAEL Running Title: OR Reinstatement and Dishabituation 2 ABSTRACT This study examined the prediction that stimulus novelty is negatively related to the measure of common features, shared by the stimulus input and representations of preceding events, and positively related to the measure of their distinctive features. This prediction was tested in two experiments, which used sequences of nonsignificant verbal and pictorial compound stimuli. A test stimulus (TS) was presented after 9 repetitions of a standard stimulus (SS), followed by 2 additional repetitions of SS. TS was created by either substituting 0, 1, or 2 stimulus components of SS (Experiment 1), or by either adding or deleting 0, 1, or 2 components of SS (Experiment 2). The dependent measure was the electrodermal component of the OR to both TS (OR reinstatement) and SS that immediately followed TS (dishabituation).
    [Show full text]
  • P50 Potential-Associated Gamma Band Activity: Modulation by Distraction
    Short communication Acta Neurobiol Exp 2012, 72: 102–109 P50 potential-associated gamma band activity: Modulation by distraction Inga Griskova-Bulanova1, 2 *, Osvaldas Ruksenas3, Kastytis Dapsys1, 3, Valentinas Maciulis1, and Sidse M. Arnfred4 1Department of Electrophysiological Treatment and Investigation Methods, Vilnius Republican Psychiatric Hospital, Vilnius, Lithuania, *Email: [email protected]; 2Department of Psychology, Mykolas Romeris University, Vilnius, Lithuania; 3Department of Biochemistry-Biophysics, Vilnius University, Vilnius, Lithuania; 4Psychiatric Center Ballerup, University Hospital of Copenhagen, Copenhagen, Denmark We aimed to evaluate the effect of changing attentional demands towards stimulation in healthy subjects on P50 potential- related high-frequency beta and gamma oscillatory responses, P50 and N100 peak amplitudes and their gating measures. There are no data showing effect of attention on P50 potential-related beta and gamma oscillatory responses and previous results of attention effects on P50 and N100 amplitudes and gating measures are inconclusive. Nevertheless the variation in the level of attention may be a source of variance in the recordings as well as it may provide additional information about the pathology under study. Nine healthy volunteers participated in the study. A standard paired stimuli auditory P50 potential paradigm was applied. Four stimulation conditions were selected: focused attention (stimuli pair counting), unfocused attention (sitting with open eyes), easy distraction (reading a magazine article), and difficult distraction (searching for Landolt rings with appropriate gap orientation). Time-frequency responses to both S1 and S2 were evaluated in slow beta (13–16 Hz, 45–175 ms window); fast beta (20–30 Hz, 45–105 ms window) and gamma (32–46 Hz, 45–65 ms window) ranges.
    [Show full text]
  • Self-Reported Sensory Gating and Stress-Related Hypertension
    Henry Ford Health System Henry Ford Health System Scholarly Commons Public Health Sciences Articles Public Health Sciences 9-1-2020 Self-Reported Sensory Gating and Stress-Related Hypertension Rosalind M. Peters Maher El-Masri Andrea E. Cassidy-Bushrow Follow this and additional works at: https://scholarlycommons.henryford.com/ publichealthsciences_articles Self-Reported Sensory Gating and Stress-Related Hypertension Rosalind M. Peters ▼ Maher El-Masri ▼ Andrea E. Cassidy-Bushrow Background: Increasing evidence views hypertension as a stress-induced disorder. Stressors must be “gated” by the brain before any inflammatory or immune processes that contribute to hypertension are initiated. No studies were found that examined sensory gating in relation to hypertension. Objectives: The aim of the study was to determine if disturbances in self-reported sensory gating could differentiate normotensive from hypertensive young adults. Methods: A nonmatched, case–control design was used. We administered an online survey to 163 young adult participants. Participants were predominantly female, in their mid-20s, well educated, and approximately evenly distributed by race and hypertension status. The Sensory Gating Inventory (SGI) measured gating disturbances. Results: The mean SGI scores were significantly higher among persons diagnosed with hypertension, reflecting a moderate effect size of sensory gating. After adjusting for confounders, however, the normotensive and hypertensive groups were not significantly different on their SGI scores. Discussion: With an observed moderate effect size of 0.35, but low power, more research is warranted regarding the role of gating disturbances in the development of stress-induced hypertension. Clinically, the SGI may be important for screening patients who would benefit from ambulatory blood pressure monitoring to identify persons with masked hypertension.
    [Show full text]
  • Mental Health Technician Orientation Handbook
    Mental Health Technician Orientation Handbook 2016 1 Mental Health Technician Orientation Handbook Table of Contents/Introduction Module 1: Role of MHT/Health and Safety Module 2: Understanding Mental Health/Mental Illness Module 3: Mental Health and Recovery Module 4: Boundaries Module 5: Diversity and Cultural Values Module 6: Confidentiality Module 7: Documentation Module 8: Communication and Empathy Module 9: Major Psychiatric Disorders Module 10: Psychiatric Disorders and Mental Health Issues in Children Module 11: Psychiatric Medications Module 12: Developmental Stages, Effects of Trauma, Age Specific Competencies Module 13: Managing Sexual Reactivity Module 14: Therapeutic Milieu Module 15: Behavioral Interventions Module 16: Community Meetings and Groups Module 17: Managing Aggression in Teens Module 18: De-escalation Techniques Module 19: Sensory Diet 2 20 : Appendix 1: Cognitive Distortions 21: Appendix 2: Defense Mechanisms 22: Appendix 3: Glossary of Mental Health and Psychiatry 23: Appendix 4: Common Terms and Acronyms 24: Conclusion 25: Notes 3 Introduction This Orientation Handbook is designed to teach those competencies that a newly hired Mental Health Technician will need before engaging in their work. Completion of this handbook is required before completion of an MHT’s probationary period. Shodair Children’s Hospital is an 86 bed facility devoted to the psychiatric care of emotionally disturbed children from 3-18 years of age from the State of Montana. Care of these children is provided on an acute, short term crisis stabilization unit and three long term Residential Units. Clinical Departments: Nursing: The Department of Nursing is staffed by a Director of Nursing, Nurse Managers for the three residential Units and the acute unit, two Nursing House Supervisors, Ward Clerks, Registered Nurses, Licensed Practical Nurses, Mental Health Technicians and a Staffing Coordinator.
    [Show full text]
  • The Role of Habituation in Social Fear by Suzanne N. Avery Dissertation
    Slow to Warm Up: The Role of Habituation in Social Fear By Suzanne N. Avery Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Neuroscience August, 2015 Nashville, Tennessee Approved: David Zald, Ph.D. Bunmi Olatunji, Ph.D. Brandon Ally, Ph.D. Jennifer Blackford, Ph.D. Copyright © 2015 by Suzanne N. Avery All Rights Reserved ii To my husband, Stacy, for his unending support, and my daughter, Sophie, for whom I do everything iii ACKNOWLEDGMENTS I would first and foremost like to thank my advisor, Dr. Jennifer Blackford, who is a truly exceptional scientist, teacher and mentor. She has encouraged me to pursue every opportunity for scientific achievement and has mentored me closely through each step. Her enthusiasm to help me become an excellent scientist and her generosity with her time and effort have made my graduate training an incredible experience. She has an incredible passion for science and possesses a brilliant combination of curiosity, creativity, motivation, intelligence and passion that inspires all of those who have the pleasure to work with her. I am eternally grateful for your mentorship—thank you is not enough. I would also like to thank the current and former members of the Blackford lab, including Jacqueline Clauss, Ross VanDerKlok, and Brittany Matthews, whose assistance and encouragement have made this work possible. My gratitude goes out to my dissertation committee, who have provided invaluable feedback and whose suggestions have significantly improved this project. Thank you for your insights and help Dr.
    [Show full text]