Canadian Viagra Generic

Total Page:16

File Type:pdf, Size:1020Kb

Canadian Viagra Generic The BULLETIN OF THE NEW YORK MINERALOGICAL CLUB, INC Volume 133 No. 1 January 2019 MODERN MARVELS: ROCKS ANCIENT ZIRCON The IYPT Begins See page 6! INTERNATIONAL YEAR OF THE PERIODIC TABLE BEGINS NOT SO ROUGH MEMBERSHIP RENEWAL FORM America’s Oldest Gem & Mineral Club Founded 1886 Incorporated 1937 Bulletin of the New York Mineralogical Club Founded 1886 Ë New York City, New York Ë Incorporated 1937 Volume 133, No. 1 Celebrating the International Year of the Periodic Table of Chemical Elements January 2019 January 9th Meeting: 2nd Annual Movie Night: Preview of 2019 Events Planned for “Modern Marvels: Rocks” the New York Mineralogical Club By Mitch Portnoy The summer months are no longer an The year 2019 will feature many unused time period for the Club. We have events and activities for members of the a regular meeting in July and an Open New York Mineralogical Club, including House (party) out on Long Island in educational lectures, benefit auctions, August. In addition, there will be a social activities and mineral & gem shows. Directors Meeting in early July whose The United Nations has declared 2019 agenda is overall Club planning, but with to be the International Year of the a strong focus on the October banquet. Periodic Table of Chemical Elements. The theme of the October 2019 The actual opening Banquet will be ceremony will take labradorite so be ready place at UNESCO in to see lots of sparkling Paris on the 29th of blue on all of the January 2019. The banquet party materials Club will acknowledge and decorations. this special year with A n d , s i n c e r e l e v a n t a c t i o n s everyone liked the throughout the year. “less meeting, more After the great party” motif from the success of last year’s 2018 banquet, there Movie Night in will again be lots of January, we decided to continue the fun and games this year with the more “tradition” with a second movie night this leisurely meal pace as there will be no Last year’s Movie Night (Pederneira: year. main lecture. A Rainbow of Color) was SUCH a success February’s meeting will feature our Paired with and occurring before the that we decided to have another such event highly popular “Members’ Showcase” banquet itself will be a Silent Auction. this year. This year we will feature (which is a formal name for show and tell) (Its revenue help keep the individual Modern Marvels: Rocks! where members make short presentations banquet costs WAY down.) And once From the Stone Age to the Space relating to the hobby; the meeting will also again, there will be a “Buy it Now” option Age, our world has been built contain our annual Chinese Auction! available for each of the lots as this was from rocks. Visit the Johnson Engaging lectures will be an proved to be both popular and efficient. Space Center in Houston to important part of most of the year’s I hope to see everyone at all of these examine America’s horde of meetings. I know I am especially looking activities. And remember, ideas and moon rocks to determine how the forward to hearing about Ethiopia by Prof. suggestions are ALWAYS welcome. planets were formed, and how Juan Manuel Garcia Ruiz in June! old the solar system is. See how The first of the three New York City marble and granite are extracted, Issue Highlights Gem & Mineral Shows will occur during cut and polished. Do some the first weekend in March. (The other two blasting at a gravel pit, watch ore President’s Message . 2 occur in June and November.) Coming turn into steel and finally, learn Meeting Minutes . 2 shortly after Tucson, we can certainly how the geysers in Northern World of Minerals: Zircon . 3 expect a wonderful selection of minerals, California harness heat from 7 Human Minerals. 4 gems, fossils, lapidary arts, etc. from rocks to create energy for 85,000 New NYMC Postcards Available . 5 which to choose! The IYPT 2019 Begins!. 6 homes. May’s meeting this year (rather than 20 Cool Facts: Periodic Table. 7 In keeping with the Movie Night June as in the past) will feature our Meteorite Doorstop . 8 theme, there will be some theater candy, Annual Benefit Auction. I can already Topics in Gemology: Rough . 9 popcorn and beverages available, a short promise you that the lots will be diverse New Jersey Garnet. 10 video or cartoon during intermission and and high quality. An early version of an Austrian Jewelry Exhibition . 11 meeting room decorations relevant to the illustrated auction catalog will be posted Membership Renewal Form. 12 theme. online in March or April. Club & Show Calendars . 13 See you there! 2 Bulletin of the New York Mineralogical Club, Inc. January 2019 President’s Message Club Meeting Minutes for Members in the News By Mitch Portnoy December 12, 2018 A final collection of essays by Oliver Attendance: 53 Sacks – many never before published – President Mitch Portnoy presided will be available on April 23, 2019. This Announcements & Proceedings: volume of essays, entitled Everything in The meeting raffle was held. its Place: First Loves and Last Tales, The death of member Sidney showcases Oliver’s broad range of Horenstein (1936-2018) was interests – from his passion for ferns, announced. (Full New York Times swimming, and the Periodic Table, to Obituary will appear next month.) his final case histories exploring Remaining banquet souvenir folders schizophrenia, dementia, and were distributed (which include the Alzheimer’s. remaining 2019 NYMC calendars). An extensive obituary about Sidney A website update was given showing Horenstein appeared in the December The Club will acknowledge and the availability of the banquet videos. 12, 2018 New York Times. Members were encouraged to pay their celebrate the International Year of the It with sadness that we report of the dues for 2019. Periodic Table of Chemical Elements in passing of William O'Neill, lifelong The various historical events ocurring 2019 in many ways. mineral collector and father of Chris on the meeting date were announced. Every Bulletin will have an O'Neill, on December 3 at age 99. A game about sulfides was played with interesting graphic, article or diagram on cactus glasses given as prizes. Welcome New Members! this theme. I want to thank Diana Jarrett All the Club’s merchandise was Augusto Castilto . Ridgewood, NY and Vivien Gornitz in advance as they available for sale. Aldon James . NYC, NY have all agreed to use this topic for some The new set of Periodic Table note Carolyn Mutter . Piermont, NY of their regular column articles. And Bill cards debuted. And Welcome Back to: Shelton has decided to write an entirely A picture (see p. 6) of a new Club cap Olga Gonzalez. NYC, NY new series of articles under the summary (garnet colored with logo) was shown. Coming In February 2019 title It’s Elemental! Upcoming Club events were quickly I strongly encourage others to write thru mid-2019 were gone over. IYPT-related articles during 2019! The evening’s speaker was introduced I have designed a special set of note expertly by Naomi Sarna. cards and a postcard (similar to the banner Special Lecture: Jeffrey Bilgore pictured above). Also, all members in “The AGTA Today” good standing will receive a cancelled The NYMC ended its 2018 series of IYPT cacheted envelope at the January meeting lectures with an engaging and meeting. informative presentation about the I am trying to arrange a special lecture American Gem Traders Association or two on this topic for the 2019 meetings; (AGTA) by its president, Jeffrey Bilgore. local speakers (like me) might have to get The AGTA was founded in 1981 by a bumped to 2020. group of three gem dealers who decided to create an organization whose members agreed to proudly follow an honorable code Question: of conduct and business practices. Does anyone have a Blu-Ray ready It has thrived since then and grown to laptop that we can borrow later in include 1200 gem dealers, miners, jewelry the year? manufacturers, designers and retailers, including some of the most famous and th historic American companies. 5 Annual Chinese Auction Send in Your 2019 Club Dues Jeffrey named some of the many It is time to send in your 2019 club membership dues! All memberships run from January 1 to December 31 of esteemed AGTA participants, several of each year (with a few exceptions).If your mailing label whom are current members of the NYMC! says “2018”, you owe your 2019 dues. Please take He continued with examples of the time now to mail in your dues in order to prevent important international, socially-conscious uninterrupted delivery of your bulletin. A handy form appears on page 12. Dues are $25 for individual, $35 for projects sponsored by his organization or its family. Mail to: Membership Coordinator, N.Y. members. Mineralogical Club, P.O. Box 77, Planetarium Station, His final two topics included an NYC, NY 10024-0077. overview of their annual GemFairs™ and the importance of their Spectrum Awards Or Renew Online with PayPal! for jewelry design and the gemstone arts. We thank Jeffrey for such a colorful and enriching presentation about the AGTA! January 2019 Bulletin of the New York Mineralogical Club, Inc. 3 The World of Minerals The World of Minerals is a monthly column written by Dr. Vivien Gornitz on timely and interesting topics related to geology, gemology, mineralogy, mineral history, etc. Zircon: Lifting the Veil of Time The oldest-known Earth materials are tiny 4.4 billion-year Zircon, ZrSiO4, sometimes takes the place of diamond in old zircon grains from a younger quartz pebble conglomerate of jewelry, thanks to its bright luster and brilliance.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • Romarchite, Hydroromarchite and Abhurite Formed During the Corrosion of Pewter Artifacts from the Queen Anne’S Revenge (1718)
    659 The Canadian Mineralogist Vol. 41, pp. 659-669 (2003) ROMARCHITE, HYDROROMARCHITE AND ABHURITE FORMED DURING THE CORROSION OF PEWTER ARTIFACTS FROM THE QUEEN ANNE’S REVENGE (1718) STACIE E. DUNKLE, JAMES R. CRAIG§ AND J. DONALD RIMSTIDT Department of Geological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061-0420, U.S.A. ¶ WAYNE R. LUSARDI Underwater Archaeology Branch, North Carolina Department of Cultural Resources, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, North Carolina 28557, U.S.A. ABSTRACT Pewter, a tin-rich alloy, has been widely used for ornamental and utilitarian purposes for the last 400 years because it is durable, relatively easily worked, resistant to corrosion, and similar to silver in appearance. Pewter plates and implements have been recovered and examined from what is believed to be the wreck site of the Queen Anne’s Revenge, flagship of the pirate Blackbeard, that sank near Beaufort, North Carolina in 1718. All of the pewter artifacts from the site display a surface veneer of corrosion products and may be viewed as experiments on tin corrosion that have been continuously in operation for more than 280 years. Mineralogical examination of the pewter samples has revealed that the corrosion products are composed of romarchite (SnO), hydroromarchite [Sn3O2(OH)2], and abhurite [Sn21Cl16(OH)14O6]. The corrosion generally develops in crudely concentric layers, with an inner layer of abhurite in contact with the pewter; the overlying outer layers consist of romarchite and hydroromarchite. Romarchite, hydroromarchite, and abhurite occur as irregular grains and laths up to 100 micrometers in length. Abhurite also occurs as masses of equant grains with abundant small inclusions of residual pewter.
    [Show full text]
  • Canadian Min*Alogist Vol.23, Pp. 233-20 (1985) ABHURITE, a NEW TIN HYDROXYCHLORIDE MINERAL, and a COMPARATIVE STUDY with a SYNTH
    CanadianMin*alogist Vol.23,pp. 233-20 (1985) ABHURITE, A NEW TIN HYDROXYCHLORIDE MINERAL, AND A COMPARATIVE STUDY WITH A SYNTHETIC BASIC TIN CHLORIDE* JOHN J. MATZKO, HOWARD T. EVANS JR., MARY E. MROSE AND PHILIP ARUSCAVAGE U.S. GeologicalSurve!, Reston,Virginia 22092, U.S.A. ABSTRACT longueur d'onde de l'ultraviolet. Le min6ral sedissout rapi- dement dans I'acide nitrique et lentement dans l'acide r6v&le73.490 (en poids) Abhurite Sn3O(OH)2C12is a new mineral speciesfound chlorhydrique. L'analyse chimique 1.090O et 0.4a/oH, et correspondd la for- in blister-like protuberanceson the surfaceof tin ingots sub- Sn, l5.7YoCl, I L'analyse thermique diff6rentielle mergedin a shipwreckabout l00years ago. The recovery mule Sn3O(OH)2C12. que d6gaged235"C et SnCl2,d 525'C. En site, at a depth of about 35 m, in an arm of the Red Sea montre l'eau se de pr6cessionr6vdlent descristaux known as Sharm Abhur, is located 30 km north of Jiddah, diffraction X, les clichds de gxoupespatial iR3m, R3m ou R32, Saudi Arabia. Abhurite forms tlin, platy, colorless,fragile, rhombo6driques, (0@l). Les donndesde poudre six-sidedcrystals averaging 1.5 mm in diameter. The plates g6n6ralementmaclds selon pour arriver ir une maille 616- show no birefringence, the uniaxial figure is positive, and Guinier-Hiigg furent affindes les parametressont d 10.0175(3)' or is 2.06. No fluorescencefor either shortwaveor long- mentaire heryrgonaledont c/a 4.3937.Les raiesprincipales du clichd wave ultraviolet light was detected.Density Dx4.34, Dm c 44.01\2) L; (m6thode des poudres) en A(Ixrttl)l sont: 4.29 g/mt, The mineral dissolvesrapidly in nitric acid and de diffraction Id 3.634(35X0.1.11),3.404(50X208), slowly in hydrochloric acid.
    [Show full text]
  • MELT INCLUSION RECORD of MAGMATIC IMMISCIBILITY in CRUSTAL and MANTLE MAGMAS Vadim S. Kamenetsky School of Earth
    CHAPTER 4: MELT INCLUSION RECORD OF MAGMATIC IMMISCIBILITY IN CRUSTAL AND MANTLE MAGMAS Vadim S. Kamenetsky School of Earth Sciences and ARC Centre of Excellence in Ore Deposits, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia E-mail: [email protected] INTRODUCTION process. If separation of immiscible phases was Immiscibility (unmixing of melts and fluids) efficient, the residual magma should be significantly should be almost inevitable at some point in the depleted in incompatible volatiles and metals evolution of most mantle and crustal magmas relative to the parental magma, and reconstructing during cooling and crystallization. Formation of two the original metal and volatile content is extremely immiscible phases “results in a major geochemical difficult. One rapidly developing approach to this fractionation – all chemical species present, the problem is the use of melt and fluid inclusions elements (and their isotopes), and their various trapped and preserved in magmatic minerals (e.g., compounds, become distributed between these two Roedder 1992, De Vivo & Frezzotti 1994, Bodnar phases…the compositional divergence between the 1995, Lowenstern 1995, Student & Bodnar 1999, two phases is…extreme” (Roedder 2003). The Frezzotti 2001, Kamenetsky et al. 2003, variations in compositions of melts undergoing Lowenstern 2003 and references therein). Such immiscibility, and physical parameters of their inclusions provide the closest approximation to evolution in the plutonic environments, mean that samples of continuously evolving (and thus each intrusion should be expected to show ephemeral) melts and magmatic fluids. Many differences in the processes of exsolution and studies of magmatic inclusions have made possible compositions of exsolving phases.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 78, pages 233-238, 1993 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET,555 BoothStreet,Ottawa,OntarioKIA OGI,Canada EDWARD S. GREW Departmentof GeologicalSciences,Universityof Maine,Orono,Maine04469,U.S.A. Trembathite* responding to (Pdz.z1CUO.8Z)2;3.03SnO.97,ideally (Pd,Cu)3Sn, P.C. Burns, F.C. Hawthorne, J.A.R. Stirling (1992) the Cu-bearing Pd analogue ofrustenbergite. The grain is Trembathite, (Mg,Fe)3B7013Cl, a new borate mineral square in outline. from the Salt Springs potash deposit, Sussex, New Discussion. The composition is similar to that of tai- Brunswick. Can. Mineral., 30, 445-448. myrite, (Pd,Cu,Pt)3Sn, which is reported to be ortho- rhombic. See the discussion in Am. Mineral., 68, 1252 Electron microprobe analysis of a zoned crystal gave (1983). J.L.J. an average and range ofMgO 22.02 (13.33-23.32), MnO 0.49 (0.34-1.04), FeO 13.59 (12.54-23.04), CaO 0.01 (0.00-0.01), C19.29 (8.36-9.55), BZ03(calc.) 57.33 (54.44- Pt2(As,S)3' Ir AsSb, Pt3(Sb,Sn,Bi)4' Pt2(Sb,Bi)3 57.68), CI == 0 2.09 (1.89-2.15), sum 100.63wt°jo,cor- responding to (Mgz.29Feo.79Mno.03)2;3.11B6.89012.90CIl.l0,ide- S.A. Shcheka, A.A. Vrzhosek, V.I. Sapin, N.I. Kiryu- khina (1991) Transformations of platinum-group min- ally (Mg,Fe)3B7013Cl. The mineral occurs as colorless to erals from Primor'ye placers. Mineral. Zhurnal, 13( 1), light blue rhombohedra <2 mm across, some clustered.
    [Show full text]
  • Tin Deterioration on Polychrome Stone Sculptures of the San Jerónimo Church (Granada, Spain) / CAROLINA CARDELL (1*), ISABEL GUERRA (2), AFRICA YEBRA-RODRÍGUEZ (3)
    macla nº 16. junio ‘12 54 revista de la sociedad española de mineralogía Tin Deterioration on Polychrome Stone Sculptures of the San Jerónimo Church (Granada, Spain) / CAROLINA CARDELL (1*), ISABEL GUERRA (2), AFRICA YEBRA-RODRÍGUEZ (3) (1) Department of Mineralogy and Petrology, Faculty of Science, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain (2) Scientific Instrumentation Centre, Campus Fuentenueva, University of Granada, 18071 Granada, Spain (3) Department of Geology-Associated Unit IACT (CSIC-UGR), Faculty of Experimental Science, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén,Spain INTRODUCTION products, and ii) the so-called tin pest (Bruker D8 Powder Advance which is the allotropic transformation of diffractometer). Chip samples were The church of San Jerónimo monastery the tin crystal structure from white analyzed after placing them onto a zero- is one of the most important examples metallic % form (tetragonal) into the grey background silicon plate with no of Spanish Renaissance thanks to the powdery non-metallic # form (cubic) that preparation. Diffraction data were architect and sculptor Diego de Siloé, takes place ca. 13.2 0C (MacLeod, recorded using Cu K# radiation, who worked there from 1528 to 1543. 2005). The allotropic transformation is operated at 40 kV, 40 mA, 0.02 deg In its interior Siloé executed the crossing influenced by the metal microstructure step size and 20 s integration time. and the architectonical stone sculptural (increasing with decreasing grain size) Diffraction patterns were scanned over a group placed in the upper apse. It seems and presence of impurities that either 20° < 2" < 90° range. Minerals were that these sculptures were polychromed delay/hinder the transformation (e.g.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 74, pages 500-505, 1989 NEW MINERAL NAMESX JonN L. J.runon CANMET, 555 Booth Street,Ottawa, Ontario KIA 0G1, Canada J,tcnx Puztnwtcz Institut fiir Mineralogie, Universitet Hannover, D-3000, Hannover 1, Federal Republic ofGermany S (S) 6.1I, polysulfideS (S")7.25, thiosulfateS (S) 6.20, Abhurite* HrO (hydroxyl) 9.46, H,O (molecular)31.20, O 12.20, J.T. Matzko, H.T. Evans,Jr., M.E. Mrose,P. Aruscavage total I00.00 wto/0,corresponding to Ca(Stu,Si'r)ro*Ca- (1985) Abhurite, a new tin hydroxychloride mineral, (S1rrO, oo)' Ca6 oo(OH),2 20' 20. I 4HrO. The mineral forms and a comparative study with a synthetic basic tin chlo- aggregatesup to I cm in diameter, orangeto yellow, light ride. Can. Mineral., 23,233-240. yellow streak,vitreous luster; intergrowths ofparallel plates Chemical analysisgave Sn 73.4, Cl 15.7, O 11.0, H have a pearly luster. Crystalsare bladesup to 5 mm long, 0.4, sum 100.5 wto/o;the ideal formula SnrO(OH)rCl re- flattenedon {010), elongate[001], with {ll0} edgesand quiresSn 74.6,Cl 14.9,O 10.1,H 0.4 wto/o.The mineral rerminaredby {01l}, {l0l}, and {l I l}. Thin crystalsare occurs as cryptocrystalline crusts and as platy hexagonal transparent,and coarsergrains are transparent to trans- crystals that average 1.5 mm in diameter. Colorless, lucent. Fracture uneven,very good {010} cleavage,brittle transparent with opalescentluster, white streak, hackly but elasticin thin leaves,H: 2, r-.." : 1.83(l), D"",": fracture, H: 2, dissolvesslowly in HCI and HNO3, D*"".
    [Show full text]
  • Minerals Localities
    MINERALS and their LOCALITIES This book is respectfully dedicated to the memory of Dr. John Sinkankas for his kind initiative and support to publish this book in English version. MINERALS and their LOCALITIES Jan H. Bernard and Jaroslav Hyršl Edited by Vandall T. King © 2004 by Granit, s.r.o. © 2004 Text by Jan H. Bernard and Jaroslav Hyršl © 2004 Photos by Jaroslav Hyršl (463), Studio Granit (534), Jaromír Tvrdý (34), Petr Zajíček (4) The photographed specimens are from the collections of both authors as well as from many other collections. The autors are grateful to all institutions and persons who allowed to photograph their specimens for this book. Front cover photos: Turquoise, polished, 55 mm, Zhilandy, Kazakhstan, G Galena, 45 mm, Madan, Bulgaria, G Sphalerite, xx 12 mm, Morococha, Peru, H Gypsum, xx 40 mm, Las Salinas, Peru, H Variscite, xx 5 mm, Itumbiara, Brazil, H Rhodochrosite, polished, 50 mm, Capillitas, Argentina, H Back cover photo: Wolframite, 45 mm, Yaogangxian, China, H Page 1: Muscovite, 45 mm, Linopolis, Brazil, H Page 2: Vivianite, 100 mm, Huanzala, Bolivia, H Page 3: Liddicoatite, polished, 70 mm, Anjanabonoina, Madagaskar, G Page 5: Opal - fire, polished, 50 mm, Mezezo, Ethiopia, G Page 12: Brazilianite, 35 mm, Linopolis, Brazil, H Page 13: Gold, 35 mm, Eagle's Nest Mine, California, G Published by Granit, s.r.o. Štefánikova 43, 150 00 Praha 5, Czech Republic e-mail: [email protected] www.granit-publishing.cz Composition and reproduction by Studio VVG, Prague Printed in Czech Republic by Finidr, s.r.o., Český Těšín 14/02/03/01 All rights reserved.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 74, pages 500-505, 1989 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada JACEK PUZIEWICZ Institut fUr Mineralogie, Universitat Hannover, D-3000, Hannover I, Federal Republic of Germany S (S') 6.11, polysulfide S (Sp) 7.25, thiosulfate S (St) 6.20, Abhurite* H20 (hydroxyl) 9.46, H20 (molecular) 31.20, a 12.20, J.T. Matzko, H.T. Evans, Jr., M.E. Mrose, P. Aruscavage total 100.00 wt%, corresponding to Ca(S~63S~22)~485Ca- (1985) Abhurite, a new tin hydroxychloride mineral, (S~2503.00)'Ca6.oo(OH)1220'20.14H20. The mineral forms and a comparative study with a synthetic basic tin chlo- aggregates up to 1 cm in diameter, orange to yellow, light ride. Can. Mineral., 23, 233-240. yellow streak, vitreous luster; intergrowths of parallel plates Chemical analysis gave Sn 73.4, C115.7, a 11.0, H have a pearly luster. Crystals are blades up to 5 mm long, 0.4, sum 100.5 wt%; the ideal formula Sn30(OH)2C1 re- flattened on {01O), elongate [001], with {l1O} edges and quires Sn 74.6, C114.9, 010.1, H 0.4 wt%. The mineral terminated by {Oil}, {I 0 I}, and {Ill}. Thin crystals are occurs as cryptocrystalline crusts and as platy hexagonal transparent, and coarser grains are transparent to trans- crystals that average 1.5 mm in diameter. Colorless, lucent. Fracture uneven, very good {O10} cleavage, brittle transparent with opalescent luster, white streak, hackly but elastic in thin leaves, H = 2, Drne., = 1.83(1), Deale= fracture, H = 2, dissolves slowly in HCl and HN03, Orne., 1.845 glcm3 with Z = 1.
    [Show full text]
  • IMA–CNMNC Approved Mineral Symbols
    Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements
    [Show full text]