Entropic Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Entropic Gravity Research by KIAS Scholar Science Café Newsletter Vol 3 Vol Newsletter The KIAS Science Café Science Entropic gravity over the whole family . Then (modulo an abuse of notation) we have Maurice Van Putten (2.6) School of Physics, KIAS where is an arbitrary point. Indeed, if , then the above claim is a consequence of the definition. If not, then we use in [3] a limit argument since the weights are upper semi-continuous. Hence the extendable sections of the bundle provide us with a bound of the singularities of over . Gravity and holography energy astrophysics, galaxy redshifts and the cosmic In everyday experience, gravity is what holds us microwave background, and long term observations on Remark 2.5. Actually, the curvature current associated to the metric can be seen as down to the floor, makes us ski down hill and take radio pulsars in neutron star-neutron binaries. simultaneous extension of the sections of , given its structure when restricted to . elevators to go back up the mountain. One of the first Unfortunately, so far we are unable to extract from it the geometric informations required by 1.1. scientific experiments on gravity was conducted by Despite its dramatic impact, general relativity has References Galileo, to observe that objects of different masses eluded a direct unification with other field theories, [1] B. Berndtsson, Curvature of Vector bundles associated to holomorphic fibrations, to appear in Ann. of take the same amount of time to fall down to Earth that have been developed independently and with Maths. (2007). from the Leaning Tower of Pisa. Gravity is also what great success to describe the forces of Nature between [2] B. Berndtsson, M. Paun,˘ Bergman kernels and the pseudo-effectivity of the relative canonical bundles, holds our solar system together, which ultimately led elementary particles. While general relativity works arXiv:math/0703344, Duke Math. Journal 2008. Newton to pose his law of gravity: the gravitational with astonishing predictive power on astronomical [3] B. Berndtsson, M. Paun,˘ Quantitative extensions of twisted pluricanonical forms and closed positive force between two massive objects is given by the scales, it somehow leaves us in the dark on small currents, arXiv 2009. product of their masses divided by the distance scales well below 0.1mm. It has been suggested raised [4] M. Paun,˘ Relative critical exponents, non-vanishing and metrics with minimal singularities arXiv 2008. between, times Newton’s constant. that general relativity, and Newton’s law to begin with, [5] Y.-T. Siu, Abundance Conjecture, arXiv 2010. is perhaps not fundamental (in apparent contrast to For some three centuries, this view prevailed, until electromagnetism) but, rather, emergent from entropic Einstein incorporated Newton’s law in a causal theory considerations [1]. of gravitation (no ‘spooky’ action at a distance), which beautifully explained the deflection of light around the The reasons for this suggestion is remarkable in its Sun and the non-Newtonian precession in the orbital own right. General relativity teaches us that given Mihai Paun˘ isaProfessorintheMathematicsDepartmentoftheUniversityHenriPoincaré.He receivedhisPh.D.fromtheUniversitéJosephFourier(Grenoble,France)in1998.Hisprimary motion of Mercury - a classic example of a minute an amount of energy, there is a limited amount of researchinterestsarecomplexandalgebraicgeometry.In2006,hereceived“SimionStoilov” deviation which points to an entirely new theory of meaningful information (or activity) that can exist awardoftheRomanianAcademyofScience.Havingpublishedover20researchpapersandseveral gravitation. Einstein’s theory of general relativity led within a bounding surface, expressed in terms of monographs,hehasbecomeamemberofInstituteUniversitairedeFrance(IUF)in2009,andhe wasaninvitedspeakeratthe2010InternationalCongressofMathematicians. to a dramatic change in our view on the Universe, by surface area rather than enclosed volume [2]. In revealing, un-anticipated, black holes, an expanding Nature, useful work space is area, not volume, Contactinformation:InstitutElieCartan(Mathématiques),UniversitéHenriPoincaré, Nancy1,B.P.70239,F-54506Vandoeuvre-les-NancyCedex,FRANCE,[email protected] Universe and gravitational radiation. Much, though not ironically in much the same way as real-estate all of these have been verified by observations in high- appraises homes and offices. 18 Korea Institute for Advanced Study | 19 Science Café Newsletter Vol 3 Vol Newsletter The KIAS Science Café Science Trying to squeeze more information within are mathematically described by different objects, by analogy to globular clusters. Radiation a given bounding surface by increasing energy line elements, which otherwise share the solves the cat-singularity paradox, since the event ultimately leads to a trapped surface of light exact same exterior black hole space-time. horizon of an evaporating black hole is no longer within, i.e., it evolves into the event horizon Black holes line-element inevitably introduce fixed but recedes at a velocity given by one-half the of a black hole [3], keeping all that is inside singularities by Liouville’s theorem [5], and black hole luminosity by conservation of energy. A cat hidden from the outside world. In this limit, we their location(s) depend on the extension of the falling onto the black hole is hereby always chasing are inevitably led to attribute (an astronomical exterior space time associated with the choice a receding event horizon, never to fall through and amount of) entropy to the event horizon of line-element to describe the exterior space- therefore it will never be in a position to “choose” Figure 2. Entropic gravity ascribes gravitational attraction between two proportional to its surface area [4], to account time. Remarkably, these singularity can be real, between being crunched at the origin or moving to bodies to an increase/decrease in entropy with a decrease/increase in for the loss of information that is within. at the origin, as for the Schwarzschild line- another universe. The finite lifetime of an evaporating separation distance. When going up by taking an elevator (left, right), there is a decrease in entropy (Sp) associated with him/her and that (SE) element, or imaginary, as in the line element black hole hereby introduces a strong form of the of the Earth. On the basis of well-defined apparent horizon surfaces of Black holes and strong cosmic of Einstein-Rosen, Brill-Lindquist or its Penrose cosmic censorship conjecture [7,9], which mass-equivalent black holes, a thermodynamic description recovers the Newtonian result of about 3000 J for bringing up a person to the KIAS tea censorship symmetrized form [6,7]. These exact solutions asserts that all singularities are hidden by an event room. For arbitrary separations including black hole mergers, entropic More generally, the event horizon of a black serve to show that the extended topology and horizon, never to be accessible by an outside observer. gravity from apparent horizon surfaces satisfiesmonotonicity in entropy hole hides whatever is ascribed to its interior location of singularities induced by a black hole as a function of separation distance, while time like holographic screens with fixed entropy surface density do not. from the outside word, its past history of are generally gauge dependent. Entropic gravity in black hole binaries formation or any connection it may have to an While general relativity remains mysteriously at odds adjacent universe. These various alternatives A cat falling onto a black hole, therefore, has with other field theories, it is remarkably consistent per unit surface area is less than ¼, so as to properly the apparent choice to get torn apart and be with thermodynamics. Recently, the question was preserve monotonicity of entropy [10]. crushed at the central singularity when choosing posed if perhaps gravitation, and Newton’s law in the Schwarzschild line-element, or to continue particular, is itself entropic in origin, and possibly so Our staff member Ms. Yunae Kim once remarked to live in an adjacent universe by changing in a holographic embedding [1]. that it may be better to take the elevator together, its mind to using any of the alternative line to save energy. I am not sure about the efficiency of elements with singularities along the imaginary Recently, we considered entropic gravity for a black the elevator system, but it does suggest the question: axis. Needless to say, this kind of choice runs hole binary. On the basis of the entropy of apparent what is what is the entropy change associated with the counter to gauge independence, which ensures horizon surfaces, two when the black hole are separate, entropic force between the Earth and a passenger in the that all observables are independent of our one following a merger, we find that Newton’s law of elevator? The surface area of the black hole equivalent Figure 1. The location of singularities associated with the continuation of the choice of coordinate systems. attraction is an asymptotic limit for large separations to the Earth is 9.9 square centimers with an entropy exterior Schwarzschild space-time depends on the choice of coordinates. A cat of S= exp(152) and temperature of 20 mK, where we falling onto a black hole may hereby be by torn apart and crushed at a central of a more general relationship that describes their singularity or continue to live in an adjacent universe by passing safely along The idea that black holes carry entropy, entropic interaction at all separation distances, put Boltzmann’s constant equal to unit. An elevator singularities in the complex plane. depending on its choice of line-element. as proposed by Bekenstein [4], naturally including zero following a bifurcation in their merger bringing a passenger of 60 kg up by 5 m to the KIAS This freedom of choice-to die or live - contradicts with gauge invariance. This paradox is solved by black hole evaporation, whereby the cat falling in traces a leads to radiation, as subsequently shown by at small separations. This rigorous analysis shows tea room reduces the entropy in the Earth-passenger continuously shrinking event horizon, never to penetrate it.
Recommended publications
  • Modified Newtonian Dynamics
    Faculty of Mathematics and Natural Sciences Bachelor Thesis University of Groningen Modified Newtonian Dynamics (MOND) and a Possible Microscopic Description Author: Supervisor: L.M. Mooiweer prof. dr. E. Pallante Abstract Nowadays, the mass discrepancy in the universe is often interpreted within the paradigm of Cold Dark Matter (CDM) while other possibilities are not excluded. The main idea of this thesis is to develop a better theoretical understanding of the hidden mass problem within the paradigm of Modified Newtonian Dynamics (MOND). Several phenomenological aspects of MOND will be discussed and we will consider a possible microscopic description based on quantum statistics on the holographic screen which can reproduce the MOND phenomenology. July 10, 2015 Contents 1 Introduction 3 1.1 The Problem of the Hidden Mass . .3 2 Modified Newtonian Dynamics6 2.1 The Acceleration Constant a0 .................................7 2.2 MOND Phenomenology . .8 2.2.1 The Tully-Fischer and Jackson-Faber relation . .9 2.2.2 The external field effect . 10 2.3 The Non-Relativistic Field Formulation . 11 2.3.1 Conservation of energy . 11 2.3.2 A quadratic Lagrangian formalism (AQUAL) . 12 2.4 The Relativistic Field Formulation . 13 2.5 MOND Difficulties . 13 3 A Possible Microscopic Description of MOND 16 3.1 The Holographic Principle . 16 3.2 Emergent Gravity as an Entropic Force . 16 3.2.1 The connection between the bulk and the surface . 18 3.3 Quantum Statistical Description on the Holographic Screen . 19 3.3.1 Two dimensional quantum gases . 19 3.3.2 The connection with the deep MOND limit .
    [Show full text]
  • Quantum Gravity Past, Present and Future
    Quantum Gravity past, present and future carlo rovelli vancouver 2017 loop quantum gravity, Many directions of investigation string theory, Hořava–Lifshitz theory, supergravity, Vastly different numbers of researchers involved asymptotic safety, AdS-CFT-like dualities A few offer rather complete twistor theory, tentative theories of quantum gravity causal set theory, entropic gravity, Most are highly incomplete emergent gravity, non-commutative geometry, Several are related, boundaries are fluid group field theory, Penrose nonlinear quantum dynamics causal dynamical triangulations, Several are only vaguely connected to the actual problem of quantum gravity shape dynamics, ’t Hooft theory non-quantization of geometry Many offer useful insights … loop quantum causal dynamical gravity triangulations string theory asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory shape dynamics causal set supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Several are related Herman Verlinde at LOOP17 in Warsaw No major physical assumptions over GR&QM No infinity in the small loop quantum causal dynamical Infinity gravity triangulations in the small Supersymmetry string High dimensions theory Strings Lorentz Violation asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory Mostly still shape dynamics causal set classical supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Discriminatory questions: Is Lorentz symmetry violated at the Planck scale or not? Are there supersymmetric particles or not? Is Quantum Mechanics violated in the presence of gravity or not? Are there physical degrees of freedom at any arbitrary small scale or not? Is geometry discrete i the small? Lorentz violations Infinite d.o.f.
    [Show full text]
  • An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
    universe Article An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory Konstantin G. Zloshchastiev Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa; [email protected] Received: 29 August 2020; Accepted: 10 October 2020; Published: 15 October 2020 Abstract: We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies.
    [Show full text]
  • On the Breakdown of Space-Time Via Constraint Quantization of $ D\Geq2
    On the breakdown of space-time via constraint quantization of d 2 General Relativity ≥ Farrukh A. Chishtie Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 3K7, Canada E-mail: [email protected] February 2021 Abstract. Based on the canonical quantization of d 2 dimensional General ≥ Relativity (GR) via the Dirac constraint formalism (also termed as ‘constraint quantization’), we propose the loss of covariance as a fundamental property of the theory. This breakdown occurs for the first-order Einstein Hilbert action, whereby besides first class constraints, second class constriants also exist leading to non-standard ghost fields which render the path integral non-covariant. For the Hamiltonian formulation of GR, only first class constraints exist, however, the loss of covariance still happens due to structures arising from non-covariant constraints in the path integral. In contrast, covariance is preserved when constraint quantization is conducted for non-Abelian gauge theories, such as the Yang-Mills theory. Hence, we infer that the breakdown in space-time is a property of GR itself (for d 2 dimensions). ≥ Covariance is recovered and quantization and perturbative calculations are possible in the weak limit of the gravitational field of these actions. Hence, we further propose that the breakdown of space-time occurs as a non-perturbative feature of GR in the strong limit of the theory. These findings are novel from a canonical gravity formalism standpoint, and are consistent with GR singularity theorems which indicate breakdown at a strong limit of the field. They also support emergent theories of spacetime and gravity, though do not require thermodynamics such as entropic gravity.
    [Show full text]
  • Holographic Theory, and Emergent Gravity As an Entropic Force
    Holographic theory, and emergent gravity as an entropic force Liu Tao December 9, 2020 Abstract In this report, we are going to study the holographic principle, and the possibility of describing gravity as an entropic force, independent of the details of the microscopic dynamics. We will first study some of the deep connections between Gravity laws and thermodynamics, which motivate us to consider gravity as an entropic force. Lastly, we will investigate some theoretical criticisms and observational evidences on emergent gravity. 1 Contents 1 Introduction3 2 Black holes thermodynamics and the holographic principle3 2.1 Hawking temperature, entropy..........................3 2.1.1 Uniformly accelerated observer and the Unruh effect.........3 2.1.2 Hawking temperature and black hole entropy..............6 2.2 Holographic principle...............................7 3 Connection between gravity and thermodynamics8 3.1 Motivations (from ideal gas and GR near event horizon)...........8 3.2 Derive Einstein's law of gravity from the entropy formula and thermodynamics 10 3.2.1 the Raychaudhuri equation........................ 10 3.2.2 Einstein's equation from entropy formula and thermodynamics.... 11 4 Gravity as an entropic force 13 4.1 General philosophy................................ 13 4.2 Entropic force in general............................. 13 4.3 Newton's law of gravity as an entropic force.................. 14 4.4 Einstein's law of gravity as an entropic force.................. 15 4.5 New interpretations on inertia, acceleration and the equivalence principle.. 17 5 Theoretical and experimental criticism 18 5.1 Theoretical criticism............................... 18 5.2 Cosmological observations............................ 19 20section.6 2 1 Introduction The holographic principle was inspired by black hole thermodynamics, which conjectures that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected for any extensive quantities.
    [Show full text]
  • Alzofon-Ionescu Theory Beyond Newton, Einstein, Quantum/Entropy Gravity, Etc. a Virequest Project Proposal
    Journal of High Energy Physics, Gravitation and Cosmology, 2021, 7, 1182-1189 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 What Gravity Is: Alzofon-Ionescu Theory beyond Newton, Einstein, Quantum/Entropy Gravity, etc. A Virequest Project Proposal Lucian Miti Ionescu Department of Mathematics, Illinois State University, Normal, USA How to cite this paper: Ionescu, L.M. (2021) Abstract What Gravity Is: Alzofon-Ionescu Theory beyond Newton, Einstein, Quantum/Entropy Gravity is not a fundamental force; in a nut-shell, it is the result of a non- Gravity, etc. A Virequest Project Proposal. commutative interaction of the “electric” (i.e. Coulomb type) due to fraction- Journal of High Energy Physics, Gravita- U 2 tion and Cosmology, 7, 1182-1189. al charges of the proton and neutron in ( ) -gauge theory, but which have https://doi.org/10.4236/jhepgc.2021.73069 no structure in U (1) -gauge theory, being neutral in itself (neutron), or when Received: June 5, 2021 compensated by the electronic cloud (proton). This is no longer true at the Accepted: July 23, 2021 SU (2) Electroweak Theory level, once spherical 3D-symmetry is broken to Published: July 26, 2021 a finite Platonic group of symmetry within it Γ→SU (2) . The fine splitting Copyright © 2021 by author(s) and of energy levels due to the quark structure (frame basis in SU (2) ) of the Scientific Research Publishing Inc. electric charge can be experimentally controlled using a MASER to invert the This work is licensed under the Creative Commons Attribution International population and orient the nuclei the right way to reduce and turn off Gravity.
    [Show full text]
  • Superfluid Quantum Space and Evolution of the Universe
    Chapter 5 Superfluid Quantum Space and Evolution of the Universe Valeriy I. Sbitnev and Marco Fedi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/68113 Abstract We assume that dark energy and dark matter filling up the whole cosmic space behave as a special superfluid, here named “superfluid quantum space.” We analyze the relationship between intrinsic pressure of SQS (dark energy's repulsive force) and gravity, described as an inflow of dark energy into massive particles, causing a nega- tive pressure gradient around massive bodies. Since no superfluid has exact zero viscosity, we analyze the consequences of SQS’s viscosity on light propagation, and we show that a static Universe could be possible, by solving a modified Navier-Stokes equation. Indeed, Hubble’s law may actually refer to tired light, though described as energy loss due to SQS’s nonzero viscosity instead of Compton scattering, bypassing known historical problems concerning tired light. We see that SQS’sviscositymayalso account for the Pioneer anomaly. Our evaluation gives a magnitude of the anomalous À À À10 À2 acceleration aP = HΛc = 8.785 10 ms . Here, HΛ is the Hubble parameter loaded by the cosmological constant Λ. Furthermore, the vorticity equation stemming from the modified Navier-Stokes equation gives a solution for flat profile of the orbital speed of spiral galaxies and discloses what one might call a breathing of galaxies due to energy exchange between the galactic vortex and dark energy. Keywords: gravity, dark energy, Hubble’s law, tired light, Pioneer anomaly, flat profile 1.
    [Show full text]
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Cosmology and Unified Quantum Gravity Theory of the Universe C Bhattacharya Austin Paints & Chemical Pvt Ltd, 3 Ambika Mukherjee Road, *Corresponding author Belghoria, Kolkata, 700 056, India C Bhattacharya, Austin Paints & Chemical Pvt Ltd, 3 Ambika Mukherjee Road, Belghoria, Kolkata, 700 056, India Submitted: 02 Dec 2019; Accepted: 26 Feb 2020; Published: 08 Aug 2020 Abstract A unified quantum gravity theory of the universe is discovered and being proposed which explores the true dimensionality of all the physical variables of the universe like energy, EM- wave, entropy, mass, time, temperature, gravitation, etc. and merges the “Classical Theory”, “Thermodynamics”, “Quantum Mechanics” and the “Theory of Relativity of Albert Einstein” under a single umbrella by a newly proposed mass-energy equivalence phenomena. The proposed quantum gravity theory based on the concepts of inverse dimensionalities of mass and time and the different types of “GRAVITONS‟, explores most of the cosmic mysteries of the universe, like the dimensionality of the universe itself, the geometry and thermodynamics of the different types of Black Holes, the Plasma State, the gravitational lensing, the cold nuclear fusion phenomena, the apparent grey look of the universe. The units of the principal physical variables of the universe as proposed by Max Planck gets a new shape in the light of the proposed Theory of Quantum Gravity (QG Theory) in the form of either „push-forward gravitons‟ or „pull-back gravitons‟. The limitations the existing laws of physics and the theories of relativities have been revealed and the quantum gravity theory of color physics and the building block concept of calculus have been introduced.
    [Show full text]
  • Thermodynamics of Moving Bodies Or a New Approach to Emergent Gravity
    American Journal of Modern Physics 2020; 9(2): 28-40 http://www.sciencepublishinggroup.com/j/ajmp doi: 10.11648/j.ajmp.20200902.12 ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online) Thermodynamics of Moving Bodies or a New Approach to Emergent Gravity Yormahmad Kholov Department of Transport, Tajik Technical University, Dushanbe, Tajikistan Email address: To cite this article: Yormahmad Kholov. Thermodynamics of Moving Bodies or a New Approach to Emergent Gravity. American Journal of Modern Physics . Vol. 9, No. 2, 2020, pp. 28-40. doi: 10.11648/j.ajmp.20200902.12 Received : May 24, 2020; Accepted : June 15, 2020; Published : June 28, 2020 Abstract: Recent theoretical developments propose that gravity is emergent phenomenon. In line with this, in this paper, we show that gravitational and inertial properties of matter can be sufficiently explained by thermodynamics for a system consisting of material systems immersed in the quantum vacuum energy reservoir without reference to the microscopic constituencies of the quantum vacuum. The study focuses on the transfer of energy and matter in the interaction of material system with its vacuum surroundings and the relation of those to the system's macroscopic state variables and mechanical behavior of the system associated with forces acting on it. This analysis suggests that vacuum energy density about material systems is diminished and quantum vacuum energy density field takes on specific gradient there. Hence, gravity appears as effect of the change in the energy density of medium related with presence of another material object modifying vacuum surroundings and causing spontaneous motion of the system to minimize its energy driven by the second law.
    [Show full text]
  • Dark Matter = Modified Gravity?
    Dark Matter = Modified Gravity? Scrutinising the spacetime{matter distinction through the modified gravity/ dark matter lens Niels C.M. Martens1,2,3 and Dennis Lehmkuhl1,2 1DFG Research Unit \The Epistemology of the Large Hadron Collider" (grant FOR 2063) martens@ physik. rwth-aachen. de , dennis. lehmkuhl@ uni-bonn. de 2Lichtenberg Group for History and Philosophy of Physics, University of Bonn 3Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University This is a postprint (i.e. post-peer-review but pre-copyedit) version of an article accepted for publication in Studies in History and Philosophy of Modern Physics. The final authenticated version is/will be available online (open access) at: www.sciencedirect.com/science/article/abs/pii/S135521982030109X. September 7, 2020 Abstract This paper scrutinises the tenability of a strict conceptual distinction be- tween space(time) and matter via the lens of the debate between modified gravity and dark matter. In particular, we consider Berezhiani and Khoury's novel `superfluid dark matter theory' (SFDM) as a case study. Two families of criteria for being matter and being spacetime, respectively, are extracted from the literature. Evaluation of the new scalar field postulated by SFDM according to these criteria reveals that it is as much (dark) matter as anything could possibly be, but also|below the critical temperature for superfluidity| as much (of a modification of) spacetime as anything could possibly be. A sequel paper examines possible interpretations of SFDM in light of this result, as well as the consequences for our understanding of (the importance of) the modified gravity/ dark matter distinction and the broader spacetime{matter distinction.
    [Show full text]
  • On Analogue-Gravity Models As Seen by In-Universe Observers a Thesis
    On analogue-gravity models as seen by in-universe observers A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Scott Lockerbie Todd BAppSc(Nano)/BAppSc(Phys)(Hons) RMIT School of Science College of Science, Engineering and Health RMIT University October 2020 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Scott L. Todd October 16, 2020 i Acknowledgements Attempting to acknowledge every specific person who was of importance in my journey as a PhD candidate—important in the production of this thesis—seems to be at best a daunting task, and at worst a near-impossible task. If you, the reader, are somebody in particular to whom I owe a debt of gratitude, and if your name does not appear in the acknowledgements to come, then I sincerely apologize for the oversight; the omission is, I promise, unintentional. So where to begin? I guess I’ll try to do this somewhat chronologically. While it should go without saying, first and foremost: thank you, Mum and Dad.
    [Show full text]
  • Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Benoit Famaey, Stacy S
    Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Benoit Famaey, Stacy S. Mcgaugh To cite this version: Benoit Famaey, Stacy S. Mcgaugh. Modified Newtonian Dynamics (MOND): Observational Phe- nomenology and Relativistic Extensions. Living Reviews in Relativity, 2012, 15 (1), 10.12942/lrr- 2012-10. hal-02927744 HAL Id: hal-02927744 https://hal.archives-ouvertes.fr/hal-02927744 Submitted on 1 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Living Rev. Relativity, 15, (2012), 10 LIVINGREVIEWS http://www.livingreviews.org/lrr-2012-10 in relativity Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Beno^ıtFamaey Observatoire Astronomique de Strasbourg CNRS, UMR 7550, France and AIfA, University of Bonn, Germany email: [email protected] http://astro.u-strasbg.fr/~famaey/ Stacy S. McGaugh Department of Astronomy University of Maryland, USA and Case Western Reserve University, USA email: [email protected] http://astroweb.case.edu/ssm/ Accepted on 30 April 2012 Published on 7 September 2012 Abstract A wealth of astronomical data indicate the presence of mass discrepancies in the Universe. The motions observed in a variety of classes of extragalactic systems exceed what can be explained by the mass visible in stars and gas.
    [Show full text]