On Analogue-Gravity Models As Seen by In-Universe Observers a Thesis

Total Page:16

File Type:pdf, Size:1020Kb

On Analogue-Gravity Models As Seen by In-Universe Observers a Thesis On analogue-gravity models as seen by in-universe observers A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Scott Lockerbie Todd BAppSc(Nano)/BAppSc(Phys)(Hons) RMIT School of Science College of Science, Engineering and Health RMIT University October 2020 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Scott L. Todd October 16, 2020 i Acknowledgements Attempting to acknowledge every specific person who was of importance in my journey as a PhD candidate—important in the production of this thesis—seems to be at best a daunting task, and at worst a near-impossible task. If you, the reader, are somebody in particular to whom I owe a debt of gratitude, and if your name does not appear in the acknowledgements to come, then I sincerely apologize for the oversight; the omission is, I promise, unintentional. So where to begin? I guess I’ll try to do this somewhat chronologically. While it should go without saying, first and foremost: thank you, Mum and Dad. It’s difficult for me to properly articulate the multitude of ways in which I am thankful to you, but at the very least—and of direct relevance to this thesis—I think I can safely say that I likely would not be the inquisitive person that I am today (and I likely would not be writing an acknowledgement section for a doctoral thesis) had you not put so much effort into attempting to sate my curiosity at a young age. Much love and thanks to the both of you. I think it only fair to thank all of the education staff—from those earliest of teachers who taught me in primary school to those academics still teaching me in the present—whose collective hard work played no small role in my path through life leading to this point. Despite not knowing any of them personally, and despite basically all of my interactions with them having been remote, I feel like it would be unfair to not thank the staff at the RMIT library: so to the RMIT library staff, thank you! I definitely appreciate all of the effort that must have gone into acquiring all of the documents that I requested over the course of my PhD once my own attempts had failed to bear fruit. I am deeply thankful to the RMIT physics department collectively. Thank you to the academic staff and my fellow students for all of the guidance—both academic and personal—that has individually and collectively been imparted to me in my time as a student at RMIT. In particular of the RMIT physics department academics, thank you to Professor Andrew Greentree, Professor Jared Cole, and Professor Salvy Russo: the three of you have certainly put up with more unpleasantness from me than most of the academic staff at RMIT, in spite of which you have all remained absolutely phenomenal pillars of support both academically and personally. For that, I thank the three of you deeply. To Daniel Stavrevski and Giannis Thalassinos: you are two of the best friends that I have ever had the pleasure of making. The pair of you have ensured that my time at RMIT has been enjoyable since day one of our undergraduate (actually, day zero in Daniel’s case), and in complete honesty, I genuinely do not think that I could have gotten this far without the two of you. Your friendship and comradery means more to me than I’ll probably ever be able to express. I thank you both deeply for the everything. Furthermore on the student-front, I would like to specifically acknowledge Akib Karim, David Ing, Josef Worboys, Sam Wilkinson, and Tommy Bartolo. I could write paragraphs of thanks to each of you... but I won’t. Suffice it to say, your collective support, guidance, and friendship has been of immense importance to me through my time as a PhD student, and I am thankful towards the lot of you! Along with Daniel and Giannis, you guys have provided much entertainment, many fun times, and a whole lot of food for thought. Sam, you get bonus props for being an awesome DM during our D&D sessions (and I use the word “awesome” both in the original sense of the word and its more modern-day usage here)! Thank you to Dr Jamie Booth for all of the interesting discussions, guidance, and endless supply of entertaining anecdotes and stories! It should go without saying (though I shall of course say it anyhow) that I owe an immense debt of gratitude to the supervisory team that has seen me through my PhD candidature. Of my supervisors, I owe a special debt of gratitude to my primary supervisor Professor Nicolas C. Menicucci who has been a phenomenal mentor in more ways than I can adequately articulate: thank you very much for your endless patience, your guidance, and your feedback; I am—without doubt—a much better physicist for it. Thank you also to Doctor Valentina Baccetti, who joined as a secondary supervisor relatively late on during the course of my PhD candidature, but whose input as both a supervisor and a co-author has been invaluable. Salvy, you already got a thanks earlier on, so don’t get greedy! Penultimately, thank you to Past Scott, who in a cruel twist of fate can never read this acknowledgement. Past Scott was far from perfect—Present Scott isn’t either, and I very much doubt Future Scott will be for that matter—however he did put in a good amount of leg work at the start of the PhD that made putting this thesis together much easier than it otherwise might have been (and even then, it was a struggle at times). In spite of his desire to procrastinate, Past Scott made a decent effort to write explicit derivations down for Future (now Present) Scott’s reference/use, and I thank him for that. Finally, though definitely not least, thank you to my wonderful partner Thamale! Your endless love, support, and fantastic sense of humour has kept me sane and has made this whole thing possible. My love for you is nothing short of Jupiter-sized! rrr iv Summary The contents of this thesis include several investigations into analogue-gravity models from an internal or in-universe perspective. The philosophy driving these studies is that operational notions of observation and measurement have been of crucial importance in the construction of our theories of physics to date, and this was especially true in the construction of Einstein’s theories of special and general relativity: despite this, so far very little work appears to have been done on investigating analogue-gravity models from the perspective of such observers. Specifically, within this thesis it is demonstrated that it is possible to construct devices whose measurements behave in an equivalent manner to the reference frames within Einstein’s theory of special relativity. In particular, the collective measurements of these devices would lead observers who use them (in-universe observers) to view their analogue-gravity universe as containing a sonic analogue to special relativity (where the speed of sound 2s plays the role of the speed of light 2 from special relativity). Of course, the sonic analogue to special relativity (sonic relativity) is not fundamental: to this end, this thesis also provides a demonstration of how certain experiments can be performed by in-universe observers to reveal the fact that their universe has a preferred frame of reference (the frame defined by their analogue-gravity medium). The existence of a preferred frame of reference reveals to in-universe observers that there exists a bigger universe (the actual universe) outside of their analogue-gravity universe, and that sonic relativity is not a fundamental description of reality in this bigger universe. Towards the end of this thesis, it is speculated that it may be possible to map a certain type of experiment that violates sonic relativity to a type of experiment that does not violate sonic relativity. Should this be true, studying analogue-gravity models that are not fully sonically relativistic may still provide us with insights into real relativistic systems. CONTENTS List of Figures xi I Background 1 Introduction1 1.1 Structure of this thesis ......................... 2 1.2 The grand scheme of things...................... 3 1.2.1 Gravity: fundamental or emergent? ............. 4 1.2.2 A small detour: Semiclassical gravity ............ 7 1.2.3 The case for quantizing gravity................ 8 1.2.3.1 A glance at the field of quantum gravity . 10 1.2.3.2 One final and curious quantum gravity result . 13 1.2.4 The case for not quantizing gravity.............. 14 1.2.5 Other possibilities: questioning our postulates? . 16 1.3 Analogue gravity............................ 17 1.3.1 Origins.............................. 17 1.3.1.1 Gordon’s optical-metric model........... 17 1.3.1.2 Unruh’s acoustic black-hole model . 18 1.3.2 Developments.......................... 20 1.4 Making sense of it all: the role of analogue-gravity models in the hunt for a microscopic theory of gravity and the aim of this thesis 22 2 Theory 25 2.1 Relativity................................
Recommended publications
  • Modified Newtonian Dynamics
    Faculty of Mathematics and Natural Sciences Bachelor Thesis University of Groningen Modified Newtonian Dynamics (MOND) and a Possible Microscopic Description Author: Supervisor: L.M. Mooiweer prof. dr. E. Pallante Abstract Nowadays, the mass discrepancy in the universe is often interpreted within the paradigm of Cold Dark Matter (CDM) while other possibilities are not excluded. The main idea of this thesis is to develop a better theoretical understanding of the hidden mass problem within the paradigm of Modified Newtonian Dynamics (MOND). Several phenomenological aspects of MOND will be discussed and we will consider a possible microscopic description based on quantum statistics on the holographic screen which can reproduce the MOND phenomenology. July 10, 2015 Contents 1 Introduction 3 1.1 The Problem of the Hidden Mass . .3 2 Modified Newtonian Dynamics6 2.1 The Acceleration Constant a0 .................................7 2.2 MOND Phenomenology . .8 2.2.1 The Tully-Fischer and Jackson-Faber relation . .9 2.2.2 The external field effect . 10 2.3 The Non-Relativistic Field Formulation . 11 2.3.1 Conservation of energy . 11 2.3.2 A quadratic Lagrangian formalism (AQUAL) . 12 2.4 The Relativistic Field Formulation . 13 2.5 MOND Difficulties . 13 3 A Possible Microscopic Description of MOND 16 3.1 The Holographic Principle . 16 3.2 Emergent Gravity as an Entropic Force . 16 3.2.1 The connection between the bulk and the surface . 18 3.3 Quantum Statistical Description on the Holographic Screen . 19 3.3.1 Two dimensional quantum gases . 19 3.3.2 The connection with the deep MOND limit .
    [Show full text]
  • Quantum Gravity Past, Present and Future
    Quantum Gravity past, present and future carlo rovelli vancouver 2017 loop quantum gravity, Many directions of investigation string theory, Hořava–Lifshitz theory, supergravity, Vastly different numbers of researchers involved asymptotic safety, AdS-CFT-like dualities A few offer rather complete twistor theory, tentative theories of quantum gravity causal set theory, entropic gravity, Most are highly incomplete emergent gravity, non-commutative geometry, Several are related, boundaries are fluid group field theory, Penrose nonlinear quantum dynamics causal dynamical triangulations, Several are only vaguely connected to the actual problem of quantum gravity shape dynamics, ’t Hooft theory non-quantization of geometry Many offer useful insights … loop quantum causal dynamical gravity triangulations string theory asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory shape dynamics causal set supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Several are related Herman Verlinde at LOOP17 in Warsaw No major physical assumptions over GR&QM No infinity in the small loop quantum causal dynamical Infinity gravity triangulations in the small Supersymmetry string High dimensions theory Strings Lorentz Violation asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory Mostly still shape dynamics causal set classical supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Discriminatory questions: Is Lorentz symmetry violated at the Planck scale or not? Are there supersymmetric particles or not? Is Quantum Mechanics violated in the presence of gravity or not? Are there physical degrees of freedom at any arbitrary small scale or not? Is geometry discrete i the small? Lorentz violations Infinite d.o.f.
    [Show full text]
  • An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
    universe Article An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory Konstantin G. Zloshchastiev Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa; [email protected] Received: 29 August 2020; Accepted: 10 October 2020; Published: 15 October 2020 Abstract: We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies.
    [Show full text]
  • On the Breakdown of Space-Time Via Constraint Quantization of $ D\Geq2
    On the breakdown of space-time via constraint quantization of d 2 General Relativity ≥ Farrukh A. Chishtie Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 3K7, Canada E-mail: [email protected] February 2021 Abstract. Based on the canonical quantization of d 2 dimensional General ≥ Relativity (GR) via the Dirac constraint formalism (also termed as ‘constraint quantization’), we propose the loss of covariance as a fundamental property of the theory. This breakdown occurs for the first-order Einstein Hilbert action, whereby besides first class constraints, second class constriants also exist leading to non-standard ghost fields which render the path integral non-covariant. For the Hamiltonian formulation of GR, only first class constraints exist, however, the loss of covariance still happens due to structures arising from non-covariant constraints in the path integral. In contrast, covariance is preserved when constraint quantization is conducted for non-Abelian gauge theories, such as the Yang-Mills theory. Hence, we infer that the breakdown in space-time is a property of GR itself (for d 2 dimensions). ≥ Covariance is recovered and quantization and perturbative calculations are possible in the weak limit of the gravitational field of these actions. Hence, we further propose that the breakdown of space-time occurs as a non-perturbative feature of GR in the strong limit of the theory. These findings are novel from a canonical gravity formalism standpoint, and are consistent with GR singularity theorems which indicate breakdown at a strong limit of the field. They also support emergent theories of spacetime and gravity, though do not require thermodynamics such as entropic gravity.
    [Show full text]
  • Holographic Theory, and Emergent Gravity As an Entropic Force
    Holographic theory, and emergent gravity as an entropic force Liu Tao December 9, 2020 Abstract In this report, we are going to study the holographic principle, and the possibility of describing gravity as an entropic force, independent of the details of the microscopic dynamics. We will first study some of the deep connections between Gravity laws and thermodynamics, which motivate us to consider gravity as an entropic force. Lastly, we will investigate some theoretical criticisms and observational evidences on emergent gravity. 1 Contents 1 Introduction3 2 Black holes thermodynamics and the holographic principle3 2.1 Hawking temperature, entropy..........................3 2.1.1 Uniformly accelerated observer and the Unruh effect.........3 2.1.2 Hawking temperature and black hole entropy..............6 2.2 Holographic principle...............................7 3 Connection between gravity and thermodynamics8 3.1 Motivations (from ideal gas and GR near event horizon)...........8 3.2 Derive Einstein's law of gravity from the entropy formula and thermodynamics 10 3.2.1 the Raychaudhuri equation........................ 10 3.2.2 Einstein's equation from entropy formula and thermodynamics.... 11 4 Gravity as an entropic force 13 4.1 General philosophy................................ 13 4.2 Entropic force in general............................. 13 4.3 Newton's law of gravity as an entropic force.................. 14 4.4 Einstein's law of gravity as an entropic force.................. 15 4.5 New interpretations on inertia, acceleration and the equivalence principle.. 17 5 Theoretical and experimental criticism 18 5.1 Theoretical criticism............................... 18 5.2 Cosmological observations............................ 19 20section.6 2 1 Introduction The holographic principle was inspired by black hole thermodynamics, which conjectures that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected for any extensive quantities.
    [Show full text]
  • Alzofon-Ionescu Theory Beyond Newton, Einstein, Quantum/Entropy Gravity, Etc. a Virequest Project Proposal
    Journal of High Energy Physics, Gravitation and Cosmology, 2021, 7, 1182-1189 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 What Gravity Is: Alzofon-Ionescu Theory beyond Newton, Einstein, Quantum/Entropy Gravity, etc. A Virequest Project Proposal Lucian Miti Ionescu Department of Mathematics, Illinois State University, Normal, USA How to cite this paper: Ionescu, L.M. (2021) Abstract What Gravity Is: Alzofon-Ionescu Theory beyond Newton, Einstein, Quantum/Entropy Gravity is not a fundamental force; in a nut-shell, it is the result of a non- Gravity, etc. A Virequest Project Proposal. commutative interaction of the “electric” (i.e. Coulomb type) due to fraction- Journal of High Energy Physics, Gravita- U 2 tion and Cosmology, 7, 1182-1189. al charges of the proton and neutron in ( ) -gauge theory, but which have https://doi.org/10.4236/jhepgc.2021.73069 no structure in U (1) -gauge theory, being neutral in itself (neutron), or when Received: June 5, 2021 compensated by the electronic cloud (proton). This is no longer true at the Accepted: July 23, 2021 SU (2) Electroweak Theory level, once spherical 3D-symmetry is broken to Published: July 26, 2021 a finite Platonic group of symmetry within it Γ→SU (2) . The fine splitting Copyright © 2021 by author(s) and of energy levels due to the quark structure (frame basis in SU (2) ) of the Scientific Research Publishing Inc. electric charge can be experimentally controlled using a MASER to invert the This work is licensed under the Creative Commons Attribution International population and orient the nuclei the right way to reduce and turn off Gravity.
    [Show full text]
  • Superfluid Quantum Space and Evolution of the Universe
    Chapter 5 Superfluid Quantum Space and Evolution of the Universe Valeriy I. Sbitnev and Marco Fedi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/68113 Abstract We assume that dark energy and dark matter filling up the whole cosmic space behave as a special superfluid, here named “superfluid quantum space.” We analyze the relationship between intrinsic pressure of SQS (dark energy's repulsive force) and gravity, described as an inflow of dark energy into massive particles, causing a nega- tive pressure gradient around massive bodies. Since no superfluid has exact zero viscosity, we analyze the consequences of SQS’s viscosity on light propagation, and we show that a static Universe could be possible, by solving a modified Navier-Stokes equation. Indeed, Hubble’s law may actually refer to tired light, though described as energy loss due to SQS’s nonzero viscosity instead of Compton scattering, bypassing known historical problems concerning tired light. We see that SQS’sviscositymayalso account for the Pioneer anomaly. Our evaluation gives a magnitude of the anomalous À À À10 À2 acceleration aP = HΛc = 8.785 10 ms . Here, HΛ is the Hubble parameter loaded by the cosmological constant Λ. Furthermore, the vorticity equation stemming from the modified Navier-Stokes equation gives a solution for flat profile of the orbital speed of spiral galaxies and discloses what one might call a breathing of galaxies due to energy exchange between the galactic vortex and dark energy. Keywords: gravity, dark energy, Hubble’s law, tired light, Pioneer anomaly, flat profile 1.
    [Show full text]
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Cosmology and Unified Quantum Gravity Theory of the Universe C Bhattacharya Austin Paints & Chemical Pvt Ltd, 3 Ambika Mukherjee Road, *Corresponding author Belghoria, Kolkata, 700 056, India C Bhattacharya, Austin Paints & Chemical Pvt Ltd, 3 Ambika Mukherjee Road, Belghoria, Kolkata, 700 056, India Submitted: 02 Dec 2019; Accepted: 26 Feb 2020; Published: 08 Aug 2020 Abstract A unified quantum gravity theory of the universe is discovered and being proposed which explores the true dimensionality of all the physical variables of the universe like energy, EM- wave, entropy, mass, time, temperature, gravitation, etc. and merges the “Classical Theory”, “Thermodynamics”, “Quantum Mechanics” and the “Theory of Relativity of Albert Einstein” under a single umbrella by a newly proposed mass-energy equivalence phenomena. The proposed quantum gravity theory based on the concepts of inverse dimensionalities of mass and time and the different types of “GRAVITONS‟, explores most of the cosmic mysteries of the universe, like the dimensionality of the universe itself, the geometry and thermodynamics of the different types of Black Holes, the Plasma State, the gravitational lensing, the cold nuclear fusion phenomena, the apparent grey look of the universe. The units of the principal physical variables of the universe as proposed by Max Planck gets a new shape in the light of the proposed Theory of Quantum Gravity (QG Theory) in the form of either „push-forward gravitons‟ or „pull-back gravitons‟. The limitations the existing laws of physics and the theories of relativities have been revealed and the quantum gravity theory of color physics and the building block concept of calculus have been introduced.
    [Show full text]
  • Thermodynamics of Moving Bodies Or a New Approach to Emergent Gravity
    American Journal of Modern Physics 2020; 9(2): 28-40 http://www.sciencepublishinggroup.com/j/ajmp doi: 10.11648/j.ajmp.20200902.12 ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online) Thermodynamics of Moving Bodies or a New Approach to Emergent Gravity Yormahmad Kholov Department of Transport, Tajik Technical University, Dushanbe, Tajikistan Email address: To cite this article: Yormahmad Kholov. Thermodynamics of Moving Bodies or a New Approach to Emergent Gravity. American Journal of Modern Physics . Vol. 9, No. 2, 2020, pp. 28-40. doi: 10.11648/j.ajmp.20200902.12 Received : May 24, 2020; Accepted : June 15, 2020; Published : June 28, 2020 Abstract: Recent theoretical developments propose that gravity is emergent phenomenon. In line with this, in this paper, we show that gravitational and inertial properties of matter can be sufficiently explained by thermodynamics for a system consisting of material systems immersed in the quantum vacuum energy reservoir without reference to the microscopic constituencies of the quantum vacuum. The study focuses on the transfer of energy and matter in the interaction of material system with its vacuum surroundings and the relation of those to the system's macroscopic state variables and mechanical behavior of the system associated with forces acting on it. This analysis suggests that vacuum energy density about material systems is diminished and quantum vacuum energy density field takes on specific gradient there. Hence, gravity appears as effect of the change in the energy density of medium related with presence of another material object modifying vacuum surroundings and causing spontaneous motion of the system to minimize its energy driven by the second law.
    [Show full text]
  • Dark Matter = Modified Gravity?
    Dark Matter = Modified Gravity? Scrutinising the spacetime{matter distinction through the modified gravity/ dark matter lens Niels C.M. Martens1,2,3 and Dennis Lehmkuhl1,2 1DFG Research Unit \The Epistemology of the Large Hadron Collider" (grant FOR 2063) martens@ physik. rwth-aachen. de , dennis. lehmkuhl@ uni-bonn. de 2Lichtenberg Group for History and Philosophy of Physics, University of Bonn 3Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University This is a postprint (i.e. post-peer-review but pre-copyedit) version of an article accepted for publication in Studies in History and Philosophy of Modern Physics. The final authenticated version is/will be available online (open access) at: www.sciencedirect.com/science/article/abs/pii/S135521982030109X. September 7, 2020 Abstract This paper scrutinises the tenability of a strict conceptual distinction be- tween space(time) and matter via the lens of the debate between modified gravity and dark matter. In particular, we consider Berezhiani and Khoury's novel `superfluid dark matter theory' (SFDM) as a case study. Two families of criteria for being matter and being spacetime, respectively, are extracted from the literature. Evaluation of the new scalar field postulated by SFDM according to these criteria reveals that it is as much (dark) matter as anything could possibly be, but also|below the critical temperature for superfluidity| as much (of a modification of) spacetime as anything could possibly be. A sequel paper examines possible interpretations of SFDM in light of this result, as well as the consequences for our understanding of (the importance of) the modified gravity/ dark matter distinction and the broader spacetime{matter distinction.
    [Show full text]
  • Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Benoit Famaey, Stacy S
    Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Benoit Famaey, Stacy S. Mcgaugh To cite this version: Benoit Famaey, Stacy S. Mcgaugh. Modified Newtonian Dynamics (MOND): Observational Phe- nomenology and Relativistic Extensions. Living Reviews in Relativity, 2012, 15 (1), 10.12942/lrr- 2012-10. hal-02927744 HAL Id: hal-02927744 https://hal.archives-ouvertes.fr/hal-02927744 Submitted on 1 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Living Rev. Relativity, 15, (2012), 10 LIVINGREVIEWS http://www.livingreviews.org/lrr-2012-10 in relativity Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Beno^ıtFamaey Observatoire Astronomique de Strasbourg CNRS, UMR 7550, France and AIfA, University of Bonn, Germany email: [email protected] http://astro.u-strasbg.fr/~famaey/ Stacy S. McGaugh Department of Astronomy University of Maryland, USA and Case Western Reserve University, USA email: [email protected] http://astroweb.case.edu/ssm/ Accepted on 30 April 2012 Published on 7 September 2012 Abstract A wealth of astronomical data indicate the presence of mass discrepancies in the Universe. The motions observed in a variety of classes of extragalactic systems exceed what can be explained by the mass visible in stars and gas.
    [Show full text]
  • Einstein Equations and MOND Theory from Debye Entropic Gravity
    Journal of Cosmology and Astroparticle Physics Related content - Debye Entropic Force and Modified Einstein equations and MOND theory from Debye Newtonian Dynamics Li Xin and Chang Zhe entropic gravity - Unification of Dark Matter and Dark Energy in a Modified Entropic Force Model Chang Zhe, Li Ming-Hua and Li Xin To cite this article: A. Sheykhi and K. Rezazadeh Sarab JCAP10(2012)012 - Hidden Symmetries for Thermodynamics and Emergence of Relativity Zhao Liu View the article online for updates and enhancements. Recent citations - Friedmann equations in braneworld scenarios from emergence of cosmic space A. Sheykhi et al - Friedmann equations from emergence of cosmic space Ahmad Sheykhi This content was downloaded from IP address 131.169.4.70 on 28/11/2017 at 11:06 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Einstein equations and MOND theory from Debye entropic gravity JCAP10(2012)012 A. Sheykhia,b and K. Rezazadeh Sarabc aCenter for Excellence in Astronomy and Astrophysics (CEAA-RIAAM) Maragha, P.O. Box 55134-441, Iran bPhysics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran cDepartment of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman, Iran E-mail: [email protected], [email protected] Received June 4, 2012 Accepted September 13, 2012 Published October 8, 2012 Abstract. Verlinde’s proposal on the entropic origin of gravity is based strongly on the assumption that the equipartition law of energy holds on the holographic screen induced by the mass distribution of the system. However, from the theory of statistical mechanics we know that the equipartition law of energy does not hold in the limit of very low temperature.
    [Show full text]