Download Special Issue

Total Page:16

File Type:pdf, Size:1020Kb

Download Special Issue Advances in High Energy Physics Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Guest Editors: Ahmed Farag Ali, Giulia Gubitosi, Mir Faizal, and Barun Majumder Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Advances in High Energy Physics Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Guest Editors: Ahmed Farag Ali, Giulia Gubitosi, Mir Faizal, and Barun Majumder Copyright © 2017 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Luis A. Anchordoqui, USA Frank Filthaut, Netherlands Anastasios Petkou, Greece T. Asselmeyer-Maluga, Germany Chao-Qiang Geng, Taiwan Alexey A. Petrov, USA M. Battaglia, Switzerland Philippe Gras, France Thomas Rössler, Sweden Botio Betev, Switzerland Xiaochun He, USA J. José Sanz-Cillero, Spain Lorenzo Bianchini, Switzerland Filipe R. Joaquim, Portugal Edward Sarkisyan-Grinbaum, USA Burak Bilki, USA KyungK.Joo,RepublicofKorea Sally Seidel, USA Adrian Buzatu, UK Aurelio Juste, Spain George Siopsis, USA Rong-Gen Cai, China Michal Kreps, UK Luca Stanco, Italy Duncan L. Carlsmith, USA Ming Liu, USA Satyendra Thoudam, Netherlands Ashot Chilingarian, Armenia Enrico Lunghi, USA Smarajit Triambak, South Africa Anna Cimmino, Belgium Piero Nicolini, Germany Elias C. Vagenas, Kuwait Andrea Coccaro, Switzerland Seog H. Oh, USA Nikos Varelas, USA Shi-Hai Dong, Mexico Sergio Palomares-Ruiz, Spain YauW.Wah,USA Edmond C. Dukes, USA Giovanni Pauletta, Italy Amir H. Fatollahi, Iran Yvonne Peters, UK Contents Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Ahmed Farag Ali, Giulia Gubitosi, Mir Faizal, and Barun Majumder Volume 2017, Article ID 1274326, 2 pages Investigation of Free Particle Propagator with Generalized Uncertainty Problem F. Ghobakhloo and H. Hassanabadi Volume 2016, Article ID 2045313, 4 pages Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation ShuZheng Yang, Dan Wen, and Kai Lin Volume 2016, Article ID 4647069, 6 pages Matter Localization on Brane-Worlds Generated by Deformed Defects Alex E. Bernardini and Roldão da Rocha Volume 2016, Article ID 3650632, 10 pages The Effects of Minimal Length, Maximal Momentum, and Minimal Momentum in Entropic Force Zhong-Wen Feng, Shu-Zheng Yang, Hui-Ling Li, and Xiao-Tao Zu Volume 2016, Article ID 2341879, 9 pages Spontaneous Symmetry Breaking in 5D Conformally Invariant Gravity Taeyoon Moon and Phillial Oh Volume 2016, Article ID 5353267, 7 pages On the UV Dimensions of Loop Quantum Gravity Michele Ronco Volume 2016, Article ID 9897051, 7 pages Charged Massive Particle’s Tunneling from Charged Nonrotating Microblack Hole M. J. Soleimani, N. Abbasvandi, Shahidan Radiman, and W. A. T. Wan Abdullah Volume 2016, Article ID 1632469, 8 pages Lorentz Invariance Violation and Modified Hawking Fermions Tunneling Radiation Shu-Zheng Yang, Kai Lin, Jin Li, and Qing-Quan Jiang Volume 2016, Article ID 7058764, 7 pages Thermodynamical Study of FRW Universe in Quasi-Topological Theory H. Moradpour and R. Dehghani Volume 2016, Article ID 7248520, 10 pages The Minimal Length and the Shannon Entropic Uncertainty Relation Pouria Pedram Volume 2016, Article ID 5101389, 8 pages An Attempt for an Emergent Scenario with Modified Chaplygin Gas Sourav Dutta, Sudeshna Mukerji, and Subenoy Chakraborty Volume 2016, Article ID 7404218, 5 pages Hindawi Publishing Corporation Advances in High Energy Physics Volume 2017, Article ID 1274326, 2 pages http://dx.doi.org/10.1155/2017/1274326 Editorial Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Ahmed Farag Ali,1,2 Giulia Gubitosi,3 Mir Faizal,4 and Barun Majumder5 1 Benha University, Benha, Egypt 2Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam, Netherlands 3Imperial College London, London, UK 4British Columbia University, Vancouver, BC, Canada 5Indian Institute of Technology-Gandhinagar, Gujarat, India Correspondence should be addressed to Ahmed Farag Ali; [email protected] Received 12 December 2016; Accepted 20 December 2016; Published 15 February 2017 Copyright © 2017 Ahmed Farag Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. The phenomenological aspects of various approaches to horizon entropy in quasi-topological gravity. In the paper by quantum gravity and modified theories of gravity are getting S.-Z. Yang et al., the authors studied the Hawking radiation a lot of attention and cover many different topics such as in the context of Lorentz invariance violation which has been theories with minimal length, noncommutative geometry, predicted in different approaches to quantum gravity. In the theories with generalized uncertainty principle, violations paperbyM.J.Soleimanietal,theauthorsinvestigatetunnel- of Lorentz symmetries, and loop quantum cosmology. The ing of charged massive particles in charged TeV-scale black recent developments in these approaches with their phe- hole with the help of a generalized uncertainty relation that nomenological implications in particle physics, cosmology, has a minimal length and maximal momentum. In the paper and astrophysics are the main theme of this special issue. by M. Ronco, the author tackled Planck-scale dynamical In this special issue on quantum gravity phenomenology, we dimensional reduction in which he observed that the number have invited papers that address such issues. of UV dimensions can be used to constrain the ambiguities in In the paper by S. Dutta et al., the authors present a study the choice of these loop quantum gravity-based modifications on emergent universe scenario with modified Chaplygin gas of the Dirac space-time algebra. In the paper by T. Moon and and its implications with the initial big bang singularity. In the P. Oh, the authors studied spontaneous symmetry breaking paper by P. Pedram, the author uses the modified commuta- in 5D conformally invariant gravity and found that the tion relation, which has quadratic order in the momentum dimensional reduction via ADM decomposition gives rise to as deformation, to study the Beckner, Bialynicki-Birula, and the4DMinkowskivacuum.InthepaperbyZ.-W.Fenget Mycielski (BBM) inequality. With a particular choice of al., the authors studied the implications of minimal length self-adjoint representation, the author has shown that the theories on the entropic force realization of gravity and BBM inequality remains valid for various choices of the they derived, in this context, the modified Einstein field deformation parameter. In the paper by H. Moradpour equation and modified Friedman equations which may have and R. Dehghani, the authors tackled the unified first law various phenomenological implications. In the paper by A. E. of thermodynamics and its genuine connection with the Bernardini and R. Rocha, the authors have studied a family of apparent horizon of FRW universe in which they found that asymmetric thick brane configurations which are formed by whenever there is no energy exchange between the various defects. A left-right asymmetric chiral localization of spin 1/2 parts of cosmos, one could get an expression for the apparent particles is produced in the localization of fermion fields of 2 Advances in High Energy Physics the thick branes. In the paper by S.-Z. Yang et al., the authors investigated the origin of Hawking radiation in the context of fermions tunneling from higher-dimensional Reissner- Nordstromblackholeandcalculatedtheentropyoftheblack¨ hole. In the paper by F. Ghobakhloo and H. Hassanabadi, theauthorsinvestigatedthefreeparticlepropagatorinthe context of minimal length theories and discussed possible implications of this modified propagator. Ahmed Farag Ali Giulia Gubitosi Mir Faizal Barun Majumder Hindawi Publishing Corporation Advances in High Energy Physics Volume 2016, Article ID 2045313, 4 pages http://dx.doi.org/10.1155/2016/2045313 Research Article Investigation of Free Particle Propagator with Generalized Uncertainty Problem F. Ghobakhloo and H. Hassanabadi Physics Department, Shahrood University of Technology, P.O. Box 316, Shahrood 3619995161, Iran Correspondence should be addressed to F. Ghobakhloo; [email protected] Received 1 March 2016; Revised 11 April 2016; Accepted 24 April 2016 Academic Editor: Mir Faizal Copyright © 2016 F. Ghobakhloo and H. Hassanabadi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. We consider the Schrodinger¨ equation with a generalized uncertainty principle for a free particle. We then transform the problem into a second-order ordinary differential equation and thereby obtain the corresponding propagator. The result of ordinary quantum mechanics is recovered for vanishing minimal length parameter. 1. Introduction Inourpaper,wearegoingtocombinethesetwosubjects.
Recommended publications
  • Arxiv:1903.02940V2
    Proton decay and the quantum structure of spacetime 1, 1, 2,3, 4,5, Abeer Al-Modlej, ∗ Salwa Alsaleh, † Hassan Alshal, ‡ and Ahmed Farag Ali § 1 Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia 2Department of Physics, University of Miami, Coral Gables, FL 33124, USA 3Department of Physics, Faculty of Science, Cairo University, Giza 12613, Egypt 4Department of Physics, Faculty of Science, Benha University, Benha, 13518, Egypt 5Quantum Gravity Research, Los Angeles, CA 90290, USA (Dated: October 29, 2019) Abstract Virtual black holes in noncommutative spacetime are investigated using coordinate coherent state formalism such that the event horizon of black hole is manipulated by smearing it with a Gaussian of width √θ, where θ is the noncommutativity parameter. Proton lifetime, the main associated phenomenology of the noncommutative virtual black holes, has been studied: first in 4 dimensional spacetime and then generalized to D dimensions. The lifetime depends on θ and the number of spacetime dimensions such that it emphasizes on the measurement of proton lifetime as a potential probe for the micro-structure of spacetime. Introduction promising to divulge many secrets about how nature works on quantum gravity level [22]. A black hole with 9 mass of Sun would have TBH 60 10− K at the event Since the introduction of Hawking radiation [1], horizon, while a black hole with∼ mass× of Earth’s moon geometrical many semiclassical, non-classical [2–9] and would have the surface temperature 2.7 K. So the ra- [10–12] endeavours—seeking “the” unified theory—have diation of astrophysical massive black∼ hole is too minute been striving to “shoehorn” general relativity into the to be detected in the Cosmic Microwave Background framework of quantum field theories (QFT).
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Professor Abdel Nasser TAWFIK (Habilitation/Academician) Dr.Sc., Dr.rer.Nat (Ph.D.) Status: January 2015 Personal Information Name: Abdel Nasser TAWFIK Nationality: Egyptian/German Date of Birth: 22nd June 1967 Place of Birth: Sohag, Egypt Marital Status: Married Home Address (Egypt): El-Fardous City (6th-of-October City), Bld 42/112, Giza-Egypt Home Address (Germany): 13 Frohnauer Str., D-33619 Bielefeld-Germany Work Address: MTI University, Faculty of Engineering, Al-Hadaba Al- Wusta, Al-Mukattam, Cairo-Egypt Cell Phone: +201002390604 and +201120059074 E-Mail: [email protected], [email protected], and [email protected] URL: http://atawfik.net/ Wikipedia: http://en.wikipedia.org/wiki/Abdel_Nasser_Tawfik Academic Positions Current: 1. Founding Director of the World Laboratory for Cosmology and Particle Physics (WLCAPP) http://wlcapp.net/, http://www.worldlab.ch/ 2. Founding Director of the Egyptian Center for Theoretical Physics (ECTP) http://www.mti.edu.eg/mti/page.aspx?pageID=95 3. Professor at the Modern University for Technology and Information (MTI University), Faculty of Engineering, http://www.mti.edu.eg/ 4. Team Leader of the Egyptian Groups of Scientists engaged to the ALICE Experiment at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland 5. Team Leader of the Egyptian Groups of Scientists engaged to the STAR Experiment at the Relativistic Heavy-Ion Collider (RHIC) BNL, USA 6. Team Leader of the Egyptian Groups of Scientists engaged to MPD Experiment at the NICA Facility at the Joint-Institute for Nuclear Research (JINR) Dubna, Russia 7. Team Leader of the Egyptian Groups of Scientists engaged to CBM Experiment at the FAIR Facility of Helmhortz Association (GSI) Darmstadt, Germany 8.
    [Show full text]
  • Planck-Scale Corrections to Friedmann Equation
    Cent. Eur. J. Phys. • 12(4) • 2014 • 245-255 DOI: 10.2478/s11534-014-0441-3 Central European Journal of Physics Planck-scale corrections to Friedmann equation Research Article Adel Awad∗1,2,3, Ahmed Farag Ali† 1,4 1 Centre for Fundamental Physics, Zewail City of Science and Technology Sheikh Zayed, 12588, Giza, Egypt 2 Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt 3 Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43, Egypt 4 Department of Physics, Faculty of Science, Benha University, Benha 13518, Egypt Received 16 November 2013; accepted 18 January 2014 Abstract: Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde’s proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde’s proposal and two known models of GUPs, we obtain modifications to Newton’s law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a cor- responding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ωρ equation of state. PACS (2008): 04.60.Bc;04.60.Cf;04.70.Dy Keywords: quantum gravity • entropic force • thermodynamics • black holes © Versita sp. z o.o. 1. Introduction mutation relations between position coordinates and mo- menta [1–8].
    [Show full text]
  • Curriculum Vitae SAURYA DAS
    Curriculum Vitae SAURYA DAS Personal details Date of birth: 30 June 1970 Nationalites: Canadian, Indian Languages: English, Bengali, Hindi (fluent), French (fair) Current position Professor of Physics, Department of Physics and Astronomy University of Lethbridge, Alberta, Canada Contact information Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada E-mail: [email protected] Telephone: +1-403-329-2689 http://directory.uleth.ca/users/saurya.das http://scholar.ulethbridge.ca/sauryadas http://www.researchgate.net/profile/Saurya Das Other/previous positions • Affiliate Member, Perimeter Institute of Theoretical Physics, Waterloo, Canada. • Theme Leader, Quantum Foundations and Quantum Gravity, Quantum Alberta (Universities of Alberta, Calgary and Lethbridge). • 2008 - 2013: Associate Professor of Physics (tenured), University of Lethbridge, Alberta, Canada. Became a Full Professor in 2013. • 2003 - 2008: Assistant Professor of Physics, University of Lethbridge, Alberta, CANADA. • 2002 - 2003: Postdoctoral Fellow at University of New Brunswick, Fredericton, Canada. • 2000 - 2002: Postdoctoral Fellow at The University of Winnipeg & Winnipeg Institute for Theoretical Physics, Winnipeg, CANADA. • 1998 - 2000: Postdoctoral Fellow at The Center for Gravitational Physics and Geometry, The Pennsylvania State University, U.S.A. • 1994 - 1998: Research Fellow at The Institute of Mathematical Sciences, Chennai, India. Education and awards • Ph.D. in Theoretical Physics from The Institute of Mathematical Sciences, Chennai, India (1999). • First class in M.Sc. (by research) in Theoretical Physics from Anna University, Chennai, India (1994). • First class in B.Sc. (Physics Honours) from Presidency College, University of Calcutta, Kolkata, India (1992) - ranked second in the University. • Awards: Best Ph.D Thesis Award. Honorable Mention in the Gravity Research Foundation Essay Competitions - 2001, 2007, 2014, 2015, 2016.
    [Show full text]
  • Curriculum Vitae SAURYA DAS
    Curriculum Vitae SAURYA DAS Personal details Date of birth: 30 June 1970 Citizenship: Canadian Languages: English, Bengali, Hindi (fluent), French (functional) Current position Professor of Physics, Department of Physics and Astronomy University of Lethbridge, Alberta, Canada Contact information Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada E-mail: [email protected] Telephone: +1-403-329-2689 http://directory.uleth.ca/users/saurya.das http://scholar.ulethbridge.ca/sauryadas http://www.researchgate.net/profile/Saurya Das Other/previous positions • Affiliate Member, Perimeter Institute of Theoretical Physics, Waterloo, Canada. • Theme Leader, Quantum Foundations and Quantum Gravity, Quantum Alberta (Universities of Alberta, Calgary and Lethbridge). • Full Professor of Physics University of Lethbridge, Alberta, Canada. • 2008 - 2013: Associate Professor of Physics (tenured), University of Lethbridge, Alberta, Canada. • 2003 - 2008: Assistant Professor of Physics, University of Lethbridge, Alberta, CANADA. • 2002 - 2003: Postdoctoral Fellow at University of New Brunswick, Fredericton, Canada. • 2000 - 2002: Postdoctoral Fellow at The University of Winnipeg & Winnipeg Institute for Theoretical Physics, Winnipeg, CANADA. • 1998 - 2000: Postdoctoral Fellow at The Center for Gravitational Physics and Geometry, The Pennsylvania State University, U.S.A. • 1994 - 1998: Research Fellow at The Institute of Mathematical Sciences, Chennai, India. Education and awards • Ph.D. in Theoretical Physics from The Institute of Mathematical Sciences, Chennai, India (1999). • First class in M.Sc. (by research) in Theoretical Physics from Anna University, Chennai, India (1994). • First class in B.Sc. (Physics Honours) from Presidency College, University of Calcutta, Kolkata, India (1992) - ranked second in the University. 1 • Awards: Best Ph.D Thesis Award.
    [Show full text]
  • Aspects of Quantum Gravity
    ASPECTS OF QUANTUM GRAVITY AHMED FARAG ALI Master of Science, Benha University, 2008 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Department of Physics and Astronomy University of Lethbridge LETHBRIDGE, ALBERTA, CANADA c Ahmed Farag Ali, 2012 Dedication To Ebtesam, Ibrahim, and my parents. iii Abstract We propose a Generalized Uncertainty Principle(GUP) consistent with String Theory, Black Hole Physics and Doubly Special Relativity. This modifies all quantum mechan- ical Hamiltonians and predicts quantum gravity corrections. We compute corrections to the Lamb shift, simple harmonic oscillator, Landau levels, and the tunneling cur- rent. When applied to an elementary particle, it suggests that the space must be quantized, and that all measurable lengths are quantized in units of a fundamental length. We investigated whether GUP can explain the violation of the equivalence principle at small length scales that was observed experimentally. We investigated the consequences of GUP on Liouville theorem. We examined GUP effect on post inflation preheating, and show that it predicts an increase or a decrease in parametric resonance and a change in particle production. The effect of GUP on the creation of black holes is investigated to justify the experimental results from the Large Hadron Collider. iv Acknowledgements First and foremost, I would like to express about my deep gratitude for my supervisor Dr. Saurya Das whose expertise and attention to both detail and the big picture, provided invaluable guidance for my research, all the while being so friendly and straightforward during our discussions.
    [Show full text]
  • Table of Contents (Print)
    PHYSICAL REVIEW D PERIODICALS For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 99, NUMBER 8 CONTENTS D15 APRIL 2019 The Table of Contents is a total listing of Parts A and B. Part A consists of articles 081501–084027, and Part B articles 084028–089901(E) PART A RAPID COMMUNICATIONS Marolf-Ori singularity inside fast spinning black holes (5 pages) ................................................................. 081501(R) Lior M. Burko and Gaurav Khanna ARTICLES LISA Pathfinder platform stability and drag-free performance (14 pages) ....................................................... 082001 M. Armano et al. (LISA Pathfinder Collaboration) Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning (8 pages) ..... 082002 S. Coughlin, S. Bahaadini, N. Rohani, M. Zevin, O. Patane, M. Harandi, C. Jackson, V. Noroozi, S. Allen, J. Areeda, M. Coughlin, P. Ruiz, C. P. L. Berry, K. Crowston, A. K. Katsaggelos, A. Lundgren, C. Østerlund, J. R. Smith, L. Trouille, and V. Kalogera Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground (15 pages) .......... 082003 E. Armengaud et al. (EDELWEISS Collaboration) Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home (12 pages) ............................................................................................................................... 082004 Sin´ead Walsh, Karl Wette, Maria Alessandra Papa, and Reinhard Prix Constraining the Johannsen deformation parameter ϵ3 with black hole x-ray data (10 pages) ............................... 083001 Ashutosh Tripathi, Askar B. Abdikamalov, Dimitry Ayzenberg, Cosimo Bambi, and Sourabh Nampalliwar Axionlike dark matter search using the storage ring EDM method (12 pages) ................................................
    [Show full text]
  • Albert Einstein
    Ahmed Farag Ali Department of Physics, Faculty of Science, Benha University Benha, Qaliubiya, 13518, Egypt Cell Phone: +20 112-668-1977 Fax: +20 133-213-511 E-mail: [email protected] ; [email protected]; [email protected] My page at INSPIREHEP: http://inspirehep.net/author/profile/Ahmed.Farag.Ali.1 My page at Google Scholar: http://scholar.google.com.eg/citations?user=fVCubX8AAAAJ Born: August 1, 1982. Current positions Assistant Professor, Department of Physics, Faculty of Science, Benha University, Egypt. Areas of specialization High Energy Physics; Astrophysics; Quantum Gravity Phenomenology; Cosmology and Black hole Physics. Appointments held 2012-currently • Assistant Professor, Physics Department, Faculty of Science, Benha University, Egypt. Feb - August 2015 • Visiting scientist , Department of Physics, Florida State University, USA. Jan 2013-2015 • Research Associate, Center for Fundamental Physics, Zewail City of Science and Technology, Egypt. 2008-2012 • Doctoral student and Teaching assistant at University of Lethbridge, Alberta, CANADA May-July 2008 • Visiting scientist at International Center for Theoretical Physics (ICTP), Trieste, Italy 2005-2008 • M. Sc. student and Demonstrator at Benha University, Benha, EGYPT. 2006-2007 • Diploma student at High Energy Physics Dept at ICTP, Trieste, ITALY. Jan-June 2006 • Visiting student at High Energy Department, Institute of Mathematical Sciences, Chennai, INDIA. 2003-2005 • Demonstrator at Physics Department, Faculty of Sciences, Benha University. 1 Education 2012 • PhD in Theoretical and Computational Physics, University of Lethbridge, Alberta, CANADA. 2008 • MSc in Theoretical Physics, Benha University. 2007 • Diploma in High Energy Physics, International Center for Theoretical Physics, Trieste, Italy. 2004 • Post-Graduate in theoretical Physics, Ain Shams University, Egypt.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE :: PERSONAL DETAILS :: Name : Ahmed Farag Ali Date of birth : August 1st, 1982 Marital Status : Married Present Address: Department of Physics, Faculty of Science, Benha Center for Fundamental Physics, University, Zewail City of Science and Technology, Benha 13518, Qaliubiya, Egypt. Sheikh Zayed, 12588 Giza, Egypt. Official Email: [email protected] Official Email: [email protected] or My page @ Benha University Web. My page @Zewail City Web. Telephone : (+20) 127-964-8363 & (+20) 111-099-0926 Fax : (+20) 133-225-494 :: ACADEMIC EDUCATION :: 1. Ph.D. (2012) Major: Theoretical and Computational Physics, Thesis Title: Aspects of Quantum Gravity. University of Lethbridge, CANADA. 2. M. Sc. (2008) Major: Theoretical Physics Thesis Title: Phenomenological Aspects beyond the Standard Model Benha University, EGYPT. 3. ICTP Diploma (2007) Major: High energy Physics. Thesis titled: Fermions mixing and discrete symmetries. Abdus Salam International centre for theoretical physics (ICTP) Trieste, ITALY. 4. Postgraduate studies (2004) Major: Theoretical Physics Grade: 89% Ain Shams University, Cairo, EGYPT. 5. B.Sc.(2003) Major: Physics Grade: B.Sc., Excellent with First Class Honor. Benha University, EGYPT :: ACADEMIC POSITIONS :: Jan 2013- : Assistant Professor at Center for Fundamental Physics, Zewail City of Science and Technology. June 2012- : Assistant Professor at Physics Department, Faculty of Sciences, Benha University. 2008 – 2012 : Doctoral student and Teaching assistant at University of Lethbridge, Alberta, CANADA. 1 May-July 2008 : Visiting scientist at International Center for Theoretical Physics, Trieste, Italy. 2005-2008 : M. Sc. student and Demonstrator at Benha University, Benha, EGYPT. 2006-2007 : Diploma student at High Energy Physics Dept at ICTP, Trieste, ITALY.
    [Show full text]
  • Ahmed Farag Mohamed Ali CV Faragali11.Pdf
    CURRICULUM VITAE :: DR . AHMED FARAG ALI :: Personal Details Name : Ahmed Farag Ali Date of birth : August 1st , 1982 Marital Status : Married Nationality : Egyptian Present Address: Dr. Ahmed Farag Ali, Assistant Professor, Department of Physics, Center for Theoretical Physics Faculty of Sciences, Benha University, and Zewail City of Science and Technology Benha 13518, Qaliubiya, EGYPT. Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt Official E-mails: [email protected] ; [email protected] ; [email protected] [email protected] (Alternate: [email protected] ) Tel: +(20)-12279648363. Fax: +(20)-133225494 Webpage @Benha U Web: http://www.bu.edu.eg/staff/ahmedali7 Webpage @Zewail City Web: http://www.zewailcity.edu.eg/research-institutes/ibs/ctp/staff/ahmed-farag/ :: ACADEMIC EDUCATION :: 1. Ph.D. (2012) Major: Theoretical High Energy Physics Thesis Title: Aspects of Quantum Gravity. University of Lethbridge, CANADA. 1 2. M. Sc. (2008) Major: Theoretical High Energy Physics Thesis Title: Phenomenological Aspects beyond the Standard Model Benha University, EGYPT. 3. ICTP Diploma (2007) Major: High energy Physics. Thesis titled: Fermions mixing and discrete symmetries. Abdus Salam International centre for theoretical physics (ICTP) Trieste, ITALY. 4. Postgraduate studies (2004) Major: Theoretical Physics Grade: 89% Ain Shams University, Cairo, EGYPT. 5. B.Sc. (2003) Major: Physics Grade: B.Sc., Excellent with First Class Honor Benha University, EGYPT :: ACADEMIC POSITIONS :: Jan 2013- : Assistant Professor at Center for Theoretical Physics, Zewail City of Science and Technology, EGYPT. June 2012- : Lecturer (Assistant Professor) at Physics Department, Faculty of Sciences, Benha University, Benha, EGYPT. Sept 2008 – Jan 2012 : Doctoral student and Teaching assistant at University of Lethbridge, Alberta, CANADA.
    [Show full text]
  • Aspects of Quantum Gravity
    ASPECTS OF QUANTUM GRAVITY AHMED FARAG ALI Master of Science, Benha University, 2008 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Department of Physics and Astronomy University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Ahmed Farag Ali, 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-88392-1 Our file Notre reference ISBN: 978-0-494-88392-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Arxiv:2105.05208V2 [Astro-Ph.CO] 18 May 2021 II.2.3
    Challenges for ΛCDM : An update L. Perivolaropoulos1, ∗ and F. Skara1, y 1Department of Physics, University of Ioannina, 45110 Ioannina, Greece (Dated: May 20, 2021) A number of challenges of the standard ΛCDM model has been emerging during the past few years as the accuracy of cosmological observations improves. In this review we discuss in a unified manner many existing signals in cosmological and astrophysical data that appear to be in some tension (2σ or larger) with the standard ΛCDM model as defined by the Planck18 parameter values. In addition to the major well studied 5σ challenge of ΛCDM (the Hubble H0 crisis) and other well known tensions (the growth tension and the lensing amplitude AL anomaly), we discuss a wide range of other less discussed less-standard signals which appear at a lower statistical significance level than the H0 tension (also known as 'curiosities' in the data) which may also constitute hints towards new physics. For example such signals include cosmic dipoles (the fine structure constant α, velocity and quasar dipoles), CMB asymmetries, BAO Lyα tension, age of the Universe issues, the Lithium problem, small scale curiosities like the core-cusp and missing satellite problems, quasars Hubble diagram, oscillating short range gravity signals etc. The goal of this pedagogical review is to collectively present the current status of these signals and their level of significance, with emphasis to the Hubble crisis and refer to recent resources where more details can be found for each signal. We also briefly discuss possible theoretical approaches that can potentially explain the non-standard nature of some of these signals.
    [Show full text]