Curriculum Vitae

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vitae CURRICULUM VITAE :: PERSONAL DETAILS :: Name : Ahmed Farag Ali Date of birth : August 1st, 1982 Marital Status : Married Present Address: Department of Physics, Faculty of Science, Benha Center for Fundamental Physics, University, Zewail City of Science and Technology, Benha 13518, Qaliubiya, Egypt. Sheikh Zayed, 12588 Giza, Egypt. Official Email: [email protected] Official Email: [email protected] or My page @ Benha University Web. My page @Zewail City Web. Telephone : (+20) 127-964-8363 & (+20) 111-099-0926 Fax : (+20) 133-225-494 :: ACADEMIC EDUCATION :: 1. Ph.D. (2012) Major: Theoretical and Computational Physics, Thesis Title: Aspects of Quantum Gravity. University of Lethbridge, CANADA. 2. M. Sc. (2008) Major: Theoretical Physics Thesis Title: Phenomenological Aspects beyond the Standard Model Benha University, EGYPT. 3. ICTP Diploma (2007) Major: High energy Physics. Thesis titled: Fermions mixing and discrete symmetries. Abdus Salam International centre for theoretical physics (ICTP) Trieste, ITALY. 4. Postgraduate studies (2004) Major: Theoretical Physics Grade: 89% Ain Shams University, Cairo, EGYPT. 5. B.Sc.(2003) Major: Physics Grade: B.Sc., Excellent with First Class Honor. Benha University, EGYPT :: ACADEMIC POSITIONS :: Jan 2013- : Assistant Professor at Center for Fundamental Physics, Zewail City of Science and Technology. June 2012- : Assistant Professor at Physics Department, Faculty of Sciences, Benha University. 2008 – 2012 : Doctoral student and Teaching assistant at University of Lethbridge, Alberta, CANADA. 1 May-July 2008 : Visiting scientist at International Center for Theoretical Physics, Trieste, Italy. 2005-2008 : M. Sc. student and Demonstrator at Benha University, Benha, EGYPT. 2006-2007 : Diploma student at High Energy Physics Dept at ICTP, Trieste, ITALY. Jan -June2006 : Visiting student to do course work in HEP at IMSC, Chennai, INDIA. 2003-2005 : Demonstrator at Physics Department, Faculty of Sciences, Benha University. :: RESEARCH INTERESTS :: My research area is Theoretical/Mathematical Physics and in particular Gravitational Physics. More specifically, I am interested in open problems in Black Holes, Cosmology, Quantum Gravity Phenomenology and String Phenomenology. The primary goal of my current research is to try to extract potential experimental or observational signatures from various approaches to Quantum Gravity. After taking into account experimental errors and other small effects, that quantum gravity effects may be measured in some of the low energy systems, cosmological observations. After all, any scientific theory should be able to make testable predictions. Some of my papers have been cited in NATURE JOURNAL: (Nature Phys. 8 (2012) 393-397 ) and in (Nature Phys. 9 (2013) 71-73) confirming that our theoretical predictions can be measured using quantum optics techniques and gravitational waves techniques which is considered as a milestone in the research of quantum gravity phenomenology. Besides, I am interested in approaches which may resolve singularities in general theory of relativity. My collaborators and I have constructed a model which introduces a resolution for big bang singularity in the framework of gravity's rainbow. This research has been highlighted in Nature.com(doi:10.1038/nmiddleeast.2013.211) and in Scientific American Magazine. I am interested too in black hole physics and information loss problem. I have written a paper in which I found that the black hole would have remnant if it is considered in the framework of gravity's rainbow. This work was highlighted in Nature. In addition to that, my research is focusing on investigating the implications of minimal length and generalized uncertainty principle on inflationary and reheating phase of the universe. Besides, I am quite interested in Wheeler DeWitt Equation and its implications in cosmology and early universe. I have also studied the compatibility between holographic principle and minimal length theories. Also, I am quite interested in investigating the production of black holes at LHC. Besides, I am interested in studying gravity as an emergent phenomenon from the first law of thermodynamics and emergence of cosmic space as an emergent phenomenon. :: PUBLICATIONS :: I have (22) published papers (7 more have been sent for publication). In addition to that, the total number of citations for my publications is 514 times. More details can be found on my pages at Inspirehep (this link) and Google Scholar (this link) 1. “Discreteness of Space from generalized uncertainty principle’’.Ahmed Farag Ali, Saurya Das, Elias C Vagenas, Phys.Lett.B678:497-499, 2009.E-Print: arXiv: 0906.5396v1 [hep-th]. 2. “Discreteness of Space from GUP II: Relativistic Wave Equations” Ahmed Farag Ali, Saurya Das, Elias C Vagenas, Phys.Lett.B690:407-412, 2010. E-Print: arXiv: 1005.3368 [hep-th]. 3. ‘’Minimal Length in Quantum Gravity, Equivalence Principle and Holographic Entropy Bound’’ Ahmed Farag Ali, Class.Quant.Grav.28:065013, 2011.E-Print: arXiv: 1101.4181 [hep-th]. 4. “A proposal for testing Quantum gravity in the Laboratory’’. Ahmed Farag Ali, Saurya Das, Elias C. Vagenas, Phys.Rev.D84:044013, 2011. E-Print: arXiv: 1107.3164 [hep-th]. 5. “Effect of the Generalized Uncertainty Principle on Post-Inflation Preheating’’.Wissam Chemissany, Saurya Das, Ahmed Farag Ali, Elias C. Vagenas, JCAP 1112 (2011) 017. E Print: arXiv:1111.7288 [hep-th]. 6. "No Existence of Black Holes at LHC Due to Minimal Length in Quantum Gravity." Ahmed Farag Ali , JHEP 1209 (2012) 067. E-Print: arXiv: 1208.6584 [hep-th]. 2 7. "Minimal length, maximal energy and black-hole remnants". Ahmed Farag Ali, Hassan Nafie and Mostafa Shalaby, EPL (Europhysics Letters) 100 20004 (2012). 8. "Modified Newton's Law of Gravitation Due to Minimal Length in Quantum Gravity", Ahmed Farag Ali, A. Tawfik, AHEP 2013 (2013) 126528. ArXiv: 1301.3508 [gr-qc]. 9. "Effects of Generalized Uncertainty Principle on the Compact stars". Ahmed Farag Ali, A. Tawfik. Int. J. Mod. Phys. D22 (2013) 1350020.E-Print: arXiv: 1301.6133 [gr-qc]. 10. "Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe". A. Tawfik, H. Magdy, Ahmed Farag Ali. E-Print: arXiv: 1208.5655 [gr-qc]. Gen.Rel.Grav. 45 (2013) 1227-1246. 11. "Towards Thermodynamics with Generalized Uncertainty Principle", Ahmed Farag Ali and Mohammed Moussa, AHEP 2014 (2014) 629148. 12. "Planck Scale corrections to Friedman equation", Adel Awad and Ahmed Farag Ali. Central Eur.J.Phys. 12 (2014) 245- 255 .E-Print:arXiv: 1403.5319. 13. " A study on quark-gluon Plasma equation of state using generalized uncertainty principle" N. M. El Naggar, L.I. AbouSalem, I. Elmashad, Ahmed Farag Ali. Journal of Modern Physics 4 (A), 13-20 14. Quantum Gravity effect on the Quark-Gluon Plasma, I. Elmashad, A. F. Ali, L.I. Salem, J-Un Nabi , A. Tawfik, SOP Trans.Theor.Phys. 1 (2014) 1-6 , e-Print: arXiv:1208.4028 [hep-ph]. 15. “Nonsingular Rainbow Universes” Adel Awad, Ahmed Farag Ali, Barun Majumder, JCAP 1310 (2013) 052. ePrint: arXiv:1308.4343 [gr-qc]. Highlighted in Nature.com and in Scientific American Magazine. 16. “Emergence of Cosmic Space and minimal length in Quantum Gravity” Ahmed Farag Ali, arXiv: 1310.1790 [hep-th]. Physics Letters B 732 (2014) 335. 17. Black Hole Remnant from Gravity's Rainbow” Ahmed Farag Ali, arXiv: 1402.5320 [hep-th]. Phys.Rev. D89 (2014) 104040 .Highlighted in Nature.com 18. "Minimal Length, Friedmann Equations and Maximum Density" Adel Awad, Ahmed Farag Ali. E-Print: arXiv: 1404.7825 [gr-qc].JHEP 1406 (2014) 093. 19. “Towards Cosmology with minimal length and maximal energy” Ahmed Farag Ali and Barun Majumder. E-Print: arXiv: 1402.5104 [gr-qc].Class.Quant.Grav. 31 (2014) 215007. 20. Remnants of Black Rings in Gravity's Rainbow, Ahmed Farag Ali, Mir Faizal, Mohamed Khalil, e-Print: arXiv: 1409.5745 [hep-th]. JHEP 1412 (2014) 159. 21. Absence of an Effective Horizon for Black Holes in Gravity's Rainbow, Ahmed Farag Ali, Mir Faizal, Barun Majumder. E- Print: arXiv: 1406.1980 [gr-qc]. Accepted at EuroPhysics Letters. 22. "Cosmology from quantum potential", Ahmed Farag Ali, Saurya Das, E-Print: arXiv: 1404.3093 [gr-qc]. Accepted at Physics Letters B. Contributions to Conference Proceedings 1. The Generalized Uncertainty Principle and Quantum Gravity Phenomenology. Ahmed Farag Ali, Saurya Das, Elias C. 3 Vagenas, Jan 2010. E-Print: arXiv: 1001.2642 [hep-th], proceedings of 12th Marcel Grossmann conference (Paris, July, 2009). 2. Quantum Gravity Phenomenology. Ahmed Farag Ali, Feb 2013, QCD Primordial Conference, Cairo, EGYPT. Published Thesis: 1. “Fermions Mixing and Discrete Symmetries”, ICTP Diploma Thesis (2007), Ahmed Farag Ali, The Abdus-Salam International Center for Theoretical Physics (ICTP), Trieste, ITALY. 2. “Phenomenological Aspects Beyond the Standard Model”, M.Sc (2008), Ahmed Farag Ali, Benha University. 3. "Aspects of Quantum Gravity", PhD (2012), Ahmed Farag Ali, University of Lethbridge, Alberta, CANADA Submitted Papers for Publications 1. AdS/CFT correspondence beyond its supergravity approximation, Mir Faizal, Ahmed Farag Ali, Ali Nassar. E-Print: arXiv: 1405.4519[hep-th]. Submitted to Physical Review D 2. A Proposal for Testing Gravity's Rainbow, Ahmed Farag Ali, Mohammed M. Khalil, e- Print: arXiv:1408.5843 [gr-qc], submitted to JCAP. 3. Absence of Black Holes at LHC due to Gravity's Rainbow, Ahmed Farag Ali, Mir Faizal, Mohammed M. Khalil. Oct 15, 2014. 14 pp. e-Print: arXiv:1410.4765 [hep-th]. 4. Remnant for all Black Objects due to Gravity's Rainbow, Ahmed Farag Ali, Mir Faizal, Mohammed M. Khalil. Oct 21, 2014. 21 pp. e-Print: arXiv:1410.5706 [hep-th]. 5. Discreteness of time in the evolution of the universe Mir Faizal, Ahmed Farag Ali, Saurya Das. Nov 20, 2014. 5 pp. e- Print: arXiv:1411.5675 [gr-qc] 6. The Path Integral Quantization corresponding to the Deformed Heisenberg Algebra, Souvik Pramanik, Mir Faizal, Mohamed Moussa, Ahmed Farag Ali. Nov 12, 2014. 15 pp. e-Print: arXiv:1411.4979 [hep-th]. :: INTERNATIONAL MEDIA HIGHLIGHTS MY RESEARCH PAPERS :: 1. My paper "Nonsingular Rainbow Universes, JCAP 1310 (2013) 052" has been highlighted in international media such as Nature.com (this link) and Scientific American Magazine (this link).
Recommended publications
  • Arxiv:1903.02940V2
    Proton decay and the quantum structure of spacetime 1, 1, 2,3, 4,5, Abeer Al-Modlej, ∗ Salwa Alsaleh, † Hassan Alshal, ‡ and Ahmed Farag Ali § 1 Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia 2Department of Physics, University of Miami, Coral Gables, FL 33124, USA 3Department of Physics, Faculty of Science, Cairo University, Giza 12613, Egypt 4Department of Physics, Faculty of Science, Benha University, Benha, 13518, Egypt 5Quantum Gravity Research, Los Angeles, CA 90290, USA (Dated: October 29, 2019) Abstract Virtual black holes in noncommutative spacetime are investigated using coordinate coherent state formalism such that the event horizon of black hole is manipulated by smearing it with a Gaussian of width √θ, where θ is the noncommutativity parameter. Proton lifetime, the main associated phenomenology of the noncommutative virtual black holes, has been studied: first in 4 dimensional spacetime and then generalized to D dimensions. The lifetime depends on θ and the number of spacetime dimensions such that it emphasizes on the measurement of proton lifetime as a potential probe for the micro-structure of spacetime. Introduction promising to divulge many secrets about how nature works on quantum gravity level [22]. A black hole with 9 mass of Sun would have TBH 60 10− K at the event Since the introduction of Hawking radiation [1], horizon, while a black hole with∼ mass× of Earth’s moon geometrical many semiclassical, non-classical [2–9] and would have the surface temperature 2.7 K. So the ra- [10–12] endeavours—seeking “the” unified theory—have diation of astrophysical massive black∼ hole is too minute been striving to “shoehorn” general relativity into the to be detected in the Cosmic Microwave Background framework of quantum field theories (QFT).
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Professor Abdel Nasser TAWFIK (Habilitation/Academician) Dr.Sc., Dr.rer.Nat (Ph.D.) Status: January 2015 Personal Information Name: Abdel Nasser TAWFIK Nationality: Egyptian/German Date of Birth: 22nd June 1967 Place of Birth: Sohag, Egypt Marital Status: Married Home Address (Egypt): El-Fardous City (6th-of-October City), Bld 42/112, Giza-Egypt Home Address (Germany): 13 Frohnauer Str., D-33619 Bielefeld-Germany Work Address: MTI University, Faculty of Engineering, Al-Hadaba Al- Wusta, Al-Mukattam, Cairo-Egypt Cell Phone: +201002390604 and +201120059074 E-Mail: [email protected], [email protected], and [email protected] URL: http://atawfik.net/ Wikipedia: http://en.wikipedia.org/wiki/Abdel_Nasser_Tawfik Academic Positions Current: 1. Founding Director of the World Laboratory for Cosmology and Particle Physics (WLCAPP) http://wlcapp.net/, http://www.worldlab.ch/ 2. Founding Director of the Egyptian Center for Theoretical Physics (ECTP) http://www.mti.edu.eg/mti/page.aspx?pageID=95 3. Professor at the Modern University for Technology and Information (MTI University), Faculty of Engineering, http://www.mti.edu.eg/ 4. Team Leader of the Egyptian Groups of Scientists engaged to the ALICE Experiment at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland 5. Team Leader of the Egyptian Groups of Scientists engaged to the STAR Experiment at the Relativistic Heavy-Ion Collider (RHIC) BNL, USA 6. Team Leader of the Egyptian Groups of Scientists engaged to MPD Experiment at the NICA Facility at the Joint-Institute for Nuclear Research (JINR) Dubna, Russia 7. Team Leader of the Egyptian Groups of Scientists engaged to CBM Experiment at the FAIR Facility of Helmhortz Association (GSI) Darmstadt, Germany 8.
    [Show full text]
  • Planck-Scale Corrections to Friedmann Equation
    Cent. Eur. J. Phys. • 12(4) • 2014 • 245-255 DOI: 10.2478/s11534-014-0441-3 Central European Journal of Physics Planck-scale corrections to Friedmann equation Research Article Adel Awad∗1,2,3, Ahmed Farag Ali† 1,4 1 Centre for Fundamental Physics, Zewail City of Science and Technology Sheikh Zayed, 12588, Giza, Egypt 2 Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt 3 Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43, Egypt 4 Department of Physics, Faculty of Science, Benha University, Benha 13518, Egypt Received 16 November 2013; accepted 18 January 2014 Abstract: Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde’s proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde’s proposal and two known models of GUPs, we obtain modifications to Newton’s law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a cor- responding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ωρ equation of state. PACS (2008): 04.60.Bc;04.60.Cf;04.70.Dy Keywords: quantum gravity • entropic force • thermodynamics • black holes © Versita sp. z o.o. 1. Introduction mutation relations between position coordinates and mo- menta [1–8].
    [Show full text]
  • Curriculum Vitae SAURYA DAS
    Curriculum Vitae SAURYA DAS Personal details Date of birth: 30 June 1970 Nationalites: Canadian, Indian Languages: English, Bengali, Hindi (fluent), French (fair) Current position Professor of Physics, Department of Physics and Astronomy University of Lethbridge, Alberta, Canada Contact information Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada E-mail: [email protected] Telephone: +1-403-329-2689 http://directory.uleth.ca/users/saurya.das http://scholar.ulethbridge.ca/sauryadas http://www.researchgate.net/profile/Saurya Das Other/previous positions • Affiliate Member, Perimeter Institute of Theoretical Physics, Waterloo, Canada. • Theme Leader, Quantum Foundations and Quantum Gravity, Quantum Alberta (Universities of Alberta, Calgary and Lethbridge). • 2008 - 2013: Associate Professor of Physics (tenured), University of Lethbridge, Alberta, Canada. Became a Full Professor in 2013. • 2003 - 2008: Assistant Professor of Physics, University of Lethbridge, Alberta, CANADA. • 2002 - 2003: Postdoctoral Fellow at University of New Brunswick, Fredericton, Canada. • 2000 - 2002: Postdoctoral Fellow at The University of Winnipeg & Winnipeg Institute for Theoretical Physics, Winnipeg, CANADA. • 1998 - 2000: Postdoctoral Fellow at The Center for Gravitational Physics and Geometry, The Pennsylvania State University, U.S.A. • 1994 - 1998: Research Fellow at The Institute of Mathematical Sciences, Chennai, India. Education and awards • Ph.D. in Theoretical Physics from The Institute of Mathematical Sciences, Chennai, India (1999). • First class in M.Sc. (by research) in Theoretical Physics from Anna University, Chennai, India (1994). • First class in B.Sc. (Physics Honours) from Presidency College, University of Calcutta, Kolkata, India (1992) - ranked second in the University. • Awards: Best Ph.D Thesis Award. Honorable Mention in the Gravity Research Foundation Essay Competitions - 2001, 2007, 2014, 2015, 2016.
    [Show full text]
  • Curriculum Vitae SAURYA DAS
    Curriculum Vitae SAURYA DAS Personal details Date of birth: 30 June 1970 Citizenship: Canadian Languages: English, Bengali, Hindi (fluent), French (functional) Current position Professor of Physics, Department of Physics and Astronomy University of Lethbridge, Alberta, Canada Contact information Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada E-mail: [email protected] Telephone: +1-403-329-2689 http://directory.uleth.ca/users/saurya.das http://scholar.ulethbridge.ca/sauryadas http://www.researchgate.net/profile/Saurya Das Other/previous positions • Affiliate Member, Perimeter Institute of Theoretical Physics, Waterloo, Canada. • Theme Leader, Quantum Foundations and Quantum Gravity, Quantum Alberta (Universities of Alberta, Calgary and Lethbridge). • Full Professor of Physics University of Lethbridge, Alberta, Canada. • 2008 - 2013: Associate Professor of Physics (tenured), University of Lethbridge, Alberta, Canada. • 2003 - 2008: Assistant Professor of Physics, University of Lethbridge, Alberta, CANADA. • 2002 - 2003: Postdoctoral Fellow at University of New Brunswick, Fredericton, Canada. • 2000 - 2002: Postdoctoral Fellow at The University of Winnipeg & Winnipeg Institute for Theoretical Physics, Winnipeg, CANADA. • 1998 - 2000: Postdoctoral Fellow at The Center for Gravitational Physics and Geometry, The Pennsylvania State University, U.S.A. • 1994 - 1998: Research Fellow at The Institute of Mathematical Sciences, Chennai, India. Education and awards • Ph.D. in Theoretical Physics from The Institute of Mathematical Sciences, Chennai, India (1999). • First class in M.Sc. (by research) in Theoretical Physics from Anna University, Chennai, India (1994). • First class in B.Sc. (Physics Honours) from Presidency College, University of Calcutta, Kolkata, India (1992) - ranked second in the University. 1 • Awards: Best Ph.D Thesis Award.
    [Show full text]
  • Aspects of Quantum Gravity
    ASPECTS OF QUANTUM GRAVITY AHMED FARAG ALI Master of Science, Benha University, 2008 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Department of Physics and Astronomy University of Lethbridge LETHBRIDGE, ALBERTA, CANADA c Ahmed Farag Ali, 2012 Dedication To Ebtesam, Ibrahim, and my parents. iii Abstract We propose a Generalized Uncertainty Principle(GUP) consistent with String Theory, Black Hole Physics and Doubly Special Relativity. This modifies all quantum mechan- ical Hamiltonians and predicts quantum gravity corrections. We compute corrections to the Lamb shift, simple harmonic oscillator, Landau levels, and the tunneling cur- rent. When applied to an elementary particle, it suggests that the space must be quantized, and that all measurable lengths are quantized in units of a fundamental length. We investigated whether GUP can explain the violation of the equivalence principle at small length scales that was observed experimentally. We investigated the consequences of GUP on Liouville theorem. We examined GUP effect on post inflation preheating, and show that it predicts an increase or a decrease in parametric resonance and a change in particle production. The effect of GUP on the creation of black holes is investigated to justify the experimental results from the Large Hadron Collider. iv Acknowledgements First and foremost, I would like to express about my deep gratitude for my supervisor Dr. Saurya Das whose expertise and attention to both detail and the big picture, provided invaluable guidance for my research, all the while being so friendly and straightforward during our discussions.
    [Show full text]
  • Table of Contents (Print)
    PHYSICAL REVIEW D PERIODICALS For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 99, NUMBER 8 CONTENTS D15 APRIL 2019 The Table of Contents is a total listing of Parts A and B. Part A consists of articles 081501–084027, and Part B articles 084028–089901(E) PART A RAPID COMMUNICATIONS Marolf-Ori singularity inside fast spinning black holes (5 pages) ................................................................. 081501(R) Lior M. Burko and Gaurav Khanna ARTICLES LISA Pathfinder platform stability and drag-free performance (14 pages) ....................................................... 082001 M. Armano et al. (LISA Pathfinder Collaboration) Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning (8 pages) ..... 082002 S. Coughlin, S. Bahaadini, N. Rohani, M. Zevin, O. Patane, M. Harandi, C. Jackson, V. Noroozi, S. Allen, J. Areeda, M. Coughlin, P. Ruiz, C. P. L. Berry, K. Crowston, A. K. Katsaggelos, A. Lundgren, C. Østerlund, J. R. Smith, L. Trouille, and V. Kalogera Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground (15 pages) .......... 082003 E. Armengaud et al. (EDELWEISS Collaboration) Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home (12 pages) ............................................................................................................................... 082004 Sin´ead Walsh, Karl Wette, Maria Alessandra Papa, and Reinhard Prix Constraining the Johannsen deformation parameter ϵ3 with black hole x-ray data (10 pages) ............................... 083001 Ashutosh Tripathi, Askar B. Abdikamalov, Dimitry Ayzenberg, Cosimo Bambi, and Sourabh Nampalliwar Axionlike dark matter search using the storage ring EDM method (12 pages) ................................................
    [Show full text]
  • Albert Einstein
    Ahmed Farag Ali Department of Physics, Faculty of Science, Benha University Benha, Qaliubiya, 13518, Egypt Cell Phone: +20 112-668-1977 Fax: +20 133-213-511 E-mail: [email protected] ; [email protected]; [email protected] My page at INSPIREHEP: http://inspirehep.net/author/profile/Ahmed.Farag.Ali.1 My page at Google Scholar: http://scholar.google.com.eg/citations?user=fVCubX8AAAAJ Born: August 1, 1982. Current positions Assistant Professor, Department of Physics, Faculty of Science, Benha University, Egypt. Areas of specialization High Energy Physics; Astrophysics; Quantum Gravity Phenomenology; Cosmology and Black hole Physics. Appointments held 2012-currently • Assistant Professor, Physics Department, Faculty of Science, Benha University, Egypt. Feb - August 2015 • Visiting scientist , Department of Physics, Florida State University, USA. Jan 2013-2015 • Research Associate, Center for Fundamental Physics, Zewail City of Science and Technology, Egypt. 2008-2012 • Doctoral student and Teaching assistant at University of Lethbridge, Alberta, CANADA May-July 2008 • Visiting scientist at International Center for Theoretical Physics (ICTP), Trieste, Italy 2005-2008 • M. Sc. student and Demonstrator at Benha University, Benha, EGYPT. 2006-2007 • Diploma student at High Energy Physics Dept at ICTP, Trieste, ITALY. Jan-June 2006 • Visiting student at High Energy Department, Institute of Mathematical Sciences, Chennai, INDIA. 2003-2005 • Demonstrator at Physics Department, Faculty of Sciences, Benha University. 1 Education 2012 • PhD in Theoretical and Computational Physics, University of Lethbridge, Alberta, CANADA. 2008 • MSc in Theoretical Physics, Benha University. 2007 • Diploma in High Energy Physics, International Center for Theoretical Physics, Trieste, Italy. 2004 • Post-Graduate in theoretical Physics, Ain Shams University, Egypt.
    [Show full text]
  • Ahmed Farag Mohamed Ali CV Faragali11.Pdf
    CURRICULUM VITAE :: DR . AHMED FARAG ALI :: Personal Details Name : Ahmed Farag Ali Date of birth : August 1st , 1982 Marital Status : Married Nationality : Egyptian Present Address: Dr. Ahmed Farag Ali, Assistant Professor, Department of Physics, Center for Theoretical Physics Faculty of Sciences, Benha University, and Zewail City of Science and Technology Benha 13518, Qaliubiya, EGYPT. Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt Official E-mails: [email protected] ; [email protected] ; [email protected] [email protected] (Alternate: [email protected] ) Tel: +(20)-12279648363. Fax: +(20)-133225494 Webpage @Benha U Web: http://www.bu.edu.eg/staff/ahmedali7 Webpage @Zewail City Web: http://www.zewailcity.edu.eg/research-institutes/ibs/ctp/staff/ahmed-farag/ :: ACADEMIC EDUCATION :: 1. Ph.D. (2012) Major: Theoretical High Energy Physics Thesis Title: Aspects of Quantum Gravity. University of Lethbridge, CANADA. 1 2. M. Sc. (2008) Major: Theoretical High Energy Physics Thesis Title: Phenomenological Aspects beyond the Standard Model Benha University, EGYPT. 3. ICTP Diploma (2007) Major: High energy Physics. Thesis titled: Fermions mixing and discrete symmetries. Abdus Salam International centre for theoretical physics (ICTP) Trieste, ITALY. 4. Postgraduate studies (2004) Major: Theoretical Physics Grade: 89% Ain Shams University, Cairo, EGYPT. 5. B.Sc. (2003) Major: Physics Grade: B.Sc., Excellent with First Class Honor Benha University, EGYPT :: ACADEMIC POSITIONS :: Jan 2013- : Assistant Professor at Center for Theoretical Physics, Zewail City of Science and Technology, EGYPT. June 2012- : Lecturer (Assistant Professor) at Physics Department, Faculty of Sciences, Benha University, Benha, EGYPT. Sept 2008 – Jan 2012 : Doctoral student and Teaching assistant at University of Lethbridge, Alberta, CANADA.
    [Show full text]
  • Aspects of Quantum Gravity
    ASPECTS OF QUANTUM GRAVITY AHMED FARAG ALI Master of Science, Benha University, 2008 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Department of Physics and Astronomy University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Ahmed Farag Ali, 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-88392-1 Our file Notre reference ISBN: 978-0-494-88392-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Download Special Issue
    Advances in High Energy Physics Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Guest Editors: Ahmed Farag Ali, Giulia Gubitosi, Mir Faizal, and Barun Majumder Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Advances in High Energy Physics Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity Guest Editors: Ahmed Farag Ali, Giulia Gubitosi, Mir Faizal, and Barun Majumder Copyright © 2017 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Luis A. Anchordoqui, USA Frank Filthaut, Netherlands Anastasios Petkou, Greece T. Asselmeyer-Maluga, Germany Chao-Qiang Geng, Taiwan Alexey A. Petrov, USA M. Battaglia, Switzerland Philippe Gras, France Thomas Rössler, Sweden Botio Betev, Switzerland Xiaochun He, USA J. José Sanz-Cillero, Spain Lorenzo Bianchini, Switzerland Filipe R. Joaquim, Portugal Edward Sarkisyan-Grinbaum, USA Burak Bilki, USA KyungK.Joo,RepublicofKorea Sally Seidel, USA Adrian Buzatu, UK Aurelio Juste, Spain George Siopsis, USA Rong-Gen Cai, China Michal Kreps, UK Luca Stanco, Italy Duncan L. Carlsmith, USA Ming Liu, USA Satyendra Thoudam, Netherlands Ashot Chilingarian, Armenia Enrico Lunghi, USA Smarajit Triambak, South Africa Anna Cimmino,
    [Show full text]
  • Arxiv:2105.05208V2 [Astro-Ph.CO] 18 May 2021 II.2.3
    Challenges for ΛCDM : An update L. Perivolaropoulos1, ∗ and F. Skara1, y 1Department of Physics, University of Ioannina, 45110 Ioannina, Greece (Dated: May 20, 2021) A number of challenges of the standard ΛCDM model has been emerging during the past few years as the accuracy of cosmological observations improves. In this review we discuss in a unified manner many existing signals in cosmological and astrophysical data that appear to be in some tension (2σ or larger) with the standard ΛCDM model as defined by the Planck18 parameter values. In addition to the major well studied 5σ challenge of ΛCDM (the Hubble H0 crisis) and other well known tensions (the growth tension and the lensing amplitude AL anomaly), we discuss a wide range of other less discussed less-standard signals which appear at a lower statistical significance level than the H0 tension (also known as 'curiosities' in the data) which may also constitute hints towards new physics. For example such signals include cosmic dipoles (the fine structure constant α, velocity and quasar dipoles), CMB asymmetries, BAO Lyα tension, age of the Universe issues, the Lithium problem, small scale curiosities like the core-cusp and missing satellite problems, quasars Hubble diagram, oscillating short range gravity signals etc. The goal of this pedagogical review is to collectively present the current status of these signals and their level of significance, with emphasis to the Hubble crisis and refer to recent resources where more details can be found for each signal. We also briefly discuss possible theoretical approaches that can potentially explain the non-standard nature of some of these signals.
    [Show full text]