Brassicaceae), Two Rare and Threatened Plants in the Piceance Basin, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Brassicaceae), Two Rare and Threatened Plants in the Piceance Basin, Colorado Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 Reproductive biology and impacts of energy development on Physaria congesta and Physaria obcordata (Brassicaceae), two rare and threatened plants in the Piceance Basin, Colorado Sarah Lynn Clark Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Clark, Sarah Lynn, "Reproductive biology and impacts of energy development on Physaria congesta and Physaria obcordata (Brassicaceae), two rare and threatened plants in the Piceance Basin, Colorado" (2013). All Graduate Theses and Dissertations. 1502. https://digitalcommons.usu.edu/etd/1502 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. REPRODUCTIVE BIOLOGY AND IMPACTS OF ENERGY DEVELOPMENT ON PHYSARIA CONGESTA AND PHYSARIA OBCORDATA (BRASSICACEAE), TWO RARE AND THREATENED PLANTS IN THE PICEANCE BASIN, COLORADO by Sarah L. Clark A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: ________________________________ _______________________________ Dr. James P. Pitts Dr. James H. Cane Major Professor Committee Member ________________________________ _______________________________ Dr. Eugene W. Schupp Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright © Sarah L. Clark All Rights Reserved iii ABSTRACT Reproductive Biology and Impacts of Energy Development on Physaria congesta (Brassicaceae) and Physaria obcordata (Brassicaceae), Two Rare and Threatened Plants in the Piceance Basin, Colorado by Sarah L. Clark, Master of Science Utah State University, 2013 Major Professor: James P. Pitts Department: Biology The Piceance Basin in western Colorado has undergone a drastic increase in oil and gas development over the last two decades. This increase has escalated concerns about the effects of development on the Basin’s flora and fauna, especially the rare plant community. Potential impacts from oil and gas development on rare plants may be found through decrease in plant habitat or by a decrease in plant reproductive success through changes to important pollinator communities. Here, we observed the pollinator community on two rare mustard plants, Physaria congesta and Physaria obcordata (Brassicaceae), both listed as threatened by the US Fish and Wildlife Service (Federal Register 55 FR 4152). We studied a series of questions concerning the pollinator community important to each Physaria species. The experiments were conducted in the iv spring of 2010 and 2011 during the blooming season of each rare Physaria. We investigated the effect of oil and gas development on the pollinator community by evaluating abundance, diversity, behavior, and foraging rates along a distance gradient from roadsides. This study also examines plant fecundity to determine the extent of pollinator efficiency across the same distance gradient from roadsides. Additionally, we examine nesting success of pollinators within plant populations, as well as around natural gas wellpads. Further, we conduct a breeding system and cross pollination study on P. congesta to determine the importance of pollination services for reproduction. To determine overall pollinator community changes around other development types we sampled pollinators around wellpads. Our data supports the null hypothesis, suggesting that at this time oil and gas development may have little to no impact on the pollinator community abundance. The analysis conducted may not have been able to detect changes in the community, due to a small sample size of pollinators collected. Bee pollinators may forage on a few or many floral resources. Here, we account for the ancillary foraging resources of P. congesta and P. obcordata pollinators by identifying pollen removed from bees collected on rare Physaria. This specific community of plants may require conservation in addition to the rare plants, to assist in maintaining the pollinator community. (103 pages) v PUBLIC ABSTRACT Reproductive Biology and Impacts of Energy Development on Physaria congesta (Brassicaceae) and Physaria obcordata (Brassicaceae), Two Rare and Threatened Plants in the Piceance Basin, Colorado by Sarah L. Clark, Master of Science Utah State University, 2013 Major Professor: James P. Pitts Department: Biology Oil and gas development has increased profoundly over the last 20 years in the United States. A large underground deposit of natural gas has been found in the Piceance Basin, which is located in the northwestern part of the state of Colorado. This deposit occurs in an area inhabited by two rare mustard species commonly named the Dudley Bluffs bladderpod and the Dudley Bluffs twinpod. These two plant species are also listed as threatened by the US Fish and Wildlife Service. Concerns about gas development effects on these rare plants have motivated research that quantifies these potential impacts. Through funding given by the Colorado Natural Areas Program, BLM, and US Fish and Wildlife Service, experiments were done by Utah State University looking at energy development effects on rare plant reproduction and success. vi Pollinators were an important part of this research; the majority of flowering plants require bees to reproduce, and these rare plant species were no exception. Through the research no detectable effects on plant reproduction or pollinator community around developed sites were identified. This lack of detection may be attributed to a small number of pollinators collected through this study. We may not have gathered a large enough sample to detect impacts that are occurring. This research also found that there are only a few bee species that pollinate these rare plants efficiently, so they must be conserved in order to maintain rare plant reproduction. vii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. James P. Pitts, for his insights and patience over the last five years. Without his mentoring this research would not have been possible. I would also like to thank my other two committee members, Dr. Jim Cane and Dr. Eugene Schupp. They always had an open door policy, and were very welcoming when I had problems or questions. Pollinator researcher Vince Tepedino from the Utah State Biology Department was integral in the shaping of this project. I appreciate every chat and coffee break we had to discuss this research. I give hearty thanks to my incredible lab mates, Nicole Boehme, Juanita Rodriguez, Cecilia Waichert, and Emily Sadler. This group of women inspired me daily. I could not have hand-picked a better cohort. The Colorado Natural Areas Program (CNAP), U.S. Fish and Wildlife Service, and the BLM provided the funding for this research. I would like to specifically thank Brian Kurzel from CNAP for his input and assistance with all monetary aspects. I would also like to show my gratitude to Gina Glenne from the US Fish and Wildlife Grand Junction field office. Gina was integral in helping with the field work, advising on rare plant research, and providing a much needed field vehicle. My thanks go to colleagues Zoe Miller and Jacob Davidson from the BLM White River Field office for their research input, updates on plant phenology, and willingness to take a dirty field crew into their home. Lisa Foy from Hayden-Wing Consultants happily helped jump start the field work viii for this research, and always had great advice. Alison Graff from Bio-Logic helped a great deal finding plant populations, and was always prepared with a map. I would also like to recognize my partner, Richie Gardner, for his field help and advice. His patience and support shaped this project. Thanks to my mom and dad for advocating my graduate career and for their encouraging words. Lastly I would like to thank Ruby the dog, who was my companion and protector during the most challenging field days. Sarah L. Clark ix CONTENTS Page ABSTRACT ............................................................................................................................ iii PUBLIC ABSTRACT ................................................................................................................ v ACKNOWLEDGMENTS ........................................................................................................ vii LIST OF TABLES .................................................................................................................... xi LIST OF FIGURES ................................................................................................................ xiii CHAPTER 1. INTRODUCTION .............................................................................................. 1 REFERENCES .................................................................................................... 7 2. SITE DESCRIPTION ........................................................................................... 9 REFERENCES .................................................................................................. 10 3. IMPORTANCE OF POLLINATORS FOR PHYSARIA CONGESTA (BRASSICACEAE), A RARE PLANT IN THE PICEANCE BASIN, COLORADO ................................... 11 INTRODUCTION ...........................................................................................
Recommended publications
  • Colorado Wildlife Action Plan: Proposed Rare Plant Addendum
    Colorado Wildlife Action Plan: Proposed Rare Plant Addendum By Colorado Natural Heritage Program For The Colorado Rare Plant Conservation Initiative June 2011 Colorado Wildlife Action Plan: Proposed Rare Plant Addendum Colorado Rare Plant Conservation Initiative Members David Anderson, Colorado Natural Heritage Program (CNHP) Rob Billerbeck, Colorado Natural Areas Program (CNAP) Leo P. Bruederle, University of Colorado Denver (UCD) Lynn Cleveland, Colorado Federation of Garden Clubs (CFGC) Carol Dawson, Bureau of Land Management (BLM) Michelle DePrenger-Levin, Denver Botanic Gardens (DBG) Brian Elliott, Environmental Consulting Mo Ewing, Colorado Open Lands (COL) Tom Grant, Colorado State University (CSU) Jill Handwerk, Colorado Natural Heritage Program (CNHP) Tim Hogan, University of Colorado Herbarium (COLO) Steve Kettler, U.S. Fish and Wildlife Service (USFWS) Andrew Kratz, U.S. Forest Service (USFS) Sarada Krishnan, Colorado Native Plant Society (CoNPS), Denver Botanic Gardens Brian Kurzel, Colorado Natural Areas Program Eric Lane, Colorado Department of Agriculture (CDA) Paige Lewis, The Nature Conservancy (TNC) Ellen Mayo, U.S. Fish and Wildlife Service Mitchell McGlaughlin, University of Northern Colorado (UNC) Jennifer Neale, Denver Botanic Gardens Betsy Neely, The Nature Conservancy Ann Oliver, The Nature Conservancy Steve Olson, U.S. Forest Service Susan Spackman Panjabi, Colorado Natural Heritage Program Jeff Peterson, Colorado Department of Transportation (CDOT) Josh Pollock, Center for Native Ecosystems (CNE) Nicola Ripley,
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Disturbance and Recovery in a Changing World; 2006 June 6–8; Cedar City, UT
    Reproductive Biology of Larrea tridentata: A Preliminary Comparison Between Core Shrubland and Isolated Grassland Plants at the Sevilleta National Wildlife Refuge, New Mexico Rosemary L. Pendleton, Burton K. Pendleton, Karen R. Wetherill, and Terry Griswold Abstract—Expansion of diploid creosote shrubs (Larrea tridentata Introduction_______________________ (Sessé & Moc. ex DC.) Coville)) into grassland sites occurs exclusively through seed production. We compared the reproductive biology Chihuahuan Desert shrubland is expanding into semiarid of Larrea shrubs located in a Chihuahuan desert shrubland with grasslands of the Southwest. Creosote (Larrea tridentata) isolated shrubs well-dispersed into the semiarid grasslands at the seedling establishment in grasslands is a key factor in this Sevilleta National Wildlife Refuge. Specifically, we examined (1) re- conversion. Diploid Larrea plants of the Chihuahuan Des- productive success on open-pollinated branches, (2) the potential ert are not clonal as has been reported for some hexaploid of individual shrubs to self-pollinate, and (3) bee pollinator guild Mojave populations (Vasek 1980). Consequently, Larrea composition at shrubland and grassland sites. Sampling of the bee guild suggests that there are adequate numbers of pollinators at establishment in semiarid grasslands of New Mexico must both locations; however, the community composition differs between occur exclusively through seed. At McKenzie Flats in the shrub and grassland sites. More Larrea specialist bee species were Sevilleta National Wildlife Refuge, there exists a gradient found at the shrubland site as compared with the isolated shrubs. in Larrea density stretching from dense Larrea shrubland Large numbers of generalist bees were found on isolated grassland (4,000 to 6,000 plants per hectare) to semiarid desert grass- bushes, but their efficiency in pollinating Larrea is currently un- land with only a few scattered shrubs.
    [Show full text]
  • Floral Guilds of Bees in Sagebrush Steppe: Comparing Bee Usage Of
    ABSTRACT: Healthy plant communities of the American sagebrush steppe consist of mostly wind-polli- • nated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, nonsocial bees are their common floral visitors, but their floral associations and abundances are poorly known. Extrapolating from the few available pollination studies, bees are the primary pollinators needed for seed production. Bees, therefore, will underpin the success of ambitious seeding efforts to restore native forbs to impoverished sagebrush steppe communities following vast Floral Guilds of wildfires. This study quantitatively characterized the floral guilds of 17 prevalent wildflower species of the Great Basin that are, or could be, available for restoration seed mixes. More than 3800 bees repre- senting >170 species were sampled from >35,000 plants. Species of Osmia, Andrena, Bombus, Eucera, Bees in Sagebrush Halictus, and Lasioglossum bees prevailed. The most thoroughly collected floral guilds, at Balsamorhiza sagittata and Astragalus filipes, comprised 76 and 85 native bee species, respectively. Pollen-specialists Steppe: Comparing dominated guilds at Lomatium dissectum, Penstemon speciosus, and several congenerics. In contrast, the two native wildflowers used most often in sagebrush steppe seeding mixes—Achillea millefolium and Linum lewisii—attracted the fewest bees, most of them unimportant in the other floral guilds. Suc- Bee Usage of cessfully seeding more of the other wildflowers studied here would greatly improve degraded sagebrush Wildflowers steppe for its diverse native bee communities. Index terms: Apoidea, Asteraceae, Great Basin, oligolecty, restoration Available for Postfire INTRODUCTION twice a decade (Whisenant 1990). Massive Restoration wildfires are burning record acreages of the The American sagebrush steppe grows American West; two fires in 2007 together across the basins and foothills over much burned >500,000 ha of shrub-steppe and 1,3 James H.
    [Show full text]
  • Common Pollinators of British Columbia – a Visual Identification
    COMMON POLLINATORS OF BRITISH COLUMBIA A Visual Identification Guide Created by Border Free Bees and the Environmental Youth Alliance 1 · Navigation Honey Bee Bumble Bee Other Bees Hover Fly Butterfly Wasp Navigation 2 Introduction 3 Insight Citizen Science 3 Basic Insect Anatomy Pollinator Categories 4 Honey Bee 8 Bumble Bee 12 Other Bees 20 Hover Fly 24 Butterfly 28 Wasp 31 Complimentary Resources 32 Acknowledgments 33 Field Notes Introduction This visual guide was created to help as a field guide to use in comparing educate the public on how to identify closely similar species. Rather, treat common pollinators in British Columbia. this guide as a visual aid to direct your Bees are by far the most representative skills towards different families of group, and critically important bees and general characteristics you to providing pollination service to may be able to see while outdoors. terrestrial ecosystems and agricultural The guide breaks pollinators down landscapes. They effectively transfer into 6 categories: Honey Bees, Bumble pollen with feather-like hairs on their Bees, Other Bees, Wasps, Hover Flies and bodies capturing pollen grains. It is Butterflies. With a basic understanding estimated that there are around 500 of the characteristics that differentiate species of bees in British Columbia. these types of pollinators you can This guide serves as an introduction to participate in pollinator citizen science the common groups of pollinators that programs with ease. you may observe, and does not stand Basic Insect Anatomy Antenna Proboscis (tongue) Compound Eye Insight is a mobile app created by Border Free Bees that Thorax makes it easy for citizens to record pollinator observations Forewing using their smart phones.
    [Show full text]
  • Supplemental Information For: Biotic and Abiotic Drivers of Plant
    Supplemental Information for: Biotic and abiotic drivers of plant-pollinator community assembly across wildfire gradients Joseph A. LaManna1,2*, Laura A. Burkle3, R. Travis Belote4, and Jonathan A. Myers5 1 Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, Wisconsin 53201 USA, [email protected] * Corresponding author 2 Departments of Botany & Zoology, Milwaukee Public Museum, Milwaukee, Wisconsin 53233 USA 3 Department of Ecology, Montana State University, Bozeman, Montana 59717 USA, [email protected] 4 The Wilderness Society, Bozeman, Montana 59717 USA, [email protected] 5 Department of Biology & Tyson Research Center, Washington University in St. Louis, St. Louis, Missouri 63130 USA, [email protected] 1 Supplemental Methods Study site Our study took place in three sites (named Helena, Paradise, and Whitefish) within the Northern Rocky Mountains, which encompasses the Crown of the Continent and the Greater Yellowstone Ecosystem in western Montana, USA (Fig. 1; Burkle, Myers, & Belote, 2015). Historically, this region has experienced mixed-severity fire regimes (Baker, 2009; Fischer & Bradley, 1987), which favor understory and early successional plant species and a mosaic of forest successional stages (Hessburg & Agee, 2003; Perry et al., 2011). Wildfires have largely been suppressed over the past century, however, leading to denser stands and more intense and extensive wildfires in the past few decades (e.g. Miller, Safford, Crimmins, & Thode, 2009). The Helena site is characterized by low primary productivity, Paradise by intermediate productivity, and Whitefish by high productivity (Burkle et al., 2015). These three site include a variety of forested ecosystems, including ponderosa-pine dominated forests and woodlands in Helena, lodgepole- pine and Douglas-fir forests in Paradise, and western-larch, lodgepole-pine and mixed-conifer forests in Whitefish (Burkle et al., 2015).
    [Show full text]
  • Dudley Bluffs Twinpod Physaria Obcordata
    U.S. Fish & Wildlife Service Dudley Bluffs twinpod Physaria obcordata Dudley Bluffs twinpod close-up / Gina Glenne USFWS When Congress passed the What does the Dudley Bluffs Endangered Species Act (ESA) in twinpod look like? 1973, it recognized that many of our Dudley Bluffs twinpod is a nation’s native plants and animals herbaceous (non-woody) plant were in danger of becoming extinct. species in the mustard family The U.S. Fish and Wildlife Service (Brassicaceae). It is a compact plant (Service) administers the ESA to with many raised branches arising preserve these imperiled species and from a deep tap root. The plant their habitats for future generations. grows on average 4 to 7 inches tall and 7 inches wide. Stems are smooth On February 6th, 1990, the Dudley and narrow with oval to arrowhead Bluffs twinpod was listed as a shaped leaves that are very dense at threatened species (55 FR 4152 5157). the base. Dudley Bluffs twinpod’s clusters of bright-yellow flowers Dudley Bluffs twinpod / BLM Figure 1 Figure 2 bloom for a short time between mid- May and June. Dudley Bluffs twinpod is a close relative of the common sharpleaf twinpod (Physaria acutifolia) and it can be difficult to distinguish the two species at a glance. However, a closer look at the shape of the tiny hairs on the leaves with a hand lens will confirm its identity: Dudley Bluffs twinpod has satellite-dish shaped hairs (see Figure 1) while sharpleaf twinpod’s are star-shaped (see Figure 2). Where does the Dudley Bluffs twinpod occur? Dudley Bluffs twinpod is only known to occur in the general area of Piceance Creek in Rio Blanco County Mountain-Prairie Region Region 6 What can you do to help conserve the Dudley Bluffs twinpod? “Stay the trail” and “tread lightly.” Request information about how to avoid this sensitive species and its habitat at the local BLM or State office.
    [Show full text]
  • THICK-LEAF BLADDERPOD (PHYSARIA PACHYPHYLLA) Petition
    BEFORE THE SECRETARY OF INTERIOR PETITION TO LIST THE THICK-LEAF BLADDERPOD (PHYSARIA PACHYPHYLLA) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT AND TO CONCURRENTLY DESIGNATE CRITICAL HABITAT CENTER FOR BIOLOGICAL DIVERSITY MARCH 11, 2021 NOTICE OF PETITION Office of the Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Martha Williams, Principal Deputy Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Gary Frazer, Assistant Director for Endangered Species U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Noreen Walsh, Director Region 6 U.S. Fish and Wildlife Service 134 Union Blvd Lakewood, CO 80228 [email protected] Pursuant to Section 4(b) of the Endangered Species Act (ESA), 16 U.S.C. § 1533(b); section 553(e) of the Administrative Procedure Act (APA), 5 U.S.C. § 553€; and 50 C.F.R. § 424.14(a), the Center for Biological Diversity, Montana Native Plant Society, and the Pryors Coalition hereby petitions the Secretary of the Interior, through the U.S. Fish and Wildlife Service (USFWS), to protect the thick-leaf bladder pod (Physaria pachyphylla) as a threatened or endangered species under the ESA. This petition requests listing of the thick-leaf bladder pod based on the immediate threat of gypsum mine exploration and likely development in its limited range. Petitioner also requests that critical habitat be designated concurrently with the listing, pursuant to 16 U.S.C. § 1533(a)(3)(A) and 50 C.F.R.
    [Show full text]
  • An Inventory of Native Bees (Hymenoptera: Apiformes)
    An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey.
    [Show full text]
  • Hymenoptera, Vespidae, Eumeninae) from Russia, with Description of a New Species of Stenodynerus De Saussure, 1863
    JHR 79: 89–109 (2020) doi: 10.3897/jhr.79.57887 RESEARCH ARTICLE https://jhr.pensoft.net New records of eumenine wasps (Hymenoptera, Vespidae, Eumeninae) from Russia, with description of a new species of Stenodynerus de Saussure, 1863 Alexander V. Fateryga1, Maxim Yu. Proshchalykin2, Denis N. Kochetkov3, Batchuluun Buyanjargal4 1 T.I. Vyazemsky Karadag Scientific Station – Nature Reserve of RAS – Branch of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Kurortnoye 298188, Feodosiya, Russia 2 Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia 3 Khingan State Nature Reserve, Arkhara 676740, Russia 4 Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar 210351, Mongolia Corresponding author: Maxim Yu. Proshchalykin ([email protected]) Academic editor: Michael Ohl | Received 22 August 2020 | Accepted 7 October 2020 | Published 30 October 2020 http://zoobank.org/2C9F2068-B708-4AF4-92B4-1AA28B2070A3 Citation: Fateryga AV, Proshchalykin MYu, Kochetkov DN, Buyanjargal B (2020) New records of eumenine wasps (Hymenoptera, Vespidae, Eumeninae) from Russia, with description of a new species of Stenodynerus de Saussure, 1863. Journal of Hymenoptera Research 79: 89–109. https://doi.org/10.3897/jhr.79.57887 Abstract New additions to the knowledge of the subfamily Eumeninae in Russia are provided. Stenodynerus rossicus Fateryga & Kochetkov, sp. nov. is described from Amurskaya Province and Altai Republic. Three species of eumenine wasps are reported from Russia for the first time:Onychopterocheilus kiritshenkoi (Kostylev, 1940), Pterocheilus quaesitus (Morawitz, 1895), and Stenodynerus chitgarensis Giordani Soika, 1970. An- cistrocerus dusmetiolus (Strand, 1914) is excluded from the fauna of Russia; the previous records of this species were based on a misidentification of another similar species, i.
    [Show full text]
  • Bee-Mediated Pollen Transfer in Two Populations of Cypripedium Montanum Douglas Ex Lindley
    Journal of Pollination Ecology, 13(20), 2014, pp 188-202 BEE-MEDIATED POLLEN TRANSFER IN TWO POPULATIONS OF CYPRIPEDIUM MONTANUM DOUGLAS EX LINDLEY Peter Bernhardt*1, Retha Edens-Meier2, Eric Westhus3, Nan Vance4 1Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 2Department of Educational Studies, Saint Louis University, St. Louis, MO 63103, USA 3Center for Outcomes Research, Saint Louis University, St. Louis, MO 63103, USA 4P.O. Box 282, Kooskia, ID 83539, USA Abstract—The conversion rate of flowers into fruit in C. montanum at two sites over four seasons was 52-85%, unusually high for a food mimic orchid. Comparative measurements of the trap-like labellum of C. montanum showed it was intermediate in size compared to measurements of six other Cypripedium spp. found in North America and China. While visitors to flowers of C. montanum represented three insect orders, at two sites, over four seasons only small- to medium-sized, solitary bees (5-10 mm in length) carried the pollen massulae. Bee-visitation occurred at both sites and began within 24-48 hours following labellum expansion. Female bees in the genus Lasioglossum (Halictidae) were the most common carriers of massulae. However, species of visiting bees differed between sites and years. At both sites the majority of bees entered and escaped from the labellum in less than 180 seconds and there was no significant difference between the times bees spent in the flowers at both sites. At the site on the Eastside Cascades of Central Oregon, there was no correlation between the length and width of a bee and the time it spent escaping from the basal openings.
    [Show full text]
  • A New Species of Dialictus from Sombrero Island, Anguilla (Hymenoptera, Halictidae)
    A peer-reviewed open-access journal ZooKeys 86:A 61–68New Species(2011) of Dialictus from Sombrero Island, Anguilla (Hymenoptera, Halictidae) 61 doi: 10.3897/zookeys.86.909 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A New Species of Dialictus from Sombrero Island, Anguilla (Hymenoptera, Halictidae) Michael S. Engel Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66049–2811, USA urn:lsid:zoobank.org:author:3714A7FF-E19E-495A-AAF9-98D2F597B757 Corresponding author : Michael S. Engel ( [email protected] ) Academic editor: Michael Ohl | Received 15 January 2011 | Accepted 9 March 2011 | Published 19 March 2011 urn:lsid:zoobank.org:pub:48BE1134-8166-4E1D-A95A-CFD0167475FD Citation: Engel MS (2011) A New Species of Dialictus from Sombrero Island, Anguilla (Hymenoptera, Halictidae). ZooKeys 86 : 61 – 68 . doi: 10.3897/zookeys.86.909 Abstract A new species of Lasioglossum Curtis subgenus Dialictus Robertson (Halictinae, Halictini) is described and fi gured from a series of female and males collected on Sombrero Island, Anguilla; the northernmost island of the Lesser Antilles. Lasioglossum (Dialictus) sombrerense sp. n. is distinguished from its congeners and the name made available for a forthcoming work on the arthropod diversity of Sombrero Island. Keywords Apoidea, Anthophila, Halictidae, Halictinae, Halictini, taxonomy, Anguilla, West Indies Introduction Since the overview by Eickwort (1988), work has steadily increased on the West Indian halictine fauna (e.g., Snelling 2005; Genaro 2006, 2007, 2008; Genaro and Franz 2008; Smith-Pardo 2009) and it is greatly hoped that a new synthesis of this entire region is undertaken.
    [Show full text]