The Multiple Evolutionary Origins of the Eukaryotic N-Glycosylation Pathway Jonathan Lombard1,2

Total Page:16

File Type:pdf, Size:1020Kb

The Multiple Evolutionary Origins of the Eukaryotic N-Glycosylation Pathway Jonathan Lombard1,2 Lombard Biology Direct (2016) 11:36 DOI 10.1186/s13062-016-0137-2 RESEARCH Open Access The multiple evolutionary origins of the eukaryotic N-glycosylation pathway Jonathan Lombard1,2 Abstract Background: The N-glycosylation is an essential protein modification taking place in the membranes of the endoplasmic reticulum (ER) in eukaryotes and the plasma membranes in archaea. It shares mechanistic similarities based on the use of polyisoprenol lipid carriers with other glycosylation pathways involved in the synthesis of bacterial cell wall components (e.g. peptidoglycan and teichoic acids). Here, a phylogenomic analysis was carried out to examine the validity of rival hypotheses suggesting alternative archaeal or bacterial origins to the eukaryotic N-glycosylation pathway. Results: The comparison of several polyisoprenol-based glycosylation pathways from the three domains of life shows that most of the implicated proteins belong to a limited number of superfamilies. The N-glycosylation pathway enzymes are ancestral to the eukaryotes, but their origins are mixed: Alg7, Dpm and maybe also one gene of the glycosyltransferase 1 (GT1) superfamily and Stt3 have proteoarchaeal (TACK superphylum) origins; alg2/alg11 may have resulted from the duplication of the original GT1 gene; the lumen glycosyltransferases were probably co-opted and multiplied through several gene duplications during eukaryogenesis; Alg13/Alg14 are more similar to their bacterial homologues; and Alg1, Alg5 and a putative flippase have unknown origins. Conclusions: The origin of the eukaryotic N-glycosylation pathway is not unique and less straightforward than previously thought: some basic components likely have proteoarchaeal origins, but the pathway was extensively developed before the eukaryotic diversification through multiple gene duplications, protein co-options, neofunctionalizations and even possible horizontal gene transfers from bacteria. These results may have important implications for our understanding of the ER evolution and eukaryogenesis. Reviewers: This article was reviewed by Pr. Patrick Forterre and Dr. Sergei Mekhedov (nominated by Editorial Board member Michael Galperin). Keywords: N-glycosylation, Eukaryotes, Archaea, Bacteria, Eukaryogenesis, Prokaryotic cell walls, Polyisoprenol, Glycosyltransferase Background contributor to eukaryogenesis, for at least the mitochondria At the dawn of eukaryotes are known to have evolved from an alpha-proteobacterium All living organisms are traditionally classified into one that was engulfed prior to the last eukaryotic common of three domains of life, namely bacteria, archaea and ancestor (LECA) [1, 2]. The traditional three-domain tree eukaryotes. Eukaryotic cells have important cytological of life posits that eukaryotes and archaea are sister groups specificities, such as nuclei, organelles and other cellular [3–5] and, thus, it assumes that the mitochondrial ances- processes. As a result, the origin of eukaryotes from tor was incorporated in a pre-existing proto-eukaryotic former organisms is one of the most intriguing questions lineage [6, 7]. Other phylogenetic studies have suggested in biology. Endosymbiosis was certainly an important that the eukaryotic stem branched within the archaeal domain, close to the crenarchaea–“eocytes”–or to the Correspondence: [email protected] archaeal TACK superphylum [8–11]. Also, comparative 1 National Evolutionary Synthesis Center, 2024 W. Main Street Suite A200, genomics have shown that many eukaryotic operational Durham, NC 27705, USA 2Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, (metabolic) genes are closely related to bacterial Exeter EX4 4QD, UK © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Lombard Biology Direct (2016) 11:36 Page 2 of 31 homologues, while informational genes are more similar [42]. Archaeal glycans are also more diverse than their to archaeal ones [12]. These observations popularized the eukaryotic equivalents [40]. opinion according to which the eukaryotes are a chimeric N-glycosylation is less common in bacteria, where two lineage that resulted from the endosymbiosis of the N-glycosylation systems are known [43]. One of them bacterial ancestor of mitochondria within a bona fide independently tethers single monosaccharides to specific archaeon [13, 14] or a previous bacterium/archaeon con- amino acids using soluble cytoplasmic proteins. The sortium [15–17]. The recent accumulation of genomic other relies on a lipid-carrier-based mechanism similar data has now made possible to address these issues. The to the eukaryotic and archaeal pathways (Fig. 1b). debate remains open [18–20], but most authors now favor The latter is thought to be restricted to delta- and an archaeal origin of the eukaryotic stem [21–24]. epsilon-proteobacteria [43, 44]. The bacterial polypre- Following the success of comparative analyses to trace nol lipid carriers are unsaturated and have different back particular machineries to LECA [25–32], the origin names depending on their lengths [45]. For simplicity, and evolution of the eukaryotic N-glycosylation pathway they will all be referred to as bactoprenol phosphate will be studied here. (Bac-P). N-glycosylation in the three domains of life The evolution of polyisoprenol-based N-glycosylations More than half of all eukaryotic proteins are glycopro- Since polyisoprenol-based N-glycosylation pathways are teins, and 90 % of those are N-glycosylated [33]. Protein widespread in archaea and eukaryotes but uncommon in N-glycosylation modulates protein stability, solubility, bacteria, it has been speculated that this pathway origi- rigidity, orientation, interactivity, transport and signaling nated in archaea, was horizontally transferred to some [34]. It consists of the covalent attachment of an oligo- bacteria [46, 47] and inherited in eukaryotes from their saccharide to the nitrogen atom of specific asparagine putative archaeal-related progenitor [34, 48]. The poten- residues. In eukaryotes, the synthesis of the oligosac- tial archaeal origin of eukaryotic N-glycosylation recently charide core is mediated by a lipid carrier called brought this pathway into the spotlight of eukary- dolichol-phosphate (Dol-P) which is located in the ogenesis debates [14]. For instance, the “inside-out membranes of the endoplasmic reticulum (ER, Fig. 1a). hypothesis” recently suggested that the eukaryotic In opisthokonts (e.g. in humans and yeast), several nucleus evolved from ancestral “eocytes” (crenarchaeota) cytoplasmic-facing membrane-embedded glycosyltrans- that protruded membrane-bound blebs beyond their cell ferases (GTs) sequentially add monosaccharides from walls to increase the available exchange surface with the soluble nucleotide carriers to Dol-P molecules (Fig. 1b). bacterial ancestors of mitochondria. According to this The Dol-P-oligosaccharide is then “flipped” across the hypothesis, the location of the N-glycosylation pathway membrane and other membrane-embedded GTs resume in the eukaryotic ER membranes is a vestige of the the oligosaccharide decoration in the lumen side. The ancestral archaeal S-layer protein N-glycosylation [14]. monosaccharides used in the ER lumen are also attached The idea that eukaryotic N-glycosylation originated to Dol-P carriers. The final oligosaccharide is transferred from archaea is plausible, but alternative hypotheses en bloc to the acceptor protein located in the ER lumen have also been suggested. For instance, the eukaryotic by a N-oligosaccharyltransferase (N-OST). Soluble GTs N-glycosylation has been thought to be related to some located in the ER and Golgi lumen may subsequently kind of bacterial cell wall synthesis pathway [49–51]. modify the protein N-glycans [35], but these later modi- Indeed, bacterial O-glycosylation, tyrosine O-glycosylation, fications will not be studied in the present analysis. peptidoglycan synthesis, O-antigen LPS synthesis, teichoic In archaea, flagellins and cell wall S-layer proteins are acid synthesis, exopolysaccharide synthesis and, in a N-glycosylated using similar pathways located in their smaller scale, O- and C-mannosylation, use polyisoprenol cell membranes [36, 37]. Archaeal N-glycosylation lipid lipid carriers and a similar orientation across the carriers are traditionally called Dol-P, even though they membrane to protein N-glycosylation. Other observations, are more saturated than the eukaryotic ones (Fig. 1a, without being conclusive, call into question a simple [38–41]). Archaeal N-glycosylation pathways have a transposition of the archaeal N-glycosylation into eukary- topology similar to their eukaryotic counterparts, i.e. the otes: i) archaeal and eukaryotic Dol-P are different orientation of their reactions across the membrane is the molecules (Fig. 1a) [38–41] and they are probably same: archaeal N-glycans are synthesized in the cytoplas- synthesized using different biosynthesis pathways (data to mic face, then flipped to the outer side of cell mem- be published
Recommended publications
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • Evidence for Glycolytic Reactions in the Mitochondrion?
    Broad Distribution of TPI-GAPDH Fusion Proteins among Eukaryotes: Evidence for Glycolytic Reactions in the Mitochondrion? Takuro Nakayama1, Ken-ichiro Ishida2, John M. Archibald1* 1 Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada, 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan Abstract Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI- GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part
    [Show full text]
  • De Novo Mutations in Epileptic Encephalopathies
    LETTER doi:10.1038/nature12439 De novo mutations in epileptic encephalopathies Epi4K Consortium* & Epilepsy Phenome/Genome Project* Epileptic encephalopathies are a devastating group of severe child- were found to be highly improbable (Table 1 and Fig. 1). We performed hood epilepsy disorders for which the cause is often unknown1.Here the same calculations on all of the genes with multiple de novo mutations we report a screen for de novo mutations in patients with two clas- observed in 610 control trios and found no genes with a significant excess sical epileptic encephalopathies: infantile spasms (n 5 149) and of de novo mutations (Supplementary Table 4). Although mutations in Lennox–Gastaut syndrome (n 5 115). We sequenced the exomes of GABRB3 have previously been reported in association with another type 264 probands, and their parents, and confirmed 329 de novo muta- of epilepsy15, and in vivo mouse studies suggest that GABRB3 haplo- tions. A likelihood analysis showed a significant excess of de novo insufficiency is one of the causes of epilepsy in Angelman’s syndrome16, mutations in the 4,000 genes that are the most intolerant to func- our observations implicate it, for the first time, as a single-gene cause of tional genetic variation in the human population (P 5 2.9 3 1023). epileptic encephalopathies and provide the strongest evidence to date for Among these are GABRB3,withde novo mutations in four patients, its association with any epilepsy. Likewise, ALG13, an X-linked gene and ALG13,withthesamede novo mutation in two patients; both encoding a subunit of the uridine diphosphate-N-acetylglucosamine genes show clear statistical evidence of association with epileptic transferase, was previously shown to carry a novel de novo mutation in encephalopathy.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Chromerid Genomes Reveal the Evolutionary Path From
    RESEARCH ARTICLE elifesciences.org Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Yong H Woo1*, Hifzur Ansari1,ThomasDOtto2, Christen M Klinger3†, Martin Kolisko4†, Jan Michalek´ 5,6†, Alka Saxena1†‡, Dhanasekaran Shanmugam7†, Annageldi Tayyrov1†, Alaguraj Veluchamy8†§, Shahjahan Ali9¶,AxelBernal10,JavierdelCampo4, Jaromır´ Cihla´ rˇ5,6, Pavel Flegontov5,11, Sebastian G Gornik12,EvaHajduskovˇ a´ 5, AlesHorˇ ak´ 5,6,JanJanouskovecˇ 4, Nicholas J Katris12,FredDMast13,DiegoMiranda- Saavedra14,15, Tobias Mourier16, Raeece Naeem1,MridulNair1, Aswini K Panigrahi9, Neil D Rawlings17, Eriko Padron-Regalado1, Abhinay Ramaprasad1, Nadira Samad12, AlesTomˇ calaˇ 5,6, Jon Wilkes18,DanielENeafsey19, Christian Doerig20, Chris Bowler8, 4 10 3 21,22 *For correspondence: yong. Patrick J Keeling , David S Roos ,JoelBDacks, Thomas J Templeton , 12,23 5,6,24 5,6,25 1 [email protected] (YHW); arnab. Ross F Waller , Julius Lukesˇ , Miroslav Obornık´ ,ArnabPain* [email protected] (AP) 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering † These authors contributed Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; equally to this work 2Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Present address: ‡Vaccine and Cambridge, United Kingdom; 3Department of Cell Biology, University of Alberta, Infectious Disease Division, Fred Edmonton, Canada; 4Canadian Institute for Advanced Research, Department of Botany,
    [Show full text]
  • Testing the Effect of in Planta RNA Silencing on Plasmodiophorabrassicae Infection
    Testing the effect of in planta RNA silencing on Plasmodiophorabrassicae infection A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University S. R. Bulman 2006 ii Contents Abstract. ...................................................................................................., ................ v Acknowledgements .................................................................................................. vii List of Tables ........................................................................................................... viii List of Figures ........................................................................................................... ix CHAPTER 1. Literature Review ................................................................................ 1 Plasmodiophora brassicae ............................................................................................. 1 RNA silencing .................................................................................................................. 5 Plant defence by RNA silencing .................................................................................... 8 RNA silencing versus P. brassicae ............................................................................. 10 Molecular biology of P. brassicae ................................................................................ 10 Choice of cDNA cloning strategy in P. brassicae ......................................................
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Plasmodiophora Brassicae
    Bi et al. Phytopathology Research (2019) 1:12 https://doi.org/10.1186/s42483-019-0018-6 Phytopathology Research RESEARCH Open Access Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways Kai Bi1,2, Tao Chen2, Zhangchao He1,2, Zhixiao Gao1,2, Ying Zhao1,2, Huiquan Liu3, Yanping Fu2, Jiatao Xie1,2, Jiasen Cheng1,2 and Daohong Jiang1,2* Abstract Plasmodiophora brassicae is an important biotrophic eukaryotic plant pathogen and a member of the rhizarian protists. This biotrophic pathogen causes clubroot in cruciferous plants via novel intracellular mechanisms that are markedly different from those of other biotrophic organisms. To date, genomes from six single spore isolates of P. brassicae have been sequenced. An accurate description of the evolutionary status of this biotrophic protist, however, remains lacking. Here, we determined the draft genome of the P. brassicae ZJ-1 strain. A total of 10,951 protein-coding genes were identified from a 24.1 Mb genome sequence. We applied a comparative genomics approach to prove the Rhizaria supergroup is an independent branch in the eukaryotic evolutionary tree. We also found that the GPCR signaling pathway, the versatile signal transduction to multiple intracellular signaling cascades in response to extracellular signals in eukaryotes, is significantly enriched in P. brassicae-expanded and P. brassicae-specific gene sets. Additionally, treatment with a GPCR inhibitor relieved the symptoms of clubroot and significantly suppressed the development of plasmodia. Our findings suggest that GPCR signal transduction pathways play important roles in the growth, development, and pathogenicity of P. brassicae.
    [Show full text]
  • Phylogenomics Supports the Monophyly of the Cercozoa T ⁎ Nicholas A.T
    Molecular Phylogenetics and Evolution 130 (2019) 416–423 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomics supports the monophyly of the Cercozoa T ⁎ Nicholas A.T. Irwina, , Denis V. Tikhonenkova,b, Elisabeth Hehenbergera,1, Alexander P. Mylnikovb, Fabien Burkia,2, Patrick J. Keelinga a Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada b Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia ARTICLE INFO ABSTRACT Keywords: The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major Cercozoa component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa Rhizaria remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, Phylogeny including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly Phylogenomics of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from Single-cell transcriptomics newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12′ group, and phyloge- nomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.
    [Show full text]
  • Associated with Low Dehydrodolichol Diphosphate Synthase (DHDDS) Activity S
    Sabry et al. Orphanet Journal of Rare Diseases (2016) 11:84 DOI 10.1186/s13023-016-0468-1 RESEARCH Open Access A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity S. Sabry1,2,3,4, S. Vuillaumier-Barrot1,2,5, E. Mintet1,2, M. Fasseu1,2, V. Valayannopoulos6, D. Héron7,8, N. Dorison8, C. Mignot7,8,9, N. Seta5,10, I. Chantret1,2, T. Dupré1,2,5 and S. E. H. Moore1,2* Abstract Background: Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. Results: Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-3H]mannose labeled glycoprotein to [2-3H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient.
    [Show full text]
  • Downloaded from Mage and Compared
    bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]