Ion and Hydrogen Transfer Reactions Catalyzed by Iridium Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Ion and Hydrogen Transfer Reactions Catalyzed by Iridium Complexes Hydrogenation, Transfer Hydrogenat- ion and Hydrogen Transfer Reactions Catalyzed by Iridium Complexes. Xu Quan ©Xu Quan, Stockholm University 2015 ISBN 978-91-7649-255-0 Printed in Sweden by Holmbergs, Malmö 2015 Distributor: Department of Organic Chemistry, Stockholm University To my parents and Ling Jin 谨以此论文献给我的父母和妻子 Abstract The work described in this thesis is focused on the development of new bi- dentate iridium complexes and their applications in the asymmetric reduction of olefins, ketones and imines. Three new types of iridium complexes were synthesized, which included pyridine derived chiral N,P-iridium complexes, achiral NHC complexes and chiral NHC-phosphine complexes. A study of their catalytic applications demonstrated a high efficiency of the N,P-iridium complexes for asymmetric hydrogenation of olefins, with good enantioselec- tivity. The carbene complexes were found to be very efficient hydrogen transfer mediators capable of abstracting hydrogen from alcohols and subse- quently transfer it to other unsaturated bonds. This hydrogen transferring property of the carbene complexes was used in the development of C–C and C–N bond formation reactions via the hydrogen borrowing process. The complexes displayed high catalytic reactivity using 0.5–1.0 mol% of the catalyst and mild reaction conditions. Finally chiral carbene complexes were found to be activated by hydrogen gas. Their corresponding iridium hydride species were able to reduce ketones and imines with high efficiency and enantioselectivity without any additives, base or acid. i List of Publications This thesis is based on the following publications, which are referred to in the text by their Roman numerals. I. Iridium Catalysts with Chiral Bicyclic Pyridine-Phosphane Ligands for the Asymmetric Hydrogenation of Olefins. Xu Quan, Vijay Singh Parihar, Milan Bera, and Pher G. Andersson. European Journal of Organic Chemistry, 2014, 140–146. II. Highly Enantioselective Iridium Catalyzed Hydrogenation of α, β Unsaturated Esters. Jia-Qi Li, Xu Quan, and Pher G. An- dersson. Chemistry-A European Journal, 2012, 10609–10616. III. Chiral Hetero- and Carbocyclic Compounds from the Asym- metric Hydrogenation of Cyclic Alkenes. J. Johan Verendel, Jia- Qi Li, Xu Quan, Byron Peters, Taigang Zhou, Odd R. Gautun, Thavendran Govender, and Pher G. Andersson. Chemistry-A Euro- pean Journal, 2012, 6507–6513. IV. C-C Coupling of Ketones with Methanol Catalyzed by a N- Heterocyclic Carbene-Phosphine Iridium Complex. Xu Quan, Sutthichat Kerdphon, and Pher G. Andersson. Chemistry-A Euro- pean Journal, 2015, 3576–3579. V. C-N Coupling of Amides with Alcohols Catalyzed by N- Heterocyclic Carbene-Phosphine Iridium Complexes. Sut- thichat Kerdphon, Xu Quan, Vijay Singh Parihar, and Pher G. An- dersson. Journal of Organic Chemistry (Submitted) VI. Highly Active Cationic NHC, Phosphine Iridium Catalysts for Base Free Asymmetric Hydrogenation of Ketones. Xu Quan, Sutthichat Kerdphon, Janjira Rujirawanich, Suppachai Krajangsri, and Pher G. Andersson. (Manuscript) Manuscript not included in this thesis: VII. The Thiazole, Imidazole and Oxazole Based N, P-Ligands for the Palladium Catalyzed Cycloisomerization of 1,6-Enynes. Xu Quan, Jianguo Liu, Wangchuk Rabten, Simone Diomedi, and Pher G. Andersson. (Manuscript) ii Abbreviations * Stereogenic center Ac Acetyl Ar Aryl - BArF Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate BINAL-H 1,1’-Bi-2-naphtolaluminum hydride Bu Butyl BuLi Butyl lithium t-Bu tert-Butyl Cat. Catalyst COD 1,5-Cyclooctadiene Conv. Conversion Cp* Pentamethylcyclopentadienyl Cy Cyclohexyl DCM Dichloromethane DIBAL Di-iso-butylaluminum hydride DMF Dimethylformamide DMSO Dimethyl sulfoxide dppf 1,1’-Bis(diphenylphosphino)ferrocene dppp 1,3-Bis(diphenylphosphino)propane ee Enantiomeric excess equiv. Equivalent Et Ethyl i-Pr iso-Propyl LDA Lithium di-iso-propylamine L Ligand m Meta Me Methyl Mes Mesityl NHC N-heterocyclic carbene o Ortho S Solvent Tol Tolyl p Para iii Ph Phenyl PHOX Phosphinooxazolines Py Pyridine r.t. Room temperature THF Tetrahydrofuran iv Contents 1. Introduction ............................................................................................. 1 1.1 Catalysis1 .............................................................................................................. 1 1.2 Chirality ................................................................................................................. 2 1.3 Asymmetric Hydrogenation .................................................................................. 4 1.4 Hydrogen Transfer Alkylation ............................................................................... 7 1.5 Aim of this Thesis ................................................................................................. 9 2. Development of Pyridine Based N, P-Iridium Catalysts for the Asymmetric Hydrogenation of Olefins (Paper I) ........................................... 10 2.1 Synthesis of Novel Pyridine Derived Ligands and their Iridium Complexes ....... 12 2.2 Evaluation of the Iridium Catalysts in Asymmetric Hydrogenation ..................... 14 2.3 Conclusion .......................................................................................................... 17 3. Asymmetric Hydrogenation of α-Substituted Conjugated Esters (Paper II) .............................................................................................................. 18 3.1 Catalyst Screening ............................................................................................. 20 3.2 Study of the Substrate Scope ............................................................................. 21 3.3 Conclusion .......................................................................................................... 25 4. Synthesis of Chiral Heterocyclic Compounds by Iridium Catalyzed Hydrogenation (Paper III) ............................................................................. 26 4.1 Asymmetric Hydrogenation of Conjugated Lactones and Ketones .................... 26 4.2 Asymmetric Hydrogenation of 2-Substituted Quinolines .................................... 27 4.3 Conclusion .......................................................................................................... 28 5. Iridium Catalyzed Alkylation of Ketones and Amides with Alcohols, via Hydrogen Transfer Reactions (Paper IV and V) .......................................... 29 5.1 Methylation of Ketones with Methanol (Paper IV) .............................................. 30 5.1.1 Catalyst screening and optimization .......................................................... 30 5.1.2 Study of substrate scope ............................................................................ 32 5.1.3 Mechanistic study ....................................................................................... 35 5.2 N-Alkylation of Amides with Alcohols (Paper V) ................................................. 37 5.2.1 Study of reaction conditions ....................................................................... 37 5.2.2 Study of substrate scope ............................................................................ 39 5.3 Conclusion .......................................................................................................... 43 6. Chiral Bidentate NHC, Phosphine-Iridium Complexes and their Catalytic Activities in Hydrogenation Reactions (Paper VI) ........................................ 44 6.1 A Class of Novel Bidentate Chiral NHC, Phosphine-Iridium Complexes. ........... 45 6.2 Evaluation of Chiral NHC-P Iridium Complexes ................................................. 47 6.2.1 Hydrogenation of alkenes .......................................................................... 47 6.2.2. Hydrogenation of ketones and imines ....................................................... 48 6.3 Conclusion .......................................................................................................... 58 7. Concluding Remarks and Outlook ........................................................ 59 Contribution List ........................................................................................... 60 Acknowledgments ........................................................................................ 62 Summary in Swedish ................................................................................... 64 References ................................................................................................... 65 1. Introduction 1.1 Catalysis1 Catalysis is the process that facilitates a chemical reaction, and was first introduced by Jöns Jacob Berzelius in 1835.2 A catalyst is an additive that triggers and participates in the reaction to make the reaction go faster by decreasing the activation energy, without itself being consumed. It does not change the equilibrium of reaction system, but accelerates the reaction by stabilizing the transition state. As it is not included in the product, only sub- stoichiometric amounts of catalyst can be enough to accelerate a reaction, thus generating less waste. In addition, the catalyst can often be used to con- trol the chemo-, regio-, stereo- and enantioselectivity of a reaction. Generally, catalysis is classified as being either homogeneous or heteroge- neous. In homogeneous catalysis, the catalyst and reactants are in the same phase; whereas for heterogeneous catalysis, the catalyst is in a different phase from the reactant. Homogeneous catalysis often provides good reactiv- ity
Recommended publications
  • Modern-Reduction-Methods.Pdf
    Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow Related Titles Yamamoto, H., Ishihara, K. (eds.) Torii, S. Acid Catalysis in Modern Electroorganic Reduction Organic Synthesis Synthesis 2008 2006 ISBN: 978-3-527-31724-0 ISBN: 978-3-527-31539-0 Roberts, S. M. de Meijere, A., Diederich, F. (eds.) Catalysts for Fine Chemical Metal-Catalyzed Cross- Synthesis V 5 – Regio and Coupling Reactions Stereo-Controlled Oxidations 2004 and Reductions ISBN: 978-3-527-30518-6 2007 Online Book Wiley Interscience Bäckvall, J.-E. (ed.) ISBN: 978-0-470-09024-4 Modern Oxidation Methods 2004 de Vries, J. G., Elsevier, C. J. (eds.) ISBN: 978-3-527-30642-8 The Handbook of Homogeneous Hydrogenation 2007 ISBN: 978-3-527-31161-3 Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow The Editors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Pher G. Andersson publisher do not warrant the information Uppsala University contained in these books, including this book, to Department of Organic Chemistry be free of errors. Readers are advised to keep in Husargatan 3 mind that statements, data, illustrations, 751 23 Uppsala procedural details or other items may Sweden inadvertently be inaccurate. Dr. Ian J. Munslow Library of Congress Card No.: Uppsala University applied for Department of Biochemistry and Organic Chemistry Husargatan 3 British Library Cataloguing-in-Publication Data 751 23 Uppsala A catalogue record for this book is available from Sweden the British Library. Bibliographic information published by the Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
    [Show full text]
  • Production of Cyclohexane Through Catalytic Hydrogenation of Benzene
    Production of Cyclohexane through Catalytic Hydrogenation of Benzene Background Cyclohexane is industrially produced from Benzene as it is not a naturally available resource. Cyclohexane undergoes oxidation reactions yielding Cyclohexanone and Cyclohexanol which are precursors for the production of Adipic acid and Caprolactum. Caprolactum is the raw material used for producing polymer Nylon-6. Benzene reacts with a mixture of hydrogen and methane in contact with a Nickel based catalyst producing Cyclohexane. The conversion of this vapour phase reaction is almost 99%. Reaction involved: Benzene + Hydrogen Cyclohexane (Vapour Phase) Reactor Used: Catalytic Packed Bed Conversion Reactor Reactor conditions: Outlet Temperature = 497 K, Pressure Drop = 1.02 atm Catalyst Used: Nickel Based Process Description Fresh benzene (370 kmol/h) and excess hydrogen (1470 kmol/h) is preheated to a temperature of 422 K and sent to a packed bed reactor. A vapour phase reaction occurs in the reactor at 497 K which converts benzene to cyclohexane through catalytic hydrogenation of benzene. The conversion of this reaction is about 99%. The reactor products are cooled to 370 K and sent through a pressure reduction valve which reduces the pressure of the stream from 30 atm to 24 atm. A two stage separator separates the product cyclohexane from unreacted hydrogen and methane- first at a high pressure (24 atm) and then at a lower pressure (3 atm). The unreacted hydrogen-methane mixture is recovered from the top of the flash column and is sent to a splitter having a splittling ratio of 9:1. The smaller stream is sent as a recycle stream and mixes with fresh hydrogen, while the rest is drawn out as fuel gas for incinerators.
    [Show full text]
  • P-Cymene Based Ruthenium Complexes As Catalysts
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA p-Cymene Based Ruthenium Complexes as Catalysts Joel David Avelino Fonseca MESTRADO EM QUÍMICA TECNOLÓGICA Especialização em Química Tecnológica e Qualidade 2011 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA p-Cymene Based Ruthenium Complexes as Catalysts Joel David Avelino Fonseca MESTRADO EM QUÍMICA TECNOLÓGICA Especialização em Química Tecnológica e Qualidade Dissertação de mestrado orientada pela Professora Dra. Maria Helena Garcia 2011 p-Cymene Based Ruthenium Complexes as Catalysts This project took place in the School of Chemistry of the University of Leeds, United Kingdom, under the scope of Erasmus Placements. It was co-supervised by Dr. Patrick C. McGowan and Dr. John A. Blacker Acknowledgements First, I would like to express my deepest gratitude to Professor Patrick C. McGowan for giving me the opportunity of doing my master placement in his work group, also for his mentorship, guidance, insightful discussions, continuous support, patience and encouragements during ten months at the University of Leeds. Then I would like to thank Professor John A. Blacker for his valuable discussions and suggestions during my research. My special thanks to Professor Maria H. Garcia for being so supportive in the decision of going abroad, for making this placement possible, for her mentorship, guidance and carefully reviewing the dissertation. I would like to thank the European Commission for providing financial support, namely by giving me an ERASMUS Placement scholarship. I am thankful to all the colleagues with whom I have shared the laboratory, namely from the McGowan and Halcrow groups, who have made my work days so pleasant.
    [Show full text]
  • Transfer Hydrogenation: Employing a Simple, in Situ Prepared Catalytic System
    Transfer Hydrogenation: Employing a Simple, in situ Prepared Catalytic System Thesis by Eleanor Pei Ling Ang In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia © April, 2017 Eleanor Ang Pei Ling All Rights Reserved 2 EXAMINATION COMMITTEE PAGE The thesis of Eleanor Pei Ling Ang is approved by the examination committee. Committee Chairperson: Prof. Kuo-Wei Huang Committee Members: Prof. Jörg Eppinger Prof. Zhiping Lai 3 ABSTRACT Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated. 4 ACKNOWLEDGEMENTS I would like to express my gratitude to my supervisor, Professor Kuo-Wei Huang, for his guidance, support, valuable insights and advice throughout the course of this research. I would also like to acknowledge Prof. Jörg Eppinger and Prof. Zhiping Lai for their kind agreement to be part of my examination committee.
    [Show full text]
  • Appendix F. Glossary
    Appendix F. Glossary 2DEG 2-dimensional electron gas A/D Analog to digital AAAR American Association for Aerosol Research ADC Analog-digital converter AEM Analytical electron microscopy AFM Atomic force microscope/microscopy AFOSR Air Force Office of Scientific Research AIST (Japan) Agency of Industrial Science and Technology AIST (Japan, MITI) Agency of Industrial Science and Technology AMLCD Active matrix liquid crystal display AMM Amorphous microporous mixed (oxides) AMO Atomic, molecular, and optical AMR Anisotropic magnetoresistance ARO (U.S.) Army Research Office ARPES Angle-resolved photoelectron spectroscopy ASET (Japan) Association of Super-Advanced Electronics Technologies ASTC Australia Science and Technology Council ATP (Japan) Angstrom Technology Partnership ATP Adenosine triphosphate B Magnetic flux density B/H loop Closed figure showing B (magnetic flux density) compared to H (magnetic field strength) in a magnetizable material—also called hysteresis loop bcc Body-centered cubic BMBF (Germany) Ministry of Education, Science, Research, and Technology (formerly called BMFT) BOD-FF Bond-order-dependent force field BRITE/EURAM Basic Research of Industrial Technologies for Europe, European Research on Advanced Materials program CAD Computer-assisted design CAIBE Chemically assisted ion beam etching CBE Chemical beam epitaxy 327 328 Appendix F. Glossary CBED Convergent beam electron diffraction cermet Ceramic/metal composite CIP Cold isostatic press CMOS Complementary metal-oxide semiconductor CMP Chemical mechanical polishing
    [Show full text]
  • Chapter 3 CHEMICAL MODIFICATION of OILS and FATS
    Chapter 3 CHEMICAL MODIFICATION OF OILS AND FATS From the fats and oils obtained from natural resources, the majority of them are used directly or just after refinement. While the others are used after modification by chemical process. This chapter lists some typical modifications of fats and oils by chemical means. 3-1 Alkaline Hydrolysis Figure 3-1-1: Alkaline hydrolysis (saponification) of oil to make soaps. There are many methods for hydrolysis of triacylglycerol molecule. The most common method is alkaline hydrolysis. Heating (around 100˚C)triacylglycerols with aqueous solu- tion of sodium hydroxide results in glycerol and alkaline salt of fatty acid (i.e. soap) (Figure 3-1-1). This is called saponification, and used for production of soap. 3-2 Hydrogenation Number of double bonds in oils and fats affects physical property such as melting point, crystallinity. Generally, double bonds reduce the oil’s melting point. Therefore, oils rich in unsaturated fatty acids are liquid, while ones with small amount of unsaturated fatty acids are solid or semi-solid. Hydrogenation is a process to add hydrogen atoms into double bonds of unsaturated fatty acids (Figure 3-2-1). As the result of hydrogenation, liquid oil becomes solid or semi-solid. A typical example of hydrogenation is in the process of margarine and shortening production. Vegetable oil is hydrogenated with gaseous H2 in the presence of a metal catalyst (usually nickel catalyst). If the hydrogenation is completely performed, all the double bounds are 19 Figure 3-2-1: Hydrogenation. converted to the saturated ones with the same carbon number.
    [Show full text]
  • Hydrogenation Reaction
    SOP: How to Run an Atmospheric-Pressure Hydrogenation Reaction Hazards: Hydrogenation reactions pose a significant fire hazard due to the use of flammable reagents and solvents. Such reagents include palladium on carbon (Pd/C), which is highly flammable and can ignite solvents and hydrogen. It is especially dangerous after having been used for the hydrogenation. The presence of hydrogen gas increases the risk of explosion. Special Precautions: Remove any excess clutter and any flammable solvents that are not needed from your fume hood for the reaction. Be prepared for the possibility of a small fire. Do not panic if this occurs, but simply cover the flask or funnel in which there is a fire with a watch glass and it will go out. Have a suitable sized watch glass on hand. Recommended Apparatus: A three-necked flask equipped with a magnetic stirring bar, a nitrogen inlet adapter connected to a nitrogen/vacuum manifold, a glass stopper or rubber septum, and a gas inlet adapter with a stopcock and a balloon filled with hydrogen. Procedure: 1. Put a weighed quantity of the catalyst in the flask. 2. Evacuate and back-fill the flask with nitrogen 3 times. 3. Add your solvent under a countercurrent of nitrogen. CAUTION: Do not pour your solvent from a 4-liter bottle or a 1-liter bottle. Use a small Erlenmeyer flask (for example 125 mL) containing only the needed amount of solvent. 4. Add your substrate to be hydrogenated to the flask. 5. Evacuate and back-fill the flask with hydrogen. 6. If needed, you may replace the balloon with a full one as needed during the reaction.
    [Show full text]
  • MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS and EVALUATION in ALLYLIC SUBSTITUTIONS Dana Madeleine Popa ISBN:978-84-691-8862-0/DL:T-1275-2008
    UNIVERSITAT ROVIRA I VIRGILI MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS AND EVALUATION IN ALLYLIC SUBSTITUTIONS Dana Madeleine Popa ISBN:978-84-691-8862-0/DL:T-1275-2008 PhD Thesis MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS AND EVALUATION IN ALLYLIC SUBSTITUTIONS Dana Madeleine Popa Tarragona, July 2008 UNIVERSITAT ROVIRA I VIRGILI MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS AND EVALUATION IN ALLYLIC SUBSTITUTIONS Dana Madeleine Popa ISBN:978-84-691-8862-0/DL:T-1275-2008 UNIVERSITAT ROVIRA I VIRGILI MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS AND EVALUATION IN ALLYLIC SUBSTITUTIONS Dana Madeleine Popa ISBN:978-84-691-8862-0/DL:T-1275-2008 Institut Catalá d’Investigació Química Memoria presentada por Dana Madeleine Popa para optar al título de Doctor por la Universitat Rovira i Virgili. Revisada por Dr. Anton Vidal Dr. Miquel A. Pericàs UNIVERSITAT ROVIRA I VIRGILI MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS AND EVALUATION IN ALLYLIC SUBSTITUTIONS Dana Madeleine Popa ISBN:978-84-691-8862-0/DL:T-1275-2008 UNIVERSITAT ROVIRA I VIRGILI MODULAR PHOSPHINOOXAZOLINES: SYNTHESIS AND EVALUATION IN ALLYLIC SUBSTITUTIONS Dana Madeleine Popa ISBN:978-84-691-8862-0/DL:T-1275-2008 El presente trabajo de investigación ha sido realizado en el Institut Català d`Investigació Química, bajo la dirección de Dr. Anton Vidal y al Dr. Miquel A. Pericàs, a quienes les quiero dar las gracias por la oportunidad que me han ofrecido de formarme como investigadora bajo su supervisión. Quiero agradecer a Dr. Anton Vidal por los consejos y ayuda que me ha ofrecido día a día. Agradezco a Dr. Miquel A. Pericàs por el soporte que me ha proporcionado en todo el momento. Quiero agradecer también a Sergi Rodríguez Escrich por su colaboración en una parte del trabajo de investigación realizado.
    [Show full text]
  • N-Heterocyclic Carbene Ligands for Iridium- Catalysed Asymmetric Hydrogenation
    N-Heterocyclic Carbene Ligands for Iridium- Catalysed Asymmetric Hydrogenation Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Steve Nanchen aus Lens / Schweiz Basel 2005 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von: Prof. Dr. Andreas Pfaltz Prof. Dr. Wolf-Dietrich Woggon Basel, den 20. September 2005 Prof. Dr. Hans-Jakob Wirz Dekan to my wife Annik Acknowledgments I thank Professor Andreas Pfaltz to have given me the opportunity of joining his group, for his help and constant support over the last four years. I also thank Professor Wolf-Dietrich Woggon who agreed to co-examine this thesis. Dr. Valentin Köhler, Dr. William Drury III, Dr. Geoffroy Guillemot and Dr. Benoît Pugin, Solvias AG, are acknowledged for helpful discussions and fruitful collaboration. I am grateful to Markus Neuburger and Dr. Silvia Schaffner for recording numerous X-ray data and for refining X-ray structures. Dr. Klaus Kulicke, Axel Franzke and Dr. Clément Mazet are acknowledged for their countless hours recording 2D NMR spectra and their help on interpretation of data. I thank Björn Gschwend, Dominik Frank and Peter Sommer for their laboratory work contributions. Thanks to Dr. Cara Humphrey, Dr. Geoffroy Guillemot and Dr. Yann Ribourdouille for proof-reading the manuscript. A special thanks goes to the members of the Pfaltz group who have made my stay in Basel an enjoyable time. Thanks to lab 204 for the nice working atmosphere. A big thanks to my friends and family. Their help and presence during these four years was invaluable. Finally, thanks to Annik for all her support and love.
    [Show full text]
  • Tio2 Photocatalysis for Transfer Hydrogenation
    molecules Review TiO2 Photocatalysis for Transfer Hydrogenation Dongge Ma 1,* , Shan Zhai 1, Yi Wang 1, Anan Liu 2 and Chuncheng Chen 3 1 School of Science, Beijing Technology and Business University, Beijing 100048, China; [email protected] (S.Z.); [email protected] (Y.W.) 2 Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 3 Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-68985573 Academic Editor: Yasuharu Yoshimi Received: 15 December 2018; Accepted: 15 January 2019; Published: 17 January 2019 Abstract: Catalytic transfer hydrogenation reactions, based on hydrogen sources other than gaseous H2, are important processes that are preferential in both laboratories and factories. However, harsh conditions, such as high temperature, are usually required for most transition-metal catalytic and organocatalytic systems. Moreover, non-volatile hydrogen donors such as dihydropyridinedicarboxylate and formic acid are often required in these processes which increase the difficulty in separating products and lowered the whole atom economy. Recently, TiO2 photocatalysis provides mild and facile access for transfer hydrogenation of C=C, C=O, N=O and C-X bonds by using volatile alcohols and amines as hydrogen sources. Upon light excitation, TiO2 photo-induced holes have the ability to oxidatively take two hydrogen atoms off alcohols and amines under room temperature. Simultaneously, photo-induced conduction band electrons would combine with these two hydrogen atoms and smoothly hydrogenate multiple bonds and/or C-X bonds.
    [Show full text]
  • Catalytic Hydrogenation and Dehydrogenation Reactions of N-Alkyl-Bis(Carbazole)-Based Hydrogen Storage Materials
    catalysts Article Catalytic Hydrogenation and Dehydrogenation Reactions of N-alkyl-bis(carbazole)-Based Hydrogen Storage Materials Joori Jung 1,2,†, Byeong Soo Shin 3,4,†, Jeong Won Kang 4,5,* and Won-Sik Han 1,* 1 Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; [email protected] 2 REYON Pharmaceutical, Co., Ltd., Anyang 01459, Korea 3 Hyundai Motor Company, Strategy & Technology Division, Ulwang 16082, Korea; [email protected] 4 Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea 5 Graduate School of Energy and Environment, Korea University, Seoul 02841, Korea * Correspondence: [email protected] (J.W.K.); [email protected] (W.-S.H.) † These authors contributed equally. Abstract: Recently, there have been numerous efforts to develop hydrogen-rich organic materials because hydrogen energy is emerging as a renewable energy source. In this regard, we designed and prepared four new materials based on N-alkyl-bis(carbazole), 9,90-(2-methylpropane-1,3-diyl)bis(9H- carbazole) (MBC), 9,90-(2-ethylpropane-1,3-diyl)bis(9H-carbazole) (EBC), 9,90-(2-propylpropane-1,3- diyl)bis(9H-carbazole) (PBC), and 9,90-(2-butylpropane-1,3-diyl)bis(9H-carbazole) (BBC), to investi- gate their hydrogen adsorption/hydrogen desorption reactivity depending on the length of the alkyl chain. The gravimetric densities of MBC, EBC, PBC, and BBC were 5.86, 5.76, 5.49, and 5.31 H2 wt %, respectively, again depending on the alkyl chain length. All materials showed complete hydro- genation reactions under ruthenium on an alumina catalyst at 190 ◦C, and complete reverse reactions ◦ and dehydrogenation reactions were observed under palladium on an alumina catalyst at <280 C.
    [Show full text]
  • Transfer Hydrogenation of Olefins Catalysed by Nickel Nanoparticles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ARTICLE IN PRESS TET19911_proofprovided by Repositorio 26 October Institucional 2009 de la Universidad 1/7 de Alicante Tetrahedron xxx (2009) 1–7 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet 55 1 56 2 Transfer hydrogenation of olefins catalysed by nickel nanoparticles 57 3 58 4 59 ** * 5 Francisco Alonso , Paola Riente, Miguel Yus 60 6 Departamento de Quı´mica Orga´nica, Facultad de Ciencias and Instituto de Sı´ntesis Orga´nica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 61 7 62 8 63 9 article info abstract 64 10 65 11 Article history: Nickel nanoparticles have been found to effectively catalyse the hydrogen-transfer reduction of a variety 66 12 Received 22 September 2009 of non-functionalised and functionalised olefins using 2-propanol as the hydrogen donor. The hetero- 67 13 Received in revised form geneous process has been shown to be highly chemoselective for certain substrates, with all the cor- 68 14 October 2009 responding alkanes being obtained in high yields. A synthesis of the natural dihydrostilbene brittonin 69 14 Accepted 15 October 2009 A is also reported based on the use of nickel nanoparticles. 15 Available online xxx 70 16 Ó 2009 Published by Elsevier Ltd. 71 17 Keywords: PROOF 72 18 Hydrogen transfer 73 19 Reduction 74 Olefins 75 20 Nickel nanoparticles 21 76 22 77 23 78 24 79 25 1. Introduction of chiral ligands. In contrast with the reduction of carbonyl com- 80 26 pounds, the hydrogen-transfer reduction of olefins has been little 81 27 The reduction of carbon–carbon double bonds is one of the studied, mainly involving noble-metal catalysts.
    [Show full text]