An Annotated Checklist of the Scarabaeoidea Oftexas (Coleoptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Cetoniinae for the French Polynesia Fauna (Coleoptera, Scarabaeidae)
Bulletin de la Société entomologique de France, 120 (3), 2015 : 379-381. A new Cetoniinae for the French Polynesia fauna (Coleoptera, Scarabaeidae) by Thibault RAMAGE 9 quartier de la Glacière, F – 29900 Concarneau <[email protected]> Abstract. – The Cetoniinae fauna of French Polynesia was restricted until now to a single introduced species, Protaetia fusca (Herbst, 1790). A second species is here reported from Tahiti, Glycyphana stolata (Fabricius, 1781). P. fusca is also reported from the Marquesas Islands for the first time. Résumé. – Une nouvelle Cétoine pour la faune de Polynésie française (Coleoptera, Scarabaeidae). La faune des Cetoniinae de Polynésie française, qui ne comprenait jusqu’à présent qu’une espèce introduite, Protaetia fusca (Herbst, 1790), compte désormais une seconde espèce, connue en Polynésie pour l’instant de Tahiti seulement, Glycyphana stolata (Fabricius, 1781). P. fusca est également citée pour la première fois des Marquises. Keywords. – Glycyphana stolata, Protaetia fusca, Cetoniini, French Polynesia. _________________ Until now only one species of Cetoniinae was known in French Polynesia, Protaetia fusca (Herbst, 1790) (PAULIAN, 1998). This species was reported only from the Society Islands, and it appears that it is also present in the Marquesas Islands. A second Cetoniinae, Glycyphana stolata (Fabricius, 1781), has been collected recently on Tahiti. It seems that G. stolata is now settled in French Polynesia and will probably spread in the different archipelagoes. Abbreviations. – CTR, Thibault Ramage’s personal collection, Concarneau ; MNHN, Muséum national d’Histoire naturelle, Paris. Family Scarabaeidae Latreille, 1802 Subfamily Cetoniinae Leach, 1815 Tribe Cetoniini Leach, 1815 Genus Glycyphana Burmeister, 1842 Glycyphana (Glycyphaniola) stolata (Fabricius, 1781) Cetonia stolata Fabricius, 1781 : 58. -
Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance. -
An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown. -
Coleoptera: Melolonthidae: Dynastinae)
Revista Brasileira de Entomologia 61 (2017) 354–358 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Systematics, Morphology and Biogeography Description of the third instar larva of Saccharoscaptus laminifer (Dechambre) (Coleoptera: Melolonthidae: Dynastinae) Miguel Ángel Morón Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Mexico a a b s t r a c t r t i c l e i n f o Article history: The larva of pentodontine S. laminifer is described for first time based on specimens collected under Received 4 April 2017 roots of sugarcane in Santa Cruz, Bolivia. Diagnostic structures are illustrated and the differences and Accepted 17 July 2017 similarities with other previously described larvae of South American genera of Pentodontini are outlined. Available online 29 July 2017 A key to the larvae of some American genera of pentodontines is included. Associate Editor: Adriana Marvaldi © 2017 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Morphology Taxonomy Biology White grubs Sugarcane Introduction Material and methods In the Americas, the tribe Pentodontini includes 32 genera and The classification of families of Scarabaeoidea used in the 151 species that occur from southern Canada to Argentina, with present paper was proposed by Endrödi (1966) and updated by four genera and nine species in the West Indies (Endrödi, 1969, Morón (2010) and Cherman and Morón (2014). Terms and charac- 1985; Morón and Grossi, 2015; Ratcliffe and Cave, 2015; López- ters used in the description of larva are those of Ritcher (1966), García et al., 2016), but only the larvae of nine genera (Aphonus Morón (1987), and Morón et al. -
Biodiversité Des Arthropodes Du Sol Dans La Province Du Sanmatenga
SOMMAIRE Sommaire i Dédicace iii Remerciements iv Sigles et abréviations v Liste des tableaux , Vt Liste des Figures ,, vii Liste des photos viii Résumé ix Abstract x INTRODUCTION GENERALE 1 Chapitre 1 : REVUE BIBIOGRAHIQUE 4 1- Les Arthropodes et la Biodiversité 4 1-1- Généralités sur les Arthropodes 4 1-2- Les insectes dans le règne animal 4 1-3- Ecologie des insectes 5 11- Convention Internationale sur la Biodiversité 6 11-1- Historique de la Convention 6 11-2- Définition de la biodiversité 6 1I-3- Les causes de l'érosion de la biodiversité 7 11-4- Mécanismes d'érosion de la biodiversité 8 11-5- Gestion et conservation de la biodiversité en Afrique 11 IlI- Les Arthropodes comme indicateurs biologiques Il IV- Richesse spécifique des insectes au Burkina Faso 13 V- Méthodes d'échantillonnage des insectes 14 V-1- Le filet fauchoir : 14 V-2- Les pièges à eau : 14 V-3- Les pièges jaunes à glu : 14 V-4- Les pièges lumineux : J5 V-5- Le battage: 15 V-6- La fumigation: 15 V-7- Les pièges Berlèses : 15 V-8- Les pièges de vol : 16 V-9- Les piéges à fosse: 17 Chapitre II : MATERIEL ET METHODES 18 1-Objectifde l'étude 18 11- Le milieu d'étude 18 11-\- Le climat 18 11-2- La végétation 19 111- Matériel et Méthodes 20 III-I- Matériel utilisé dans J'étude 20 III-2- Méthodes utilisées dans l'étude 20 IV- Analyse des données 26 Chapitre III: RESULTATS ET DISCUSSION 27 1-Résultats 27 I-I-Résultats globaux 27 1-2- Régularité de présence des familles des Arthropodes 30 1-3-Genres et espèces identifiés 32 1-4- La diversité des sites en familles d'arthropodes -
Coleoptera: Scarabaeidae)
Systematic Entomology (2005), 31, 113–144 DOI: 10.1111/j.1365-3113.2005.00307.x The phylogeny of Sericini and their position within the Scarabaeidae based on morphological characters (Coleoptera: Scarabaeidae) DIRK AHRENS Deutsches Entomologisches Institut im Zentrum fu¨r Agrarlandschafts- und Landnutzungsforschung Mu¨ncheberg, Germany Abstract. To reconstruct the phylogeny of the Sericini and their systematic position among the scarabaeid beetles, cladistic analyses were performed using 107 morphological characters from the adults and larvae of forty-nine extant scarabaeid genera. Taxa represent most ‘traditional’ subfamilies of coprophagous and phytophagous Scarabaeidae, with emphasis on the Sericini and other melo- lonthine lineages. Several poorly studied exoskeletal features have been examined, including the elytral base, posterior wing venation, mouth parts, endosternites, coxal articulation, and genitalia. The results of the analysis strongly support the monophyly of the ‘orphnine group’ þ ‘melolonthine group’ including phytopha- gous scarabs such as Dynastinae, Hopliinae, Melolonthinae, Rutelinae, and Cetoniinae. This clade was identified as the sister group to the ‘dung beetle line’ represented by Aphodius þ Copris. The ‘melolonthine group’ is comprised in the strict consensus tree by two major clades and two minor lineages, with the included taxa of Euchirinae, Rutelinae, and Dynastinae nested together in one of the major clades (‘melolonthine group I’). Melolonthini, Cetoniinae, and Rutelinae are strongly supported, whereas Melolonthinae and Pachydemini appear to be paraphyletic. Sericini þ Ablaberini were identified to be sister taxa nested within the second major melolonthine clade (‘melolonthine group II’). As this clade is distributed primarily in the southern continents, one could assume that Sericini þ Ablaberini are derived from a southern lineage. -
Larvae of Ataenius (Coleoptera: Scarabaeidae: Aphodiinae
Eur. J. Entomol. 96: 57—68, 1999 ISSN 1210-5759 Larvae ofAtaenius (Coleóptera: Scarabaeidae: Aphodiinae): Generic characteristics and species descriptions José R. VERDÚ and E duardo GALANTE Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain Key words.Scarabaeidae, Aphodiinae, Ataenius, larvae, description, key, dung beetles, turfgrass beetles, taxonomy Abstract. We compared the larval morphology of the genera Ataenius and Aphodius. The third larval instars of five Ataenius species: Ataenius opatrinus Harold, A. picinus Harold, A. platensis (Blanchard), A. simulator Harold and A. strigicauda Bates, are described or redescribed and illustrated. The most important morphological characteristics of the larvae of Ataenius are found in the respiratory plate of thoracic spiracle, the setation of venter of the last abdominal segment, the setation of the epicranial region and the morphology of the epipharynx. A key to larvae of the known species of Ataenius is included. INTRODUCTION del Sacramento (Uruguay). For the purpose of laboratory studies, a total of 10 to 20 adult specimens of each species were The genus Ataenius Harold comprises 320 species, of kept in cylindrical plastic breeding cages (20 cm high, 10 cm which 228 species are found in America, 49 in Australia, wide) with moist soil and dry cow dung from which they had 11 in Africa, 6 in East Asia, 2 in Madagascar, and single been collected. The lid was an opening (6 cm diameter) covered species in India, Sri Lanka, Turkestan, Japan, Hawaii and with gauze screen. These breeding cages were maintained in an Sumatra, respectively (Dellacasa, 1987). Despite the rich environmental chamber at 25 : 20°C (L : D), 80 ± 5% RH, with ness of this genus and its worldwide distribution, the lar a photoperiod of 15 : 9 (L : D). -
Heteronychus Arator
Heteronychus arator Scientific Name Heteronychus arator (Fabricius) Synonyms: Heteronychus arator australis Endrödi, Heteronychus indenticulatus Endrodi, Heteronychus madagassus Endrodi, Heteronychus sanctaehelenae Blanchard, Heteronychus transvaalensis Peringuey, Scarabaeus arator Fabricius Common Name(s) Black maize beetle, African black beetle, black lawn beetle, black beetle Type of Pest Beetle Figure 1. Illustration of each stage of the life Taxonomic Position cycle of the black maize beetle, showing a close up view of each stage and a Insecta, Coleoptera, Class: Order: background view showing that the eggs, Family: Scarabaeidae larvae, and pupae are all underground stages with the adults being the only stage Reason for Inclusion appearing above ground. Illustration CAPS Target: AHP Prioritized Pest List- courtesy of NSW Agriculture. http://www.ricecrc.org/Hort/ascu/zecl/zeck11 2006 – 2009 3.htm Pest Description Life stages are shown in Figures 1 and 2. 1 Eggs: White, oval, and measuring approximately 1.8 mm (approx. /16 in) long at time of oviposition. Eggs grow larger through development and become more 3 round in shape. Eggs are laid singly at a soil depth of 1 to 5 cm (approx. /8 to 2 in). Females each lay between 12 to 20 eggs total. In the field, eggs hatch after approximately 20 days. Larvae can be seen clearly with the naked eye (CABI, 2007; Matthiessen and Learmoth, 2005). Larvae: There are three larval instars. Larvae are creamy-white except for the brown head capsule and hind segments, which appear dark where the contents of the gut show through the body wall. The head capsule is smooth textured, 1 1 measuring 1.5 mm (approx. -
Coleoptera: Scarabaeidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State February 1989 Scientific Note: Corrections and Clarifications ot Endrödi’s The Dynastinae of the World (Coleoptera: Scarabaeidae) Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Ratcliffe, Brett C., "Scientific Note: Corrections and Clarifications ot Endrödi’s The Dynastinae of the World (Coleoptera: Scarabaeidae)" (1989). Papers in Entomology. 75. https://digitalcommons.unl.edu/entomologypapers/75 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE COLEOPTERISTS BULLETIN 43(3), 1989 275 SCIENTIFIC NOTE The Dynastinae ofthe World by the late Sebo Endrodi was published in 1985. This long-awaited book condensed into one English language volume Endrodi's series of 22 principal papers on the entire subfamily Dynastinae. Judging from conversations and correspondence with colleagues,the book has been very well received. .as well it should have been for it will provide a framework for all future studies on the Dynastinae. During my extensive use of this book, I have encountered a number of errors in spelling, grammar, key construction, and omissions that have compromised its reliability. Some of these were referred to in my review (Ratcliffe 1987), and Steyskal(1988) noted numerous errors in nomenclatural grammar. I mentioned in my review that these kinds of errors were common throughout the book, and that readers would be forced to ferret out these mistakes on their own. -
Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for Casey’S June Beetle and Designation of Critical Habitat; Final Rule
Vol. 76 Thursday, No. 184 September 22, 2011 Part III Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for Casey’s June Beetle and Designation of Critical Habitat; Final Rule VerDate Mar<15>2010 16:48 Sep 21, 2011 Jkt 223001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\22SER3.SGM 22SER3 jlentini on DSK4TPTVN1PROD with RULES3 58954 Federal Register / Vol. 76, No. 184 / Thursday, September 22, 2011 / Rules and Regulations DEPARTMENT OF THE INTERIOR family (Scarabaeidae) (Smith and Evans in the proposed rule) (Hawks pers. 2005). Despite past references to comm., 2010; see below discussion). Fish and Wildlife Service potentially new species or subspecies of Hawks (pers. comm. 2010, 2011a and Dinacoma (Blaisdell 1930, pp. 173–174; b) located two occupied Casey’s June 50 CFR Part 17 La Rue pers. comm., 2006), Casey’s June beetle sites outside of proposed critical habitat, in natural remnants of the Palm [Docket No. FWS–R8–ES–2009–0019; MO beetle, Dinacoma caseyi Blaisdell, and 92210–0–0009] D. marginata (Casey) Casey remain the Canyon Wash channel surrounded by only described taxonomic entities in the golf course landscaping just east of the RIN 1018–AV91 genus (Evans and Smith 2009, p. 44). easternmost section of wash proposed as critical habitat, in the vicinity of Golf Endangered and Threatened Wildlife For additional information on the taxonomy, biology, and ecology of Club Drive. These wash habitat and Plants; Determination of remnants total 17 acres (ac) (7 hectares Endangered Status for Casey’s June Casey’s June beetle, and the history of this rulemaking, refer to the August 8, (ha)), and are downstream from the Beetle and Designation of Critical confluence of Palm Canyon Wash and Habitat 2006, 90-day finding (71 FR 44960), the July 5, 2007, 12-month finding (72 FR Tahquiz Creek, where additional AGENCY: Fish and Wildlife Service, 36635), the July 9, 2009, proposed streamflow occurs following a storm Interior. -
Dung Beetles (Coleoptera: Scarabaeoidea) in Three
Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil Rodrigues, MM.a*, Uchôa, MA.a and Ide, S.b aLaboratório de Insetos Frugívoros, Faculdade de Ciências Biológicas e Ambientais – FCBA, Universidade Federal da Grande Dourados – UFGD, CP 241, CEP 79804-970, Dourados, MS, Brazil bInstituto Biológico de São Paulo, Av. Conselheiro Rodrigues Alves, 1252, CEP 04014-002, Vila Mariana, São Paulo, SP, Brazil *e-mail: [email protected] Received February 7, 2012 – Accepted September 10, 2012 – Distributed February 28, 2013 Abstract Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Dung Beetles are important for biological control of intestinal worms and dipterans of economic importance to cattle, because they feed and breed in dung, killing parasites inside it. They are also very useful as bioindicators of species diversity in agricultural or natural environments. The aims of this paper were to study the species richness, and abundance of dung beetles, helping to answer the question: are there differences in the patterns of dung beetle diversity in three environments (pasture, agriculture and forest) in the municipality of Dourados, in the state of Mato Grosso do Sul. A total of 105 samplings were carried out weekly, from November 2005 to November 2007, using three pitfall traps in each environment. The traps were baited with fresh bovine dung, and 44,355 adult dung beetles from 54 species were captured: two from Hyborosidae and 52 from Scarabaeidae. Five species were constant, very abundant and dominant on the pasture, two in the agricultural environment, and two in the environment of Semideciduous forest. -
Quick Guide for the Identification Of
Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................