Characterization of Fraxinus spp. Phloem Transcriptome

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University

By

Loren J Rivera Vega, B.S.

Graduate Program in Entomology

The Ohio State University

2011

Thesis Committee

Omprakash Mittapalli, Advisor

Pierluigi E Bonello

Daniel A Herms

Abstract

Ash trees (Fraxinus spp.) are widely spread throughout eastern North America and represent an important tree species in urban landscape and natural settings. Since the accidental introduction of the invasive pest emerald ash borer ( planipennis

Fairmaire) millions of ash trees have been killed by this devastating pest. North American species such as black (F. nigra), white (F. americana), green (F. pennsylvanica), and to some extent blue (F. quadrangulata) are susceptible to this pest. However, in Asia, A. planipennis’ natural habitat, the damage to native ash is isolated and only observed in trees under stressed conditions, indicating some level of resistance, presumably due to a shared co-evolutionary history. To date various efforts to contain A. planipennis have been implemented, yet it continues to spread at an alarming rate within the US and

Canada. Despite the high impact status of A. planipennis, there is little information available at the molecular level for any Fraxinus species.

The main objective of this study was to characterize the transcriptome of ash phloem including North American and Manchurian species, which would then lay the foundation for future functional and applied studies. The first part of the study was to describe the phloem transcriptome and predict potential molecular markers using 454 pyrosequencing. A database of more than 50,000 sequences was obtained from a pooled sample of black, green, white, blue and Manchurian ash. The database was profiled using

ii

Blast2GO software in order to annotate the sequences, determine ontology (GO), and identify associated metabolic pathways. Also, the expression of eight candidate was quantified using real time quantitative PCR (RTqPCR) in three ash species: black, green and Manchurian ash. Finally, more than 1,272 single nucleotide polymorphisms

(SNPs) and 980 microsatellites were predicted.

The information obtained from the first part of the study was used to carry out the second part of the study, which was profiling of housekeeping genes across various ash species. In total, ten housekeeping genes were analyzed in order to identify a reliable reference gene for use in gene expression techniques such as RTqPCR. This analysis identified translation alpha (eEF1α) as the most stable gene, and therefore is recommended for current and future ash transcriptomics work.

The third and final part of the study was to compare and contrast constitutive gene expression profiles of black, green and Manchurian ash using RNA-Seq on an Illumina platform. From this study, three more databases were generated for ash, one for each of the three species analyzed. These databases were also profiled using terms and KEGG pathways, results were similar to those observed in the first part of the study. More than 50,000 SNPs and 5,000 microsatellites were predicted from all three databases combined. Differential analysis revealed approximately 600 genes to be differentially expressed among the ash species out of the 8,691 orthologs used for the analysis. In order to validate the results obtained from these gene expression profiles, eight candidate genes were analyzed using RTqPCR.

iii

The data generated from these studies using next-generation sequencing strategies has revealed a wealth of genomic information on ash, the target host for A. planipennis.

The results obtained will clearly lay the foundation for future functional studies, ash breeding programs, candidate gene identification, and population genetic studies, as well as simply provide more (comparative) genomic information for deciduous trees.

iv

Dedication

To my friends and family: Those far away who keep me grounded and those close who

keep me going.

v

Acknowledgements

I would like to thank:

My advisory committee members Dr Omprakash Mittapalli for his constant motivation,

Dr Daniel Herms for all his advices including those that didn‟t involve research

and Dr Enrico Bonello.

Ronald Batallas, Lucia Orantes, Alejandra Claure, and Nelson Davila, for those great first

days as interns during which we shared our hopes and dreams – truly the end of

an era.

The Mittapalli Lab: Priya Rajarapu, Ma Anita Bautista, Binny Bhandary and Praveen

Mamidala for their support both inside and outside of the laboratory.

The Herms Lab: Bryant Chambers, Diane Hartzler, Vanessa Muilenburg, Priya Loess,

and Jamie Imhoff for welcoming me into their lab and always considering me a

part of it.

AGEAP-OSU for their support and guidance, for showing me that despite being far away

from my country as long as a Zamorano is around we‟ll always feel at home.

Los padrinos – the Cañas-Acosta family – for opening the doors of their home and

allowing me to share with them so many special moments, for their invaluable

advices, and mainly for their friendship.

vi

All my friends in Ohio for allowing me to be my crazy self and still love me and for

letting me be a part of their lives.

All my friends in Honduras/Latin America because I was always able to feel their love

and support despite the distance and time.

My amazing family for always supporting and trusting my decisions.

SEEDs Grant Program and USDA-APHIS for the funding provided for this research.

vii

Vita

2007……………………………………… B.S. Agricultural Science and Production Pan-American College of Agriculture Tegucigalpa, Honduras

2008-2009……………………………….. Research Aide Department of Entomology The Ohio State University, Wooster, OH

2009-present………………………………Graduate Research and Teaching Assistant The Ohio State University, Wooster, OH

Publications

Rivera-Vega L*, Mamidala P*, Koch JL, Mason ME, Mittapalli O. 2011. Evaluation of reference genes for expression studies in ash (Fraxinus spp). Plant Molecular Biology Reporter. DOI 10.1007/s11105-011- 0340-3. Bai X*, Rivera-Vega L*, Mamidala P, Bonello P, Herms DA, Mittapalli O. 2011. Transcriptomic signatures of ash (Fraxinus spp) phloem. PLoS ONE 6(1): e16368.

Mittapalli O, Rivera-Vega L, Bhandary B, Bautista M, Mamidala P, Michel A, Shukle R, Mian R. 2011. Cloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura. Bulletin of Entomological Research 12:1-8

Rivera-Vega L and Mittapalli O. 2010. Molecular characterization of mariner–like elements in emerald ash borer, Agrilus planipennis (Coleoptera, Polyphaga). Archives of Insect Biochemistry & Physiology. 74(4): 205-216.

Bhandary B, Rajarapu SP, Rivera-Vega L, Mittapalli O. 2010. Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR. Journal of Visualized Experiments (39).

Saballos A, Vermerris W, Rivera L and Ejeta G. 2008. Allelic Association, Chemical Characterization, and Saccharification Properties of brown midrib Mutants of Sorghum (Sorghum bicolor (L.) Moench). Bioenergy Research. 1: 193-204 Field of Study

Major Field: Entomology

viii

Table of Contents

Abstract ...... ii Dedication ...... v Acknowledgements ...... vi Vita ...... viii Table of Contents ...... ix List of Tables ...... xii List of Figures ...... xiv

Chapter 1 ...... 1 Introduction ...... 1 1.1 Framework ...... 1 1.2 Research objectives ...... 7 1.3 References ...... 8

Chapter 2 ...... 15 Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem ...... 15 2.1 Abstract ...... 15 2.2 Introduction ...... 16 2.3 Materials and Methods ...... 18 2.3.1 Sample Collection and RNA extraction ...... 18 2.3.2 cDNA library construction ...... 19 2.3.3 Roche 454 sequencing ...... 19 2.3.4 Bioinformatic Analysis ...... 20 2.3.5 Gene Mining and Quantitative Real Time PCR ...... 21 2.3.6 Microsatellites Analysis ...... 22 2.3.7 Data Deposition ...... 22

ix

2.4 Results and Discussion ...... 23 2.4.1 Transcriptome Analysis ...... 23 2.4.2 Comparative analysis ...... 24 2.4.3 Gene Ontology ...... 25 2.4.4 Metabolic Pathways ...... 26 2.4.5 Domains...... 29 2.4.6 Genes of Interest ...... 31 2.4.7 Molecular Markers ...... 35 2.5 Conclusions ...... 37 2.6 References ...... 38

Chapter 3 ...... 53 Evaluation of reference genes for expression studies in ash (Fraxinus spp.) ...... 53 3.1 Abstract ...... 53 3.2 Introduction ...... 54 3.3 Materials and methods ...... 55 3.4 Results and discussion ...... 57 3. 1 GeNorm Analysis...... 58 3.4.2 NormFinder Analysis ...... 59 3.5 References ...... 61

Chapter 4 ...... 63 Gene Expression Profile of Three Ash species (Fraxinus spp) using RNA-Seq...... 63 4.1 Abstract ...... 63 4.2 Introduction ...... 64 4.3 Materials and Methods ...... 66 4.3.1 Samples and RNA isolation ...... 66 4.3.2 cDNA library construction and Sequencing ...... 67 4.3.3 De novo assembly ...... 67 4.3.4 Functional annotation...... 68

x

4.3.5 Ortholog Identification and Expression analysis ...... 69 4.3.6 Gene validation and real time quantitative PCR (RT-qPCR) ...... 69 4.4 Results and Discussion ...... 71 4.4.1 Functional Comparisons ...... 72 4.4.2 Differential expression analysis ...... 73 4.4.3 Validation ...... 75 4.4.4 Molecular marker prediction ...... 77 4.5 References ...... 80

Chapter 5 ...... 86 Conclusions ...... 86 5.1 Summary ...... 86 5.2 Future Studies ...... 87 5.3 References ...... 89

Bibliography ...... 90 Appendices ...... 114 Appendix A: Supplementary Table 4.1-Differentially expressed orthologs ...... 114 A.1 F. mandshurica vs F. nigra ...... 114 A.2 F. mandshurica vs F. pennsylvanica ...... 122 A.3 F. nigra vs F. pennsylvanica ...... 140 Appendix B: Reactive Oxygen Species (ROS) in Fraxinus spp...... 153 B.1 Ascorbate Peroxidase ...... 153 B.2 Monodehydroascorbate reductase ...... 154 B.3 Ferritin...... 155 B.4 Dehydroascorbate Reductase (DHAR) ...... 156 B.5 Peroxiredoxin ...... 157 B.6 Thioredoxin ...... 158 B.7 Manganese Superoxide Dismutase ...... 159

xi

List of Tables

Table 2. 1 Putative defense pathways identified in the phloem of Fraxinus mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata pooled phloem database...... 28

Table 2. 2 Genes of interest recoverd from the Fraxinus mandshurica, F. Americana, F. pennsylvanica, F. nigra and F. quadrangulata phloem pooled transcriptomic database...... 31

Table 2. 3 Fold change of eight candidate genes in three Fraxinus species. Species with lowest expression used as calibrator. Glucose-6-phosphate dehydrogenase used as reference gene for normalization. Numbers in parenthesis indicate fold change range according to standard deviation (N=2). Abbreviations stand for: CDPK- calcium dependent protein kinase, LOX3- lipoxygenase 3, MYB-myeloblast transcription factor, ERF-ethylene response factor and WRKY-WRKY transcription factor...... 32

Table 3. 1Primer sequences of the six potential reference genes for Fraxinus spp. The abbreviations stand for Cyp:cyclophilin, eEF1β: translation elongation factor beta, G6PD: glucose-6-phosphate dehydrogenase, RPL13: Ribosomal protein L13, eEF1α: translation elongation factor 1alpha and E3upl: ubiquitin ...... 57

Table 3. 2Fraxinus reference genes ranking according to NormFinder and geNorm softwares. Numbers in parenthesis indicate stability values, smaller values indicate higher stability. Abbreviations stand for Cyp: Cyclophilin, eEF1β: translation elongation factor β, G6PD: Glucose-6-phosphate dehydrogenase, RPL13: Ribosomal protein L13, eEF1α: translation elongation factor 1α, E3upl: E3 ubiquitin protein ligase...... 60

Table 4. 1Primer sequences for eight genes used in real time quantitative PCR (RTqPCR) for RNA-Seq validation...... 70

Table 4. 2Statistics of the assembly of the transcriptomes of Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem...... 71

xii

Table 4. 3Top protein domains in Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem databases...... 73

Table 4. 4Top ten metabolic pathways in Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem databases...... 73

Table 4. 5Candidate genes potentially involved in response to biotic and abiotic stimulus in both resistant (Fraxinus mandshurica) and susceptible (F. nigra and F. pennsylvanica) phloem according to gene ontology (GO) annotation...... 74

Table 4. 6Comparison of single nucleotide polymorphism types among Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem...... 78

Table 4. 7Summary of microsatellite repeats predicted in Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem...... 79

xiii

List of Figures

Figure 2. 1 (A) Summary of Fraxinus phloem database which includes F. mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata phloem transcriptomic sequences. The singleton sequences are represented by clear bars and the contig sequences by shaded bars (insert). (B) A pie chart showing species distribution of the top BLAST hits of the Fraxinus phloem database to various plant species. (C) A venn diagram showing the comparisons of the sequences from Fraxinus phloem database with the genome sequences of Arabidopsis thaliana and Populus trichocarpa...... 23

Figure 2. 2 Depiction of Gene ontology (GO) terms for the transcriptomic sequences of Fraxinus mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata phloem database (A) Biological process, (B) Cellular component, and (C) Molecular functions ...... 27

Figure 3. 1Average cycles to threshold (Ct) values for the six candidate reference genes used for all the Fraxinus spp. samples.*PY:phloem from young trees (<5 yrs old), PO: phloem from old trees (>5 yrs old), LY:leaves from young trees, LO: leaves from old trees, IL: immature leaves, ML: mature leaves, SH: shoots, RT: roots, Above: phloem samples above girdling, Below: phloem samples below girdling. The acronyms for the genes stand for: Cyp: Cyclophilin, eEF1β: translation elongation factor β, G6PD: Glucose-6-phosphate dehydrogenase, RPL13: Ribosomal protein L13, eEF1α: translation elongation factor 1α, E3upl: E3 ubiquitin protein ligase...... 58

Figure 4. 1 Venn diagram of Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem ortholog comparisons. Sequences similar at an E-value cutoff of 1e-10 at the amino acid level using tBLASTx searches were considered orthologs...... 72

Figure 4. 2Expression comparisons between RNA-Seq and real time quantitative PCR in eight genes for a gene expression comparison between (A) resistant Manchurian (Fraxinus mandshurica) and susceptible black (F. nigra)ash and (B) resistant Manchurian and susceptible green (F. pennsylvanica) ash. Fold change was calculated by dividing the expression level of resistant by susceptible ash; if expression above X-axis then resistant ash was higher than susceptible, if expression below X-axis then susceptible ash was higher than resistant. The genes analyzed were: an allergen, an F-box protein, a Zinc finger CCCH transcription factor,

xiv phenylalanine ammonia (PAL), suppressor of G2 allele of SKP1 (Sgt1), transcinnamante-4- monooxygenase (TC4M), universal stress protein (USP) and a WRKY transcription factor...... 76

xv

Chapter 1

Introduction

1.1 Framework

Ash (Fraxinus spp) is a genus of deciduous trees from the Oleaceae family widely spread in eastern North America, parts of Canada and western United States. There are approximately 43 species of Fraxinus, out of which twenty can be found in North

America [Wallander, 2008]. White ash (F. americana) was probably the most commercially used species for manufacturing of products like tool handles, baseball bats, flooring, and furniture [MacFarlene and Meyer, 2005]. Green ash (F. pennsylvannica) is probably the most widely distributed of all North American ash [Fowells, 1965]. It is resistant to abiotic stress such as drought [Abrams et al, 1990] which has also made it a preferred ash species for plantation in urban areas [MacFarlane and Meyer, 2005].

Currently, it is considered that the survival of this genus in North America is threatened by the unstoppable spread of an invasive insect pest – the emerald ash borer (Agrilus plannipenis Fairmaire) [Poland and McCullough, 2006].

A. planipennis is a buprestid or metallic wood boring native to northeastern

Asia. Among the countries where it has been found are China, Japan, Korea, Mongolia,

Russia and Taiwan. In Asia, its host range can be both native Fraxinus spp. such as F.

1 chinensis, F. mandshurica and F. rhynchophylla and introduced ash such as F. pennsylvanica and F. velutina, plus Juglans mandshurica, Pterocarya rhoifolia and

Ulmus davidiana [Liu et al 2003]. A. planipennis attacks all North American ash species it has encountered thus far, including green, white, black, and blue ash [Anulewicz et al,

2007; Rebek et al, 2008]. In contrast to the significant impact caused in North America, the incidence of damage in Asia has been reported to be isolated and limited to trees under stress. This difference in resistance has been attributed to defense mechanism developed by Asian species to A. planipennis in the course of their co-evolutionary history [Rebek et al, 2008]. It has been hypothesized that the mode of resistance against

A. planipennis in Asian ash could be due to induction and/or biosynthesis of phenolic compounds such as hydroxycoumarins and phenylethanoids [Eyles et al, 2007]. A rapid rate of wound browning, high soluble protein concentration, low trypsin inhibitor activities and peroxidase activity has also been identified in resistant ash [Cipollini et al,

2011].

Agrilus planipennis adults feed on foliage for a week or two. Then, mating occurs and female lay about 50-100 eggs individually in bark crevices, cracks and or surface of trunk. Eggs hatch in about 10 days. The larvae bore through the bark and feed on the phloem and vascular cambium excavating serpentine galleries just beneath the bark [Wei et al, 2007]. This leads to girdling and ultimately killing of trees within 1-4 years post colonization [Rebek et al, 2008]. Late instars complete development prior to overwintering in the fall and pupate in the spring of the following year. Adult emergence occurs between May and August [Wei et al, 2007]. The devastation of this genus can have significant impact in ecosystems due to the formation of canopy gaps which can

2 have an impact on community structure as well as alter the microenvironment in the forest and impact nutrient cycles [Gandhi and Herms, 2010].

The impact of A. planipennis to North American natural and urban landscape is not only of ecological importance but also has significant economic implications. Losses in landscape value for ash trees in Ohio alone will be approximately $0.8-3.4 billion, assuming complete loss [Sydnor et al, 2007]. Recent predictions indicate that if the spread continues at the current pace, the mean discounted cost of treating, removing and replacing ash trees in developed communities will be approximately $10.7 billion

[Kovacs et al, 2010].

Agrilus planipennis continues to spread throughout the United States and Canada at an alarming rate [APHIS, 2011]. Despite its current and potential impact, little information on the molecular biology of either the pest or its host is available – specifically DNA (genetics and ) and RNA (transcriptomics). This lack of knowledge not only hinders our understanding of ash but also prevents the identification of genetic factors that could be vital to develop resistance against A. planipennis.

Transcriptomics, or the study of RNA molecules in a particular tissue or organism, has been revolutionized by the introduction of next generation sequencing

(NGS) [Morozova et al, 2009]. Sanger sequencing method is considered as first generation technology, techniques such as 454 pyrosequencing (Roche Diagnostics),

Illumina Solexa sequencing (Illumina, Inc.), SoLiD (Applied Biosystems), etc. are usually referred to as NGS. One of the most significant advances offered by NGS is the generation of high volumes of data at a relatively low cost [Metzker, 2010]. Also, it is

3 possible to identify and quantify rare transcripts without knowledge of a particular gene, transcriptome profiling, single nucleotide polymorphism discovery, mutation mapping, and alternative splicing identification, etc [Bentley, 2006; Novaes et al, 2008; Weber et al, 2007; Lister et al, 2009]. Another of the many advantages of using techniques such as these is that it allows for studies in non model organisms, for which little to no molecular knowledge exists (e.g. Cucumis sativus [Guo et al, 2010], Castanea dentata [Barakat et al, 2009], Pinus contorta [Parchman et al, 2010], Persea americana [Wall et al, 2009], etc.). Such techniques are invaluable to obtain as much information as possible in a cost and time effective manner for a non-model system like ash-emerald ash borer.

454 pyrosequencing was the first NGS released to the market. It uses an in vitro amplification method known as emulsion PCR, where a single fragment is amplified in a bead. Next, these beads are sequenced using a pyrosequencing reaction. This is a sequencing-by-synthesis method that measures the release of pyrophosphate. Solutions of dNTPs (A,T,G,C) are added one at a time and whenever a complementary base is incorporated a light is produced. A program with the order in which correct nucleotides were incorporated is used to determine the sequence [Morozova and Marra, 2008;

Margulies et al, 2005]. 454 pyrosequencing provides longer reads than most NGS platforms and has faster runs, nevertheless, the reagents are costly and it has a high error rate [Metzker, 2010].

Illumina (also known as SOLEXA) sequencing platform uses a flow cell rather than a bead to fix the transcripts for sequencing. Here a single fragment is attached to the surface using adapters. The molecule then bends over creating a “bridge” and this is used as template for amplification creating clusters of the same fragment. These clusters are

4 then sequenced using a sequence-by-synthesis technique in which different dNTPs are labeled with different colors to distinguish among them. The sequence is deduced by reading the color that illuminates after each base is added [Mortazavi and Marra, 2008;

Bennett, 2004]. This platform is perhaps the most used although it has low multiplexing capabilities (sequencing of several samples on same flow cell) and reads are shorter than the ones obtained through pyrosequencing [Metzker, 2010].

RNA-Seq refers to the comparison and contrast of transcriptomes through deep sequencing. This technique allows for identification of differentially expressed genes, gene variants, identification of rare transcripts, etc. and has become an alternative for microarrays. Unlike microarrays prior transcriptomic knowledge of the organism is suggested but not required. Also, microarrays are more limited to identify isoforms, they require more starting material (RNA) and the costs for analyzing large genomes is relatively higher[Wang et al 2009]. Nevertheless, because microarrays have been around for longer, the inherent biases and complications of the techniques have already been studied and thus accounted for in the analyses of the results. In RNA-Seq, these biases are still being identified (i.e. gene expression and gene ontology assignments differences due to transcript length) [Young et al, 2010; Oshlack and Wakefield, 2009; Hansen et al,

2010; Roberts et al, 2011; Wu et al, 2011].

One of the challenges of analyzing such high throughput data like the ones obtained with NGS is how to identify relevant information for the system of interest. A bioinformatic resource that has helped with assigning higher-order functional meaning to cells or organisms based on genetic information is the Kyoto Encyclopedia of Genes and

Genomes or KEGG [Kanehisa et al, 2004]. KEGG consists of nineteen databases for

5 genomic, chemical and network (metabolic) information including pathways maps, functional hierarchies, diseases, drugs, , metabolites, etc [Kanehisa et al, 2008].

Genes can be mapped to higher functions using these databases. KEGG databases are quite comprehensive, are curated by hand, and can be linked to other useful databases such as NCBI, Gene Ontology (GO), SwissProt, etc. [Bauer-Mehren et al, 2009;

Viswanathan et al, 2008]. KEGG uses information from multiple organisms in order to create the reference map of pathways, this allows for maps to usually be larger, although it is possible to isolate which reactions occur in a given organism [Green and Karp,

2006]. In many cases this can lead to redundancy, for example a gene that maps to

“biosynthesis of terpenoids” will also map to “biosynthesis of phenylpropanoids” given that the first can be considered part of the latter.

Another resource is the use of Gene Ontology (GO) to annotate sequences based on standardized terms (ontologies). The GO project was created by the GO consortium in an effort to provide structure, controlled vocabularies and classifications for genes, gene products and sequences freely available for the scientific community. Ontologies can be part of three main groups: molecular function (MF), biological process (BP), and cellular component (CC). MF describes activities such as catalytic and binding activities at the molecular level. These terms represent the activities but not where, when or in what context they take place. BP describes the goal accomplished by one or more molecular functions (i.e. defense). CC indicates locations at subcellular levels [GOConsortium,

2004]. GO annotations are widely used to identify which biological processes, functions or locations are significantly over or under represented in a group of genes [Rhee et al,

2008]. A simple count of terms is usually the most common way of representing this

6 data; however, statistics that account for biases (i.e. probability of picking a gene annotated to a specific term because the term is highly present in the reference) can provide the most accurate and reliable information. Software like GOseq account for these biases [Young et al, 2010].

A technique widely used in transcriptomic studies is the real time quantitative polymerase chain reaction (RTqPCR), a variation to Mullis PCR [1987]. This type of

PCR allows for the quantification of either relative or absolute quantities of nucleic acids in a sample. RTqPCR amplifies a specific target monitoring the amplification using fluorescent dyes. The number of cycles required to reach a threshold is calculated and this correlates with the initial amount in the sample [Valasek and Repa, 2005]. Some of the features that have made RTqPCR a widely used tool include its rapidity to obtain results, sensitivity, specificity, and no need for post PCR manipulation [Gachon et al,

2004]. Nevertheless, similar to other PCR variations, there could be potential inhibitors in the samples that might affect results, a stringent criterion for primer design is required and proper sample handling is primordial. RTqPCR has been used for gene expression studies, validation of DNA microarray results, identification of mutations, bacterial counts, etc [Morey et al, 2006; Matsuki et al 2004; Bai et al, 2004].

1.2 Research objectives

The overarching objective of this thesis was to characterize the transcriptome of ash (Fraxinus spp), including North American and Asian species, in order to learn the genetic makeup of ash phloem, which would then lay the foundation for future functional

7 and applied studies. This overall objective was achieved through the following specific objectives:

1. Describe the phloem transcriptome of Fraxinus spp. and predict potential molecular markers using 454 pyrosequecing technology (Chapter 21).

2. Identify a reliable set of reference genes for gene expression studies in ash

(Chapter 32).

3. Compare and contrast constitutive gene expression profiles of black, green and

Manchurian ash using RNASeq (Chapter 4).

1.3 References

Abrams MD, Kubiske ME, Steiner KC. 1990. Drought adaptations and responses in five

genotypes of Fraxinus pennsylvanica Marsh.: photosynthesis, water relations and

leaf morphology. Tree Physiol. 6:305-315.

Anulewicz AC, McCullough Dg, Cappaert Dl. 2007. Emerald ash borer (Agrilus

planipennis) density and canopy dieback in three North American ash species.

Arboric Urban For 33:338-349.

APHIS-USDA. 2011. Cooperative Emerald Ash Borer project. Quarantine map.

Accessed online at:

http://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloa

ds/multistateeab.pdf

1 Pubilished as “Transcriptomic signatures of ash (Fraxinus spp.) phloem.” Bai et al, 2011. 2 Published as “Evaluation of reference genes for expression studies in ash (Fraxinus spp.).” Rivera-Vega et al, 2011.

8

Bai RK, Wong LJC. 2004. Detection and quantification of heteroplasmic mutant

mitochondrial DNA by Real-time amplification refractory mutation system

quantitative PCR analysis: a single-step approach. Clinic Chemistry. 50: 996-

1001.

Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff

R, Carlson JE. 2009. Comparison of the transcriptomes of American chestnut

(Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the

chestnut blight infection. BMC Plant Biol 9: 51.

Bauer-Mehren A, Furlong LI, Sanz F. 2009. Pathway databases and tools for their

exploitation: benefits, current limitations and challenges. Molecular Systems

Biology. 5:290.

Bennett ST. 2004. Solexa Ltd. . 5:433-438.

Bentley DR. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545–552.

Cipollini D, Wang Q, Whitehill JGA, Powell JR, Bonello P, Herms DA. 2011.

Distinguishing defensive characteristics in the phloem of ash species resistant and

susceptible to emerald ash borer. J Chem Ecol. 37: 450-459.

Eyles A, Jones W, Riedl K, Cipollini D, Schwartz S, Chan K, Herms DA, Bonello P.

2007. Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and

two North American ash species (Fraxinus americana and Fraxinus

pennsylvanica). J Chem Ecol. 33:1430-1448.

Fowells HA. 1965. Silvics of forest trees of the United States. USDA Forest Service

Handbook. 271 p.

9

Gachon C, Mingam A, Charrier B. 2004. Real-time PCR: what relevance to plant

studies? J Exp Bot. 55:1445-1454.

Gandhi KJK, Herms DA. 2010. Direct and indirect effects of alien insect herbivores on

ecological processes and interactions in forests of eastern North America. Biol

Invasions 12: 389–405.

Gene Ontology Consortium. 2004. The gene ontology (GO) database and information

resource. Nucl Acids Res. 32:D258-D261.

Green ML, Karp PD. 2006. The outcomes of pathway database computations depend on

pathway ontology. Nucl Acids Res. 34:3687-3697.

Guo S, Zheng Y, Joung J, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z.

2010. Transcriptome sequencing and comparative analysis of cucumber flowers

with different sex types. BMC Genomics 11: 384–396.

Haack RA, Jendek E, Liu HP, Marchant KR, Petrice TR, Poland TM, Ye H. 2002. The

emerald ash borer: a new exotic pest in North America. Newsletter of the

Michigan Entomological Society. 47:1-5.

Hansen KD, Brenner SE, Dudoit S. 2010. Biases in Illumina transcriptome sequencing

caused by randome hexamer priming. Nucl Acids Res. 35:e131.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima

S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life

and the environment. Nucl Acids Res. 36: D480-D484.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for

deciphering the genome. Nucl Acids Res. 32:D277-D280.

10

Kovacs KF, Haight RG, McCullough DG, Mercader RJ, Seigert NW, Liebhold AM.

2009. Cost of potential emerald ash borer damage in U.S. communities. Ecol

Econ. pp 2009–2019.

Lister R, Gregory BD, Ecker JR. 2009. Next is now: new technologies for sequencing of

genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12: 107–118.

Liu H, Bauer LS, Gao R, Zhao T, Petrice TR, Haack RA. 2003. Exploratory survey for

the emerald ash borer, Agrilus planipennis (Coleoptera: ), and its

natural enemies in China. Great Lakes Entomol. 36:191-204.

MacFarlane DW, Meyer SP. 2005. Characteristics and distribution of potential ash tree

hosts for emerald ash borer. For Ecol Manage 213:15-24.

Margulies M. Egholm M, Altman WE, Attiya S, Bader JS, Bemben LS, Berka J,

Braverman MS, et al. 2005. Genome sequencing in open microfabricated high

density picoliter reactors. Nature. 15:376-380.

Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. 2004. Use of 16SrRNA gene-

targeted group=specific primers for real=time PCR analysis of predominant

bacteria in human feces. Applied Environ Microb. 10:7220-7228.

Metzker ML. 2010. Sequencing technologies-the next generation. Nature Reviews

Genetics. 11:31-46.

Morey JS, Ryan JC, Van Dolah FM. 2006. Microarray validation: factors influencing

correlation between oligonucleotide microarrays and real-time PCR. Biol Proced

Online. 8:175-193.

Morozova O, Marra MA. 2008. Applications of next-generation sequencing technologies

in . Genomics 92:255-264.

11

Morozova O, Hirst M, Marra MA. 2009. Applications of new sequencing technologies

for transcriptome analysis. Annual Review of Genomics and Human Genetics.

10:135-151.

Mulli KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed

chain reaction. Methods in Enzymology. 155:335-350.

Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M.

2008. High-throughput gene and SNP discovery in Eucalyptus grandis, an

uncharacterized genome. BMC Genomics 9: 312.

Oshlack A, Wakefield MJ. 2009. Transcript length bias in RNA-seq data confounds . Biology Direct. 4:14.

Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle A. 2010. Transcriptome

sequencing in an ecologically important tree species: assembly, annotation, and

marker discovery. BMC Genomics 11: 180.

Poland T, McCullough D. 2006. Emerald ash borer: invasion of the urban forest and the

threat to North America‟s ash resource. J Forestry 104: 118–124.

Rebek EJ, Herms DA, Smitley DR. 2008. Interspecific variation in resistance to emerald

ash borer (Coleoptera: Buprestidae) among North American and Asian Ash

(Fraxinus spp.). Environ Entomol 37: 242–246.

Rhee SY, Wood V, Dolinski K, Draghici S. 2008. Use and misuse of the gene ontology

annotations. Nature Reviews Genetics. 9:509-515.

Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. 2011. Improving RNA-Seq

expression estimates by correcting for fragment bias. Genome Biology. 1:R22.

12

Sydnor TD, Burngardner M, Todd A. 2007. The potential economic impacts of merald

ash borer (Agrilus planipennis) on Ohio, U.S., communities. Arbor Urban Forest.

33:48-54.

Valasek MA, Repa JJ. 2005. The power of real-time PCR. Adv Physiol Edu. 29:151-159.

Viswanathan, GA, Seto J, Patil S, Nudelman G, Sealfon SC. 2008. Getting started in

biological pathway construction and analysis. PLoS Computational Biology.

4:e16.

Wall PK, Leebens-Mack J, Chanderbali A, Barakat A, Wolcott E, Liang H, Landherr L,

Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman

N, dePamphilis CW. 2009. Comparison of next generation sequencing

technologies for transcriptome characterization. BMC Genomics. 10:347.

Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant

systematic and evolution. 273:25-49.

Wang XY, Yang ZQ, Gould JR, Zhang Y-N, Liu GJ, Liu E. 2010. The biology and

ecology of the emerald ash borer, Agrilus planipennis, in China. Journal of Insect

Science. 10:1-23.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews. 10:57-63.

Weber A, Weber K, Carr K, Wilkerson C, Ohlrogge J. 2007. Sampling the Arabidopsis

transcriptome with massively parallel pyrosequencing. Plant Physiol 144: 32–42.

Wei X, Wu Y, Reardon R, Sun TH, Lu M, Sun JH. 2007. Biology and damage traits of

emerald ash borer (Agrilus planipennis Fairmaire) in China. Insect Science 14:

367–373.

13

Wu Z, Wang X, Zhang X. 2011. Using non-uniform read distribution models to improve

isoform expression inference in RNA-Seq. . 27:502-508.

Young MD, Wakefield MJ, Smyth G, Oshlack A. 2010. Gene ontology analysis for

RNA-Seq: accounting for selection bias. Genome Biology. 11:R14.

14

Chapter 2

Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

2.1 Abstract

Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer

(Agrilus planipennis), a wood-boring beetle endemic to eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the

Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash.

Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash.

Intriguingly, 45% of the deduced were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein

15 kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotidepolymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue upon which A. planipennis feeds. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

2.2 Introduction

Ash (Fraxinus) is a dominant tree genus in many urban and forest landscapes of

North America (NA) [MacFarlane and Meyer, 2005; Raupp et al, 2006]. The emerald ash borer (Agrilus planipennis Fairmaire, EAB), which is indigenous to eastern Asia, has killed millions of ash trees since its accidental introduction to NA, primarily in the midwestern United States and southeastern Ontario [Herms et al, 2004; Poland and

McCullough, 2006]. Larvae feed on phloem and outer xylem of trees of all sizes, girdling the tree and ultimately killing it within 1–4 years after symptoms become apparent

[Herms et al, 2004; Poland and McCullough, 2006]. Black (F. nigra Marshall), green (F. pennsylvanica Marshall), and white ash (F. americana L.) are known to be highly susceptible [Smith, 2006], while blue ash (F. quadrangulata Michx) appears to be less preferred [Anulewicz et al, 2007]. If the pattern of invasion continues, A. planipennis has

16 the potential to decimate ash throughout NA with substantial economic and ecological impact [Kovacs et al, 2009; Gandhi and Herms, 2010].

Conversely, A. planipennis is not reported to be a major pest in Asia, where

Manchurian ash (F. mandshurica Rupr) is a primary host [Yu, 1992]. In a common garden experiment, Manchurian ash was found to be much more resistant to A. planipennis than were NA green and white ash, perhaps by virtue of the co-evolutionary history shared by A. planipennis and Manchurian ash [Rebek et al, 2008]. Phloem tissue of Manchurian ash was found to have high constitutive concentrations of phenolic-based hydroxycoumarins, phenylethanoids and calceloariosides, which may contribute to its resistance to A. planipennis [Eyles et al, 2007].

Second generation sequencing technologies such as 454 pyrosequencing have been applied to a wide variety of studies like transcriptome sequencing, single nucleotide polymorphism (SNP) discovery, mutation mapping, alternative splicing identification etc.

[Bentley, 2006, Novaes et al, 2008; Weber et al, 2007; Lister et al, 2009]. In particular, gene discovery via transcriptome analysis has greatly helped in genomic analysis of several non-model organisms including plants viz., Cucumis sativus [Guo et al, 2010],

Eucalyptus grandis [Novaes et al, 2008], Castanea dentata and C. mollisima [Barakat et al, 2009], and Pinus contorta [Parchman et al, 2010]. Roche 454 GS FLX Titanium is a high throughput sequencing platform that makes it possible to generate massive amounts of information in a short period of time with unprecedented high sequencing depth and low cost [Moore et al, 2006]. The generated expressed sequenced tags (ESTs) databases are invaluable for gene mining and annotation [Wicker et al, 2006; Cheung et al, 2008;

Seki et al, 2002; Emrich et al, 2007; Mao et al, 2008], phylogenetic analysis [Nishiyama

17 et al, 2003], discovery of molecular markers [Gonzalo et al, 2005] and expression analysis [Barbazuk et al, 2007].

Given the status of A. planipennis as an aggressive pest of NA ash trees, we undertook a functional genomics approach to identify the repertoire of genes expressed in phloem tissue of different ash species including green, white, black, blue, and

Manchurian ash. This study will enable us to identify genes that are potentially involved in A. planipennis resistance of Manchurian ash, and to characterize the genetic makeup of ash phloem for future studies. Results stemming from this study could be used in future ash targeted breeding programs and increase fundamental understanding of interaction between ash trees and wood-borers such as A. planipennis.

2.3 Materials and Methods

2.3.1 Sample Collection and RNA extraction

Two 10 mm in diameter phloem plugs from un-infested (by A. planipennis) green

(F. pennsylvanica cv Patmore, Cimmaron, Summing), white (F. americana cv Sparticus,

Autumn Purple, Autumn Applause and seedling), black (F. nigra cv Fallgold and seedlings), blue (F. quadrangulata seedlings) and Manchurian ash (F. mandshurica seedlings) were collected in February 2009 from a common garden established at Novi,

MI. The trees sampled did not have D-shaped exit holes and/or vertical splits on the trunk which are indicators of EAB infestation [Poland and McCullough, 2006]. At least three different trees were sampled per species and the phloem plugs were immediately wrapped in aluminum foil and stored in liquid nitrogen. Approximately 70 mg of phloem tissue

(phloem plugs homogenized in liquid nitrogen) per species was used for RNA extraction.

18

Total RNA was extracted using Trizol® Reagent (Invitrogen, Carlsberg, CA) following manufacturer‟s protocol and stored at -80oC until further use.

2.3.2 cDNA library construction

The RNA extracted from the five Fraxinus species described above was aliquoted and pooled to construct a cDNA library. RNA isolated from different ash species was pooled in order to capture a diverse population of transcripts. Further, pooling of the

RNA samples represents a cost effective transcriptomic approach to build an EST database for closely related species of a non-model organism. A SMART cDNA library construction kit (Clontech, Mountain View, CA) was used following manufacturer‟s protocol with modifications according to protocol followed at Purdue Genomics Facility: i) A modified CDSIII/3‟ primer (5‟-TAG AGG CCG AGG CGG CCG ACA TGT TTT

GTT TTT TTT TCT TTT TTT TTT VN-3‟; PAGE purified) and SuperScript II reverse transcriptase (Invitrogen, Carlsberg, CA) were used for first-strand cDNA synthesis, ii) cDNA size fractionation was excluded and final products were cleaned and eluted using a

QIAquick PCR purification kit (Qiagen, Valencia, CA).

2.3.3 Roche 454 sequencing

cDNA was sheared by nebulization and DNA fragments of approximately 500–

800 bp were isolated by agarose gel electrophoresis and subsequent extraction. The isolated DNA was blunt ended, ligated to adapters and immobilized on beads. Single stranded DNA was later isolated from these beads. The isolated library was subjected to

Quality Control using RNA 6000 (Agilent Technologies). Concentration and ligation of

19 adapters were estimated using quantitative real-time PCR (qPCR). The emPCR reactions were performed to amplify a single template onto a single sequencing bead. One-quarter of a pico-titer plate was sequenced at the Purdue Genomics Core Facility (West

Lafayette, IN) using the GS FLX Titanium chemistry (Roche Diagnostics, Indianapolis,

IN).

2.3.4 Bioinformatic Analysis

The 454 transcriptome reads were assembled using Newbler software package

(Roche Diagnostics) after the removal of adapter sequences. To achieve better consistency, the contigs and singletons were renamed in the format of

„„ASH454ONE000001‟‟ where „„ASH‟‟ stands for the ash genus, „„454‟‟ for 454 sequencing technology, „„ONE‟‟ for the first trial, and „„000001‟‟ for an arbitrarily assigned number. The ash transcriptome sequences were annotated by searching against

GenBank non-redundant database using the BLASTx algorithm [Altschul et al, 1990].

Also, the sequences were compared to the protein sequences of A. thaliana in TAIR9 release from The Arabidopsis Information Resource (http://www.arabidopsis.org/) and

P.trichocarpa v1.1 (http://genome.jgi-psf.org/Poptr1_1/Poptr1_1.home.html) using

BLASTx algorithm. Protein domains were identified by searching against the Pfam database release 24.0 [Cogill et al, 2008] using HMMER v3 program [Eddy, 1998]. The

Blast2GO software [Conesa et al, 2005; Gotz et al, 2008] was used to predict the functions of the sequences, assign Gene Ontology terms, and predict the metabolic pathways in Kyoto Encyclopedia of Genes and Genome (KEGG) [Kanehisa et al, 2008;

Kanehisa et al, 2006; Kanehisa and Goto, 2000]. Microsatellite markers were identified

20 using the Msatfinder version 2.0.9 program [Thurston and Field, 2005]. SNPs in the library were predicted using gsMapper software (Roche Diagnostics) with an arbitrary criterion of at least 4 reads supporting the consensus or variant.

2.3.5 Gene Mining and Quantitative Real Time PCR

The ash transcriptome database was mined for genes potentially involved in plant defense. The constitutive gene expression profiles of potential early regulators:

CDPK349, CDPK361, MYB, LOX, WRKY and ERF were analyzed using qPCR. cDNA was synthesized from green, black and Manchurian ash using a SuperScriptTM First-

Strand synthesis kit (Invitrogen, Carlsberg, CA) following manufacturer‟s protocol. We selected these three ash species to include one genetically close to Manchurian (black ash) and a species distantly related (green ash) which show different levels of susceptibility to A. planipennis [Anulewicz et al, 2007; Smith, 2006;Wallander, 2008].

Primers were designed using Beacon Designer 7 software (Supplementary Table 2.73).

The cycling parameters were 95oC for 5 min followed by 39 cycles of 95oC for 10 s and

60oC for 30 s ending with a melting curve analysis (65oC to 95oC in increments of 0.5oC every 5 s) to check for nonspecific amplification. Relative gene expression was analyzed by the 2-∆∆CT method [Livak and Schmittgen, 2001]. An ash glucose-6- phosphate dehydrogenase (G6PD) was used as the internal reference gene, which has been previously shown to serve as a good internal control in plants [Jian et al, 2008].

3 For Supplementary material in this chapter refer to Bai et al 2011.

21

2.3.6 Microsatellites Analysis

Samples from eight individual trees of green, white and Manchurian ash were collected from the U.S. Forest Service, Northern Research station experimental plot

Delaware, OH. Genomic DNA was extracted using E.Z.N.A. DNA kit (Omega Bio-Tek,

Northcross, GA). Primers were designed for 25 of the predicted microsatellite markers of which only seven were used for genotyping (Supplementary Table 2.8). Amplifications were performed in 10 µl reactions. Each reaction contained 5 µl of 2X-Failsafe PCR mix

(Epicentre Biotech, Madison, WI), 0.5 U Taq polymerase, 2 pmol reverse primer, 4 pmol modified forward primer (M13 sequence at 5‟ end) and 10 ng of DNA. M13-tagging protocol was followed using 4 pmol of M13 fluorescently-tagged primer (5‟-CAC GAC

GTT GTA AAA CGA C-3‟) [Schuelke, 2000]. Thermocycling conditions were as follows: 94oC for 5 min, 35 cycles of 94oC for 20 s, 59oC for 20 s, 72oC for 30 s followed by eight cycles of 94oC for 30 s, 53oC for 15 s and 72oC for 30 s with a final extension at

72oC for 10 minutes [Michel et al, 2009]. PCR products were genotyped using Beckman-

Coulter CEQ8800XL (Fullerton, CA) at the Molecular and Cellular Imaging Center

(OARDC, Wooster, OH). Alleles were determined using CEQ Fragment Analysis software (Beckman Coulter, Inc., Indianapolis, IN).

2.3.7 Data Deposition

The Roche 454 reads of Fraxinus species were submitted to NCBI Sequence Read

Archive under the accession number of SRA020745.3

22

2.4 Results and Discussion

2.4.1 Transcriptome Analysis

So far, one cDNA library has been developed for F. excelsior (European ash;

NCBI database), and no EST sequences were available in public databases for NA and

Manchurian ash as of October, 2010. The 454 pyrosequencing has made possible genomic studies in non-model organisms because it overcomes the limitations of conventional Sanger sequencing [Parchman et al, 2010]. Our pyrosequencing study contributes a significant number of ESTs for future functional genomic studies in ash, yielding 203,718 total reads and 63,096,022 bases from which 79% and 60% were aligned respectively with an inferred read error of 2.21%. Assembled contigs had an average size of 649 bp with the largest contig being 5,662 bp. The singletons had an average size of 329 bp with the largest being 964 bp. Overall, we obtained 58,673 high quality ash sequences totaling 23,580,430 bp (Figure 2.1a). To our knowledge, this is the first comprehensive study on the transcriptome of ash phloem.

A B C

Figure 2. 1 (A) Summary of Fraxinus phloem database which includes F. mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata phloem transcriptomic sequences. The singleton sequences are represented by clear bars and the contig sequences by shaded bars (insert). (B) A pie chart showing species distribution of the top BLAST hits of the Fraxinus phloem database to various plant species. (C) A venn diagram showing the comparisons of the sequences from Fraxinus phloem database with the genome sequences of Arabidopsis thaliana and Populus trichocarpa.

23

A sequence similarity search was done using BLASTx algorithm. This analysis revealed that 45% of the ash transcriptomic sequences had no significant matches (E value cutoff of 1e-5) to protein sequences found in the GenBank nr database. Ninety- nine percent of the sequences with significant matches matched to plant sequences

(Figure 2.1b), out of which 41.5% matched with Vitis vinifera L., 16.3% with Populus trichocarpa (Torr. & Gray) and 16.9% with Ricinus communis L. In our dataset, 9 sequences matched to viral sequences, 18 to artificial sequences, and 42 to bacterial sequences. These were excluded from further analysis due to possible contamination.

2.4.2 Comparative analysis

The ash transcriptomic sequences were compared to protein sequences of the model plant Arabidopsis thaliana (Brassicaceae) and black cottonwood P. trichocarpa

(Salicaceae) (also known as western balsam poplar or California poplar). These two species were chosen as they represent model plant systems whose genomes have been sequenced. Of the total 58,604 ash sequences, 24,980 (42.6%) had no significant similarity to any protein identified within the genomes of A. thaliana or P. trichocarpa

(Figure 2.1c). Similar observations of species specific transcript sequences were observed in other transcriptomic studies and were attributed to the presence of novel sequences or transcripts of 5‟ and 3‟ untranslated regions or genes with homologs in other species whose biological functions are not yet assigned. [Mittapalli et al, 2010; Lian et al, 2008;

Faara et al, 2008]. About 2,634 (4.5%) sequences were shared between P. trichocarpa and Fraxinus spp., but not with A. thaliana, suggesting that they are potential tree-

24 specific sequences. Only 809 (1.4%) sequences were shared between A. thaliana and

Fraxinus spp (Supplementary Table 2.1). There were 30,182 sequences (51.5%) that were shared among all three plant species under comparison.

Comparative genomics explore similarity with transcriptomes of other species, which can reveal species specific details and define genes which are conserved or diverging [Quesada et al, 2008; Caicedo and Purugganan, 2005]. For such species functional and is possible upon obtaining a good EST database.

2.4.3 Gene Ontology

The derived Fraxinus phloem transcripts were assigned to three functional groups based on Gene Ontology (GO) terminology: biological process, molecular function and cellular component (Supplementary Table 2.2). The software assigned 1,248 biological process terms to 19,958 transcripts (Figure 2.2a), 396 cellular component terms to 17,977 transcripts (Figure 2.2b), and 1,386 molecular function terms to 24,294 transcripts

(Figure 2.2c). The most represented biological process terms were related to development

(36.87%) and carbon utilization (35%). Finally, the majority of terms represented in molecular function were for binding (49.57%) and catalytic activity (36.24%) suggesting a high degree of basal metabolic activity. A previous study documented a higher percentage of transcripts involved in binding and catalytic activity in phloem sap compared to other parts of the plant [Omid et al, 2007]. We identified 417 Fraxinus transcripts encoding for proteins that are potentially involved in stress responses, including 120 transcripts encoding for heat-shock proteins. These proteins could be

25 involved in responding to external stimuli, including biotic and abiotic factors [Wang et al, 2006]. Functional annotation is a prerequisite to better understand transcriptomic data

(especially of non-model systems). The GO facilitates functional characterization of genes, transcripts and proteins of any organism with respect to cellular component, biological process and molecular function in a species independent manner as reported in several other studies [Conesa and Gotz, 2008; Botton et al, 2008; Sathiyamoorthy et al,

2010].

2.4.4 Metabolic Pathways

Overall 4,667 sequences were assigned to 142 KEGG metabolic pathways and the number of transcripts in the different pathways ranged from 1 to 1,422 (Supplementary

Table 2.3). The highest number of transcripts (1,422) corresponded with secondary metabolites biosynthesis pathway (Table 2.1), this is expected given that this is a broader pathway which includes others like phenylpropanoid biosynthesis, terpenoid synthesis, etc. Several transcripts that are involved in 7 biosynthetic pathways for alkaloids including indole alkaloid, isoquinoline alkaloid, tropane, piperidine and pyridine alkaloids were predicted in the ash sequences. Alkaloids are important components of the plant defense system against insect herbivory and so far 12,000 different alkaloids have been reported in plants which are involved in plant defense, growth and development

[Adler et al, 2001; Ziegler and Facchini, 2008]. Nevertheless, to date alkaloids have not been identified in ash phloem [Cipollini et al, 2011; Eyles et al, 2007; Rowe and Conner,

1979].It is important to keep in mind that genes might be involved in more than one

26

Figure 2. 2 Depiction of Gene ontology (GO) terms for the transcriptomic sequences of Fraxinus mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata phloem database (A) Biological process, (B) Cellular component, and (C) Molecular functions

27 pathway, so these genes that are being mapped to alkaloid pathways might in fact be part of other pathways such as biosynthesis of phenylpropanoids or other secondary metabolism. This is one of the reasons why it is vital to analyze the pathways of interest in closer detail.

Table 2. 1 Putative defense pathways identified in the phloem of Fraxinus mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata pooled phloem database.

Pathway # of ESTs Biosynthesis of secondary metabolites 1422 Biosynthesis of plant hormones 668 Biosynthesis of phenylpropanoids 531 Thiamine metabolism 232 Arginine and proline metabolism 191 Cysteine and methionine metabolism 169 Valine, leucine and isoleucine degradation 151 Phenylalanine metabolism 127 Lysine degradation 123 Tryptophan metabolism 123 Tyrosine metabolism 112 Flavonoid biosynthesis 96 Drug metabolism (cyt P450) 93 Metabolism of xenobiotic by cyt P450 72 Anthocyanin biosynthesis 22 Isoflavonoid biosynthesis 10

In this study, we recovered a high number of transcripts (531) that were mapped to the phenylpropanoid biosynthesis pathway. This pathway leads to the production of several phenolic compounds (flavonoids, tannins, coumarins etc.,) that play an important role in plant defense against herbivores, microbes, as well as response to wounding

[Hahlbrock and Scheel, 1989; Treutter, 2005; Bernays, 1981; Dixon et al, 2002]. This correlates with previous ash studies in which a number of these compounds were found in the phloem of both resistant and susceptible ash [Eyles et al, 2007; Cipollini et al, 2011].

28

Although not all of the major genes reported in the pathway were found in this study, this information provides a good basis for further analysis and to better understand the potential role of phenylpropanoids in ash defense against biotic stress.

2.4.5 Protein Domains

A domain search using HMMER3 software identified 2,534 distinct domains in

19,291 ash transcriptomic sequences (Supplementary table 2.4). Among the top Pfam domains, the most abundant were protein kinase domains (588) and protein tyrosine kinase domains (464). Protein kinases are primarily involved in plant signal transduction pathways [Hirt and Scheel, 2000; Tena et al, 2001] and also participate in plant defense responses wherein they play an important role in signaling during pathogen recognition and activation of other plant defense mechanisms [Zhang and Klessig, 2001; Romeis,

2001; Nurnberger and Scheel, 2001]. On the other hand, proteins containing tyrosine kinase domains and protein tyrosine phosphatases (PTPs) regulate abscisic acid (ABA) transduction pathways in plants [Ghelis et al, 2008]. The role of PTPs has been largely ignored; however, a few tyrosine specific phosphatases were reported in A. thaliana

[Kerk et al, 2008; Rayapureddi et al, 2005]. PTPs are documented in Daucus carota,

Mimosa pudica, Arabidopsis hypocotyls and suspension cells [Barizza et al, 1999;

Kameyama et al, 2000; Huang et al, 2003; Sugiyama et al, 2008]. Other abundant domains included metallothionein (263) and RNA recognition motif (RRM, 231). While metallothioneins are primarily involved in copper detoxification [Roosens et al, 2004],

RRM (also known as RNA binding domain or Ribonucleoprotein domain) plays an important role in post transcriptional events and in particular is involved in the 3‟ end

29 processing of chloroplast mRNA, [Schuster and Gruissem, 1991; Maris et al, 2005]. In a recent study, RRMs have emerged as key players in plant morphogenesis and RNA metabolism in chloroplast and mitochondria [Kroeger et al, 2009]. Further, we identified

154 RAS family members, which constitute RAS, RHO, /YPT, ARF and .

RAS and RHO are considered to be important components in signaling cascades

[Wu et al, 2000].

Interestingly, 153 cytochrome P450 domains were predicted in the derived ash sequences. Plant cytochrome P450 monoxygenases are thought to be involved in many biochemical pathways including the biosynthesis of secondary metabolites (e.g. phenylpropanoids, alkaloids, terpenoids, glucosinolates etc.), which have been well studied in plant-insect interactions [Schuler, 1996]. However, plant cytochrome P450s are also involved in the biosynthesis of brassinosteroids and plant growth regulators

[Tanabe et al, 2005; Chapple, 1998].

In total, 92 PPR (pentatricopeptide repeat) domains were identified in the ash sequences. The PPR repeat domain of 35 amino acids are well-known members of both prokaryotes and eukaryotes [Small and Peeters, 2000] and appear to function as sequence-specific RNA-binding proteins involved in post-transcriptional processes within organelles and during translation initiation [Delannoy et al, 2007;

Meierhoff et al, 2003; Mili and Pinol-Romma, 2003; Kotera et al, 2005; Nakamura et al,

2004; Schmitz-Linneweber et al, 2005]. We also identified the PIWI domain in 18 transcripts and the PAZ domain in 6 transcripts. These domains are reported to be up regulated in the egg cell of A. thaliana and the presence of these domains suggests a role in epigenetic regulation through small RNA pathways [Wuest et al, 2010].

30

2.4.6 Genes of Interest

Plants being sessile overcome various biotic and abiotic stress conditions through controlled gene expression. Immediate recognition of the biotic or abiotic factors/stimuli

(i.e. in the early stages) is one of the key factors in plant defense [Maffei et al, 2007]. Of the potential genes of interest listed in Table 2.2, we are particularly interested in those genes that participate in the early stages of plant defense including calcium dependent protein kinases (CDPKs); the transcription factors (TFs) WRKYs, MYBs and ethylene response factor (ERF); and a lipoxygenase (LOX3) Gene expression was quantified using real time quantititative PCR for these genes (Table 2.3).

Table 2. 2 Genes of interest recoverd from the Fraxinus mandshurica, F. Americana, F. pennsylvanica, F. nigra and F. quadrangulata phloem pooled transcriptomic database.

Candidate genes Number of occurrence Proteases 282 cytochrome P450 192 Lipase 94 WRKYs* 47 CDPKs 43 MYB 37 Hydroxyproline-rich glycoprotein 29 Protease/proteinase inhibitors 16 Phytoalexin deficient 4 (PAD4) 11 Hypersensitive-induced response protein 9 DREB 7 Myrosinase 7 Lipoxygenase 6 Jasmonic acid-amino conjugating 3 Pathogen-related protein 3 ERF 2 *Candidate genes assayed in this study (in bold).

31

In the current study, both CDPKs (CDPK 349 and CDPK 361) showed the highest mRNA levels in Manchurian ash followed by black ash and green ash. Interestingly, both

CDPKs of ash significantly matched with CDPK3 of Nicotiana tabacum and P. trichocarpa (1e-14 and 6e-53). In a recent study, it was reported that CDPK3 and

CDPK13 are involved in herbivory-induced signaling network via the regulation of defense related transcriptional machinery in A. thaliana [Kanchiswamy et al, 2010].

Usually a dramatic change in cytosolic Ca2+ is observed through signaling pathways mediated by CDPKs in plants upon biotic and abiotic stress [Pandey et al, 2000; Ludwig et al, 2005; Romeis et al, 2001]. These findings along with the expression analysis could suggest that the recovered Fraxinus CDPKs (349 and 361) may regulate the transcriptional machinery involved in defense response. We posit that the observed

(constitutive) high mRNA levels for both CDPKs in Manchurian ash (compared to the susceptible black and green ash) may represent an enhanced capability to defend against

A. planipennis.

Table 2. 3 Fold change of eight candidate genes in three Fraxinus species. Species with lowest expression used as calibrator. Glucose-6-phosphate dehydrogenase used as reference gene for normalization. Numbers in parenthesis indicate fold change range according to standard deviation (N=2). Abbreviations stand for: CDPK- calcium dependent protein kinase, LOX3- lipoxygenase 3, MYB-myeloblast transcription factor, ERF-ethylene response factor and WRKY-WRKY transcription factor. Gene F. mandshurica F. nigra F. pennsylvanica CDPK349 13786 5640 1 (10839-17535) (5106-6231) (0.31-3.28) 11 1.22 1 CDPK361 (7.42-16.12) (0.72-2.04) (0.92-1.09) 24.87 14.71 1 LOX3 (22.07-28.03) (12.09-17.89) (0.77-1.30) 3.28 1.05 1 MYB10337 (2.67-4.03) (0.99-1.11) (0.82-1.22) 4419 1022 1 ERF (3570-5471) (949-1102) (0.60-1.66) 5.18 1 2.75 WRKY21 (4.47-6.00) (0.62-1.62) (2.39-3.16) 3.69 1.05 1 MYB8679 (3.07-4.42) (0.93-1.20) (0.74-1.36) 1.44 1 8.99 WRKY7 (0.25-8.34) (0.89-1.13) (7.34-11.01)

32

Upon physiological and environmental stimuli TFs (sequence specific DNA binding proteins) modulate transcription of specific target genes by binding to cis- elements located in gene promoters and/or introns [Lee and Young, 2000; Martinez,

2002; Zhang and Wang, 2005]. TFs represent potential candidate genes for developing novel traits in crop plants [Century et al, 2008]. In this transcriptomic study, we found several WRKYs, which are key regulators in higher plants, representing the top ten largest families of transcription factors, and are found throughout the green plants

[Rushton et al, 2010]. These early regulators are involved in modulating defense responses, abiotic stress and biosynthesis of secondary metabolites [Ulker and Somssich,

2010; Dong et al, 2003; Mare et al, 2004; Eulgem et al, 2000].

Expression analysis of two WRKYs (WRKY 7 and WRKY21) revealed no difference in mRNA levels for WRKY 7 among species and higher levels for WRKY21 in Manchurian ash compared to the other ash species assayed. As reviewed in many previous studies, overexpression of OsWRKY resulted in enhanced salt and drought tolerance and the AtWRKY 25 mutants exhibited increased thermosensitivity [Rushton et al, 2010; Li et al, 2009]. Besides these biotic and abiotic stress responses, WRKY proteins are reported to be involved in sugar signaling and seed development [Sun et al,

2005; Sun et al, 2003; Zhou et al, 2009; Ishida et al, 2007].

Both of the MYBs (MYB8679 and MYB10337) assayed were more highly expressed in Manchurian ash compared to the mRNA levels observed for green and black ash (Figure 5E and 5F). MYBs are reported to be involved in several physiological and biochemical processes including defense and stress response, regulation of secondary

33 metabolism, and signaling pathways [Borevitz et al, 2000; Abe et al, 1997; Gocal et al,

1999; Dubos et al, 2010; Newman et al, 2004].

In this study, we found an ethylene response factor (ERF) that showed higher mRNA levels in Manchurian ash than in green and black ash. ERFs are important TFs that bind to the GCC motif of the promoter region of ethylene regulated genes [Pirrello et al, 2006]. Plants usually show an ethylene burst in response to insect attack, which eventually activates polyphenol oxidase, peroxidase, and proteinase inhibitor activities

[von Dahl and Baldwin, 2001]. Ethylene is known to regulate a large number of genes related to defensive proteins and other secondary metabolites [Harfouche et al, 2006;

Winz and Baldwin, 2001]. In a recent study it was shown that several genes involved in ethylene signaling were upregulated during forest tent caterpillar (Malacosma disstria) feeding on hybrid poplar leaves [Philippe et al, 2010].

Expression analysis of an ash lipoxygenase 3 (LOX3) revealed higher mRNA levels in Manchurian ash than in black and green ash. LOXs are versatile catalysts that participate in various physiological processes and are ubiquitous in nature [Kolomiets et al, 2000]. In particular, LOXs in higher plants play a central role in lipid peroxidation processes during defense responses, as precursors for biosynthesis of jasmonic acid related products, and in growth, development, senescence, and during abiotic stress

[Kolomiets et al, 2000; Veronesi et al, 1996; Hwang and Hwang, 2009]. Although it is thought that LOX genes are upregulated upon insect attack and/or wounding, perhaps the already high levels of this LOX3 in Manchurian ash might help for a faster response to the attack.

34

2.4.7 Molecular Markers

We identified 1,272 single nucleotide polymorphisms (SNPs) in 410 ash transcriptome sequences (Table 2.4 and Supplementary table 2.5)including, 823 transitions, (i.e., changes from one purine to another purine or one pyrimidine to another pyrimidine) and 449 transversions (changes between purines or pyrimidines). This ratio of transitions to transversions (2:1) of SNP occurrence in ash corresponds with other systems [Collins and Jukes, 1994]. About 94% of the microsatellite loci predicted were dinucleotide (389) and tri-nucleotide repeats (532) followed by quad-nucleotide (37), hexa-nucleotide (17) and penta-nucleotide (5) repeats (Table 2.5 and Supplementary table

2.6). In general, EST-derived microsatellites are shorter than the genomic microsatellites

[Thiel et al, 2004], however, long dinucleotide microsatellites (CT) 24 were predicted in the current study. Primers were designed for 25 microsatellites (10 primers for dinucleotide repeats and 15 primers for trinucleotide repeats) from the microsatellites predicted. Seventeen of the 25 primers showed single band amplification in a PCR run, of which seven were genotyped to check for polymorphism among three ash species (white, green, and Manchurian). Results indicate all seven loci to be polymorphic among the three species studied, providing a valuable resource of molecular markers for ash (Table

2.6). Similar patterns were reported in transcriptomic studies of C. sativus and E. grandis, wherein 454 pyrosequencing was shown to be an excellent method for large scale prediction of molecular markers for future genetic linkage and QTL analysis in non- model organisms [Novaes et al, 2008; Guo et al, 2010]. Given that these microsatellite and SNP markers were predicted from transcriptomic sequences, they are likely linked to protein coding genes, and therefore might have substantial physiological implications.

35

Table 2. 4 Summary of putative SNPs in Fraxinus mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata phloem database.

SNP types Number Transition A-G 411 C-T 412 Transversion A-C 123 A-T 137 C-G 80 G-T 109 Total 1272

Table 2. 5 Summary of microsatellite loci predicted in Fraxinus mandshurica, F. americana, F. pennsylvanica, F. nigra, and F. quadrangulata phloem transcriptomic sequences. Penta- Hexa- Number of Dinucleotide Trinucleotide Quad nucleotide nucleotide repeats repeats repeats nucleotices repeats repeats 5 312 22 4 14 6 128 9 3 7 52 2 1 8 129 14 1 9 86 10 10 46 3 1 11 34 2 2 12 29 8 13 10 1 14 12 15 8 1 16 8 17 3 1 18 6 19 3 20 9 21 1 22 2 23 1 24 2 Subtotal 389 532 37 5 17

36

Table 2. 6 Number of alleles in seven loci of three ash species (Fraxinus americana- White, F. mandshurica- Manchurian and F. pennsylvanica- Green). - Species ASH1502 ASH2429 ASH7867 ASH9764 ASH35207 ASH43402 ASH53476 White 4 7 4 2 1 5 4 Manchurian 2 1 1 1 2 3 1 Green 5 3 1 3 3 4 2

The basic understanding of host resistance mechanisms in Angiosperm trees, including resistance of ash against wood borers is very limited. To date there is no evidence that any native NA ash species possesses resistance to EAB, which makes the entire ash population highly vulnerable to EAB invasion. Thus, results stemming from this functional genomics approach to discovery of host resistance factors in ash, could inform future ash breeding/genetic improvement programs. Nevertheless, the candidate genes from this study need to be studied more in depth before they can be used in such studies.

2.5 Conclusions

The utilization of second generation sequencing for ash species has identified various metabolic pathways in ash that may contribute to its resistance to A. planipennis.

We found higher constitutive expression of early gene regulators in Manchurian ash than in the NA ash species. Results of this study lay the foundation for future differential gene expression analysis of ash species, and for deciphering secondary metabolic pathways related to plant defense. Molecular markers predicted by this study will inform population genomics and gene-based association studies, and contribute to the

37 development of ash species with resistance to A. planipennis through breeding and/or the application of transgenic technology.

2.6 References

Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. 1997.

Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-

regulated gene expression. Plant Cell 9: 1859–1868.

Adler LS, Karban R, Strauss SY. 2001. Direct and indirect effects of alkaloids on plant

fitness via herbivory and pollination. Ecology 82: 2032–2044.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment

search tool. J Mol Biol 215: 403–410.

Anulewicz AC, McCullough Dg, Cappaert Dl. 2007. Emerald ash borer (Agrilus

planipennis) density and canopy dieback in three North American ash species.

Arboric Urban For 33:338-349.

Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff

R, Carlson JE. 2009. Comparison of the transcriptomes of American chestnut

(Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the

chestnut blight infection. BMC Plant Biol 9: 51.

Barbazuk B, Emrich S, Chen H, Li L, Schnable P. 2007. SNP discovery via 454

transcriptome sequencing. Plant J 51: 910–918.

38

Barizza E, Sciavo FL, Terzi M, Filippini F. 1999. Evidence suggesting protein tyrosine

phosphorylation in plants depends on the developmental conditions. FEBS Lett

447: 191–194.

Bentley DR. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545–552.

Bernays EA. 1981. Plant tannins and insect herbivores: an appraisal. Eco Entomol 6:

353–60.

Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a

conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383–

2393.

Botton A, Galla G, Conesa A, Bachem C, Ramina A, Barcaccia G. 2008. Large-scale

Gene Ontology analysis of plant transcriptome-derived sequences retrieved by

AFLP technology. BMC Genomics 9: 347.

Caicedo AL, Purugganan MD. 2005. Comparative plant genomics. Frontiers and

prospects. Plant Physiol 138: 545–547.

Century K, Reuber TL, Ratcliffe OJ. 2008. Regulating the regulators: the future prospects

for transcription-factor-based agricultural biotechnology products. Plant Physiol

147: 20–29.

Chapple C. 1998. Molecular genetics analysis of plant cytochrome P450-dependent

monooxygenases. Ann Rev Plant Physiol Mol Biol 49: 311–343.

Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levewque CA,

Tisserat N, Buell CR. 2008. Analysis of the Pythium ultimum transcriptome using

Sanger and pyrosequencing approaches. BMC Genomics 9: 542.

39

Cipollini D, Wang Q, Whitehill JGA, Powell JR, Bonello P, Herms DA. 2011.

Distinguishing defensive characteristics in the phloem of ash species resistant and

susceptible to emerald ash borer. J Chem Ecol. 37:450-459.

Cogill P, Finn RD, Bateman A. 2008. Identifying protein domains with Pfam database.

Curr Protoc Bioinformatics 2: 2.5.

Collins DW, Jukes TH. 1994. Rates of transition and transversion in coding sequences

since the human-rodent divergence. Genomics 20: 386–396.

Conesa A, Goetz S, Garcia JM, Terol J, Talon M, Robles Montserrat. 2005. Blast2GO: a

universal tool for annotation, visualization and analysis in functional genomics

research. Bioinformatics 21: 3674–3676.

Conesa A, Gotz S. 2008. Blast2GO: a Comprehensive Suite for Functional Analysis in

Plant Genomics. Int. J. Plant Genomics 28: 619–632.

Delannoy E, Stanley WA, Bond CS, Small ID. 2007. Pentatricopeptide repeat (PPR)

proteins as sequence-specificity factors in post-transcriptional processes in

organelles. Biochem Soc Trans 35: 1643–1647.

Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MS, Wang L. 2002. The phenylpropanoid

pathway and plant defense: a genomics perspective. Mol Plant Pathol 3: 371–390.

Dong J, Chen C, Chen Z. 2003. Expression profiles of the Arabidopsis WRKY gene

superfamily during plant defense response. Plant Mol Biol 51: 21–37.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB

transcription factors in Arabidopsis. Trends Plant Sci 15: 573–581.

Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14: 755–763.

40

Emrich S, Barbazuk W, Li L, Schnable P. 2007. Gene discovery and annotation using

LCM-454 transcriptome sequencing. Genome Res 17: 69–73.

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. TheWRKY superfamily of plant

transcription factors. Trends Plant Sci 5: 199–206.

Eyles A, Jones W, Riedl K, Cipollini D, Schwartz S, Chan K, Herms DA, Bonello P.

2007. Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and

two North American Ash species (F. americana and F. pennsylvanica). J Chem

Ecol 33: 1430–1448.

Gandhi KJK, Herms DA. 2010. Direct and indirect effects of alien insect herbivores on

ecological processes and interactions in forests of eastern North America. Biol

Invasions 12: 389–405.

Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta Jeannette E. 2008. Protein

tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid

dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148:

1668–1680.

Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW. 1999. Long day up-

regulation of a GAMYB gene during Lolium temulentum inflorescence formation.

Plant Physiol 119: 1271–1278.

Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P,

Monforte AJ. 2005. Simple-sequence repeat markers used in merging linkage

maps of melon (Cucumis melo L.). Theor Appl Genet 110: 802–811.

41

Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M,

Talon M, Dopazo J, Conesa A. 2008. High-throughput functional annotation and

data mining with the Blast2GO suite. Nucleic Acids Res 36: 3420–3435.

Guo S, Zheng Y, Joung J, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z.

2010. Transcriptome sequencing and comparative analysis of cucumber flowers

with different sex types. BMC Genomics 11: 384–396.

Hahlbrock K, Scheel D. 1989. Physiology and molecular biology of phenylpropanoid

metabolism. Ann Rev Plant Physiol and Plant Mol Biol 40: 347–369.

Harfouche AL, Shivaji R, Stocker R, Williams PW, Luthe DS. 2006. Ethylene signaling

mediates a maize defense response to insect herbivory. Mol Plant-Microbe

Interact 19: 189–199.

Herms DA, Stone AK, Chatfield JA. 2004. Emerald ash borer: the beginning of the end

of Ash in North America? In: Chatfield JA, Draper EA, Mathers HM, Dyke DE,

Bennett PJ, and Boggs JF. Ornamental Plants: Annual Reports and Research

Reviews eds. 2004, Ohio Agriculture Research and Development Center, Ohio

State University Extension Special Circular 1932003. pp 62–71.

Hirt H, Scheel D. 2000. MAP Kinases in Plant Signal Transduction In Hirt, H: Results

and Problems in Cell Differentiation: (Springer, Heidelberg) . pp 85–93.

Huang HJ, Lin YM, Huang DD, Takahashi T, Sugiyama M. 2003. Protein tyrosine

phosphorylation during phytohormone-stimulated cell proliferation in Arabidopsis

hypocotyls. Plant Cell Physiol 44: 770–775.

42

Hwang IS, Hwang BK. 2009. The pepper 9-lipoxygenase gene CaLOX1functions in

defense and cell death responses to microbial pathogens. Plant Physiol 152: 948–

967.

Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T,

Tabata S, Okada K, Wada T. 2007).Arabidopsis TRANSPARENT TESTA

GLABRA2 is directly regulated by R2R3 MYB transcription factors and is

involved in regulation of GLABRA2 transcription in epidermal differentiation.

Plant Cell 19: 2531–43.

Jian B, Liu B, Bi Y, Hou W, Wu C, Han T. 2008. Validation of internal control for gene

expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9: 59.

Kameyama K, Kishi Y, Yoshimura M, Kanzawa N, Sameshima M, Tsuchiya T. 2000.

Tyrosine phosphorylation in plant bending. Nature 407: 37.

Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, et al. 2010. Regulation

of Arabidopsis defense responses against Spodoptera littoralis by CPKmediated

calcium signaling. BMC Plant Biol 26: 10.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima

S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life

and the environment. Nucleic Acids Res 35:D480–D484.

Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic

Acids Res 28: 27–30.

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T,

Araki M, Hirakawa M. 2006. From genomics to chemical genomics: new

developments in KEGG. Nucleic Acids Res 34: D354–357.

43

Kerk D, Templeton G, Moorhead GB. 2008. Evolutionary radiation pattern of novel

protein phosphatases revealed by analysis of protein data from the completely

sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146:

351–367.

Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ. 2000. A leaf lipoxygenase

of potato induced specifically by pathogen infection. Plant Physiol 124: 1121–

1130.

Kotera E, Tasaka M, Shikanai T. 2005. A pentatricopeptide repeat protein is essential for

RNA editing in chloroplasts. Nature 433: 326–330.

Kovacs KF, Haight RG, McCullough DG, Mercader RJ, Seigert NW, Liebhold AM.

2009. Cost of potential emerald ash borer damage in U.S. communities. Ecol

Econ. pp 2009–2019.

Kroeger TS, Watkins KP, Friso G, Van Wijk KJ, Barkan, A. 2009. A plantspecific RNA

binding domain revealed through analysis of chloroplast group II intron splicing.

Proc. Natl Acad. Sci. U S A 106: 4537–4542.

Lee TI, Young RA. 2000. Transcription of eukaryotic protein-coding genes. Ann Rev

Genet 34: 77–137.

Li S, Fu Q, Huang W, Yu D. 2009. Functional analysis of an Arabidopsis transcription

factor WRKY25 in heat stress. Plant Cell Rep 28: 683–693.

Lister R, Gregory BD, Ecker JR. 2009. Next is now: new technologies for sequencing of

genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12: 107–118.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-

time quantitative PCR and the 2-DDCT method. Methods 25: 402–408.

44

Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones

JDG, Romeis T. 2005. Ethylenemediated cross-talk between calcium-dependent

protein kinase and MAPK signaling controls stress responses in plants. Proc Natl

Acad Sci U S A 102:10736–10741.

MacFarlane DW, Meyer SP. 2005. Characteristics and distribution of potential ash tree

hosts for emerald ash borer. For Ecol Manage 213: 15–24.

Maffei ME, Mithofer A, Boland W. 2007. Before gene expression: early events in plant

insect interaction. Trends Plant Sci 12: 310–16.

Mao C, Evans C, Jensen R, Sobral B. 2008. Identification of new genes in Sinorhizobium

meliloti using the Genome Sequencer FLX system. BMC Microbiol 8: 72.

Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM. 2004. HvWRKY38: a new

transcription factor involved in cold and drought response in barley. Plant Mol

Biol 55: 399–416.

Maris C, Dominguez C, Allain F. 2005. The RNA recognition motif, a plastic RNA-

binding platform to regulate post-transcriptional gene expression FEBS J 272:

2118–2131.

Martinez E (2002) Multi-protein complexes in eukaryotic gene transcription. Plant Mol

Biol 50: 925–947.

Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. 2003. HCF152, an

Arabidopsis RNA binding pentatricopeptide repeat protein involved in the

processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–

1495.

45

Michel AP, Zhang W, Jung JK, Kang S, Mian MAR. 2009. Cross-species amplification

and polymorphism of microsatellite loci in the soybean aphid, Aphis glycines. J.

Econ. Entomol 102: 1389–1392.

Mili S, Pinol-Roma S. 2003. LRP130, a pentatricopeptide motif protein with a

noncanonical RNA-binding domain, is bound in vivo to mitochondrial and

nuclear RNAs. Mol Cell Biol 23: 4972–4982.

Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, Herms DA. 2010. Tissue

specific transcriptomics of the exotic invasive insect pest emerald ash borer. PLoS

One 5: e13708.

Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE. 2006.

Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant

Biol 6: 17.

Nakamura T, Schuster G, Sugiura M, Sugita M. 2004. Chloroplast RNAbinding and

pentatricopeptide repeat proteins. Biochem Soc Trans 32:571–574.

Newman LJ, Perazza DE, Juda L, Campbell MM. 2004. Involvement of the R2R3-MYB,

AtMYB61, in the ectopic lignification and dark-photomorphogenic components

of the det3 mutant phenotype. Plant J 37: 239–250.

Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P,

Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M. 2003. Comparative genomics

of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana:

Implication for land plant evolution. Proc Natl Acad Sci U S A 100: 8007–8012.

46

Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M.

2008. High-throughput gene and SNP discovery in Eucalyptus grandis, an

uncharacterized genome. BMC Genomics 9: 312.

Nurnberger T, Scheel D. 2001. Signal transmission in plant immune response. Trends

Plant Sci 6: 372–379.

Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S. 2007. Characterization of phloem-sap

transcription profile in melon plants. J Exp Bot 58: 3645–3656.

Pandey S, Tiwari SB, Upadhyaya KC, Sopory SK. 2000. Calcium signaling: linking

environmental signals to cellular functions. Crit Rev Plant Sci 19:291–318.

Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle A. 2010. Transcriptome

sequencing in an ecologically important tree species: assembly, annotation, and

marker discovery. BMC Genomics 11: 180.

Philippe RN, Ralph SG, Mansfield SD, Bohlmann J. 2010. Transcriptome profiles of

hybrid poplar (Populus trichocarpa x deltoides) reveal rapid changes in

undamaged, systemic sink leaves after simulated feeding by forest tentcaterpillar

(Malacosoma disstria). New Phytologist 188: 787–802.

Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad

F, Latche A, Pech JC, Bouzayen M. 2006. Sl-ERF2, a tomato ethylene response

factor involved in ethylene response and seed germination. Plant Cell Physiol 47:

1195–1205.

Poland T, McCullough D. 2006. Emerald ash borer: invasion of the urban forest and the

threat to North America‟s ash resource. J Forestry 104: 118–124.

47

Quesada T, Li Z, Dervinis C, Li Y, Bocock PN, Tuskan GA, Casella G, Davis JM, Kirst

M. 2008. Comparative analysis of the transcriptomes of Populus trichocarpa and

Arabidopsis thaliana suggests extensive evolution of gene expression regulation

in angiosperms. New Phytol 180: 408–420.

Raupp MJ, Cumming AB, Raupp EC. 2006. Street tree diversity in eastern North

America and its potential for tree loss to exotic borers. Arbor Urban For 32: 297–

304.

Rayapureddi JP, Kattamuri C, Chan FH, Hegde RS. 2005. Characterization of a plant,

tyrosine-speciWc phosphatase of the aspartyl class. Biochemistry 44: 751–758.

Rebek EJ, Herms DA, Smitley DR. 2008. Interspecific variation in resistance to emerald

ash borer (Coleoptera: Buprestidae) among North American and Asian Ash

(Fraxinus spp.). Environ Entomol 37: 242–246.

Romeis T. 2001. Protein kinases in the plant defence response. Curr. Opin. Plant Biol 4:

407–414.

Romeis T, Ludwig AA, Martin R, Jones JDG. 2001. Calcium-dependent protein kinases

play an essential role in a plant defence response. EMBO J 20:5556–5567.

Roosens NH, Bernard C, Leplae R, Verbruggen N. 2004. Evidence for copper

homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi

caerulescens. FEBS Lett 577: 9–16.

Rowe JW, Conner AH. 1979. Extractives in eastern hardwoods – a review. General

Technical Report FPL. 18 Forest Products Laboratory, US Dept of Agric,

Madison Wisconsin. 72 p.

48

Rushton PJ, Somssich IE, Ringler P Shen QJ (2010) WRKY transcription factors. Trends

Plant Sci 15: 247–258.

Sathiyamoorthy S, In JG, Gayathri S, Kim Y, Yang DC. 2010. Gene ontology study of

methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify

genes involved in secondary metabolic pathway. Russ J Genet 7:828–835.

Schmitz-Linneweber C, Williams-Carrier R, Barkan A. 2005. RNA immunoprecipitation

and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be

associated with the 59 region of mRNAs whose translation it activates. Plant Cell

17: 2791–2804.

Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments.

Nat Biotechnol 18: 233–234.

Schuler MA. 1996. The role of cytochrome P450 monooxygenases in plant-insect

interactions. Plant Physiol 112: 1411–1419.

Schuster G, Gruissem W. 1991. Chloroplast mRNA-39 end processing requires a nuclear-

encoded RNA-binding protein. EMBO J 10: 1493–1502.

Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, et al. 2002. Functional annotation of

a full-length Arabidopsis cDNA collection. Science 296:141–145.

Small ID, Peeters N. 2000. The PPR motif - a TPR-related motif prevalent in plant

organellar proteins. Trends Biochem Sci 25: 46–47.

Smith A. 2006. Effects of community structure on forest susceptibility and response to

the emerald ash borer invasion of the Huron River watershed in southeast

Michigan. MS thesis. The Ohio State University, Columbus, OH.

49

Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y.

2008. Large-scale phosphorylation mapping reveals the extent of tyrosine

phosphorylation in Arabidopsis. Mol Syst Biol 4: 193.

Sun CX, Hoglund AS, Olsson H, Mangelsen E, Jansson C. 2005. Antisense

ligodeoxynucleotide inhibition as a potent strategy in plant biology: identification

of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant Journal

44: 128–138.

Sun CX, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. 2003. A novel

WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by

binding to the sugar responsive elements of the iso1 promoter. Plant Cell 15:

2076–2092.

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A,

Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. 2005. A novel

cytochrome P450 is implicated in brassinosteroid biosynthesis via the

characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant

Cell 17: 776–790.

Tena G, Asai T, Chiu WL, Sheen J. 2001. Plant MAP kinase signaling cascades. Curr.

Opin. Plant Biol 4: 392–400.

Thiel T, Michalek W, Varshney R, Graner A. 2004. Exploiting EST databases for the

development and characterization of gene-derived SSR-markers in barley

(Hordeum vulgare L.). Theor Appl Genet 106: 411–422.

Thurston MI, Field D. 2005. Msatfinder: detection and characterization of microsatellites.

Distributed by the authors at URL:http://www.genomics.ceh.ac.uk/msatfinder/.

50

Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their

biosynthesis. Plant Biol 7: 581–591.

Ulker B, Somssich IE. 2004. WRKY transcription factors: from DNA binding towards

biological function. Curr Opin Plant Biol 7: 491–498.

Veronesi C, Rickauer M, Fournier J, Pouenat ML, Esquerre-Tugaye MT. 1996.

Lipoxygenase gene expression in the tobacco-Phytophthora parasitica nicotianae

interaction. Plant Physiol 112: 997–1004. von Dahl CC, Baldwin IT. 2007. Deciphering the role of ethylene in plant-herbivore

interactions. J Plant Growth Regul 26: 201–209.

Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant

Syst Evol 273: 25–49.

Wang D, Eyles A, Mandich D, Bonello P. 2006. Systemic aspects of host-pathogen

interactions in Austrian pine (Pinus nigra): a approach. Physiol and

Mol Plant Pathol 68: 149–157.

Weber A, Weber K, Carr K, Wilkerson C, Ohlrogge J. 2007. Sampling the Arabidopsis

transcriptome with massively parallel pyrosequencing. Plant Physiol 144: 32–42.

Wicker T, Schlagenhauf E, Graner A, Close T, Keller B, Stein N. 2006. 454 sequencing

put to the test using the complex genome of barley. BMC Genomics 7: 275.

Winz RA, Baldwin IT. 2001. Molecular interactions between the specialist herbivore

Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana

attenuata. IV.Insect-induced ethylene reduces jasmonate-induced nicotine

accumulation by regulating putrescine N-methyltransferase transcripts. Plant

Physiol 125: 189–202.

51

Wu G, Li H, Yang Z. 2000. Arabidopsis RopGAPs are a novel family of Rho GTPase-

activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-

specific GTPase stimulation Plant Physiol 124: 1625–1636.

Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F,

Rahnenfuhrer J, von Mering C, Grossniklaus U. 2010. Arabidopsis Female

Gametophyte Gene Expression Map Reveals Similarities between Plant and

Animal Gametes. Curr Biol 20: 506–512.

Yu C. 1992. Agrilus arcopoli Obenberger. In: Xiao GR (ed) Forest of China, 2nd

edn. Beijing: China Forestry Publishing House. pp 400–401.

Zhang S, Klessig DF. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci

6: 520–527.

Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in

eukaryotes and expansion in plants. BMC Evol Biol 5: 1.

Zhou Y, Zhang X, Kang X, Zhao X, Ni M. 2009. SHORT HYPOCOTYL UNDER

BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate

Arabidopsis seed development. Plant Cell 21: 106–117.

Ziegler J, Facchini PJ. 2008. Alkaloid biosynthesis: metabolism and trafficking. Ann Rev

Plant Biol 59: 735–69.

52

Chapter 3

Evaluation of reference genes for expression studies in ash (Fraxinus spp.)

3.1 Abstract

Ash (Fraxinus spp.) is a dominant tree species in North America, in both managed and natural landscapes. However, due to the rapid invasion by the emerald ash borer (Agrilus planipennis), an exotic invasive insect pest, millions of North American ash trees have been killed. Real-time quantitative polymerase chain reaction (RTq-PCR) is widely used for validating transcript levels in gene expression studies for which a good reference gene is mandatory. In the current study, we evaluated the stability of ten reference genes in at least five different tissues (phloem, roots, shoots, immature leaves, and mature leaves), and two developmental stages (young and old) among three ash species including the A. planipennis resistant Asian Manchurian ash (F. mandshurica) and two susceptible North American ash species (green - F. pennsylvanica and white - F. americana). Of the examined genes, the translation elongation factor alpha (eEF1α) was observed to be most stable and thus is recommended for RTq-PCR based gene expression studies in Fraxinus species. To our knowledge, this is the first report on the stability of reference genes across ash species (in different tissues and during development).

53

3.2 Introduction

Real time quantitative PCR (RTq-PCR) is a widely used technique for assessing gene expression, which allows fast and accurate quantification of even low expressed transcripts [Bustin, 2002]. RTq-PCR quantifies the relative expression of mRNA in real time through the detection of fluorescence after every PCR cycle, avoiding post PCR processing [Ginzinger, 2002]. For the accurate quantification of mRNA transcripts using

RTq-PCR, identification of stable reference genes is crucial to normalize the target‟s levels [Phillips et al, 2009; Dheda et al 2005]. Most commonly used reference genes are housekeeping genes or endogenous control genes, which are thought to be non-regulated.

However, several studies revealed large variation of these under different experimental conditions and thus to date no universal reference gene has been identified in plants or [Gutierrez et al, 2008]. Given the variation of reference gene expression among different experimental conditions, it is essential to validate a set of reference genes (~ 2-

3) [Bustin and Nolan, 2004; Li et al, 2010].

Ash (Fraxinus spp.) is a dominant tree species with widespread distribution throughout the world‟s temperate forests, including North America. The accidental introduction of emerald ash borer (Agrilus planipennis Fairmaire), an exotic invasive wood boring beetle into North America, has resulted in death of millions of ash trees including white (F. americana L.), green (F. pennsylvanica Marshall) and black ash (F. nigra Marshall) with significant economic and ecological impact [Kovacs et al, 2010].

However, in Asia A. planipennis is not considered as a major insect pest perhaps due to their co-evolutionary history with Manchurian ash (F. mandshurica Rupr)[Rebek et al,

2008]. In an on-going study, we have attempted to decipher the transcriptome of ash

54 phloem in the hope to unravel candidate resistance genes to A. planipennis [Bai et al,

2011]. This study has laid the foundation for several gene expression/functional genomic studies, for which there is an urgent need to identify/validate reference genes to be included in real-time quantitative polymerase chain reaction (RTq-PCR) experiments. In this study we evaluated the stability of 10 reference genes among different samples

(tissues and development stages) of Fraxinus species including green, white and

Manchurian.

3.3 Materials and methods

Mature leaves and phloem plugs of 5 mm in diameter were collected from un- infested cultivars of green, white, and Manchurian ash in June 2010 from a common garden at the Ohio Agricultural and Research Development Center (OARDC, Wooster,

OH). Two young (~5 years old) and two old (~15 years old) trees were sampled per species. In June 2011, samples from shoots, roots, immature and mature leaves were obtained from 4-year old potted seedlings of the same three species at the US Forest

Service (Delaware, OH) following the same protocol as the previous year. In addition to these samples, phloem plugs were also collected from girdled ash trees. Samples were obtained from above and below the girdled region from three trees per species. The post- girdled samples were obtained in July 2010 21 days after girdling from a common garden at Novi, MI. Girdling was performed by peeling a 5 cm band of the bark as per Baldwin

[1934]. All samples were immediately placed in liquid nitrogen and kept at -80oC until further processing. Approximately 70 mg of tissue was ground to powder in liquid

55 nitrogen for RNA extraction. Total RNA was extracted using Trizol® Reagent

(Invitrogen, Carlsberg, CA) following manufacturer‟s protocol. After RNA extraction, samples were treated with TURBO DNaseTM (AMBION, Inc., Austin, TX) following manufacturer‟s protocol, in order to eliminate genomic DNA contamination and were stored at -80oC until further use.

The sequences of the potential reference genes including a cyclophilin (Cyp), elongation factor 1-beta (eEF1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), histone H3 (HIS), ribosomal protein L13

(RPL13), RNA polymerase II (RNAPII), translation elongation factor alpha (eEF1α), beta- (TUB), and ubiquitin protein ligase (E3upl) were mined from an on-going phloem transcriptomic study of ash [Bai et al, 2011]. All the sequences pertaining to the current study are available at the NCBI Sequence Read Archive under the accession number of SRA020745.3.

One microgram of RNA from each sample was used for cDNA synthesis using the SuperScript™ First-Strand synthesis kit (Invitrogen, Carlsberg, CA) following the manufacturer‟s protocol. Ten pairs of gene specific primers were designed using Beacon

Designer 7 software. RTq-PCR reactions were carried out in a total volume of 10 µl containing 5 µl of 2X SybrGreen (BIORAD, Hercules, CA), 0.5 µl of each primer (10

µM) and 2 µl of cDNA template (40 ng/µl) and 2 µl of nuclease free water. All reactions were performed in duplicate. The cycling parameters were 95oC for 5 min followed by 40 cycles of 95oC for 10 s and 60oC for 30 s ending with a melting curve analysis (65oC to

95oC in increments of 0.5oC every 5 s) to check for nonspecific product amplification.

Primer efficiencies were calculated using a standard curve that consisted of 5-fold

56 dilutions over four points. Each point was measured in triplicate. Three standard curves were done per primer set. The primer efficiency (10-1/slope) and R2 presented in Table 3.1 are an average of these three curves. Two software programs, GeNorm [Vandesompele et al, 2002] and NormFinder [Andersen et al, 2004] were used for the selection of stable constitutively expressed reference genes. Cycles to threshold (Ct) values were converted according to the requirements of the software used.

Table 3. 1Primer sequences of the six potential reference genes for Fraxinus spp. The abbreviations stand for Cyp:cyclophilin, eEF1β: translation elongation factor beta, G6PD: glucose-6-phosphate dehydrogenase, RPL13: Ribosomal protein L13, eEF1α: translation elongation factor 1alpha and E3upl: ubiquitin ligase

Product E Gene* Primer Sequence (5’-3’) size Tm(oC) R2 (%) (bp) Cyp Fcyclo-F TTC GGT CTT ATA CTC TTC CTC AG 76 53.3 92.5 0.99 Fcyclo-R GGG TCA CTT CCT TCA AAT CTT C 53.5 eEF1β FEF1-F GTC TAC AGC AGG AGG AGT TG 116 54.7 93.2 0.96 FEF1-R ACC ACA TTG AAG CAC TAT TGA G 53.1

G6PD G6PD-F AGG GCA GGT TAT GTT CAA ACA C 117 55.6 94.1 0.96 G6PD-R CAC ACG ACC TTA TTG ACA GAG C 55.7

RPL13 FRPL-F CAC AAG ACT AAG CGA GGA GCA G 107 57.5 96.0 0.95 FRPL-R TTG AGA GCA TCA GGA ATG ACC ATC 56.8 eEF1α FTEF-F ACC AGC AAG TCC CAG TTG AGA TG 77 59.2 91.9 0.96 FTEF-R TGA GCC AGG TTC AGC TTC CAA TG 59.7

E3upl FubiL-F CAA GCA CAT CCT CGC GTA AAG 108 58.5 99.3 0.96 FubilL-R GGT ATG CCA CTC ACA TCA TTC TCC 57.5

3.4 Results and discussion

Since ash phloem is the target tissue of A. planipennis larvae, and the adult beetle feeds on leaf tissue, we included both phloem and leaf tissue (of different ash species) from two developmental stages. Additionally, we included phloem samples from girdled trees, immature and mature leaves, shoots and roots with the goal of identifying reference

57 genes with stable expression levels both within and across the species. Initial analysis of the ten reference genes indicated a high rate of variation; GAPDH, RNAPII, HIS and

TUB were found to be the most unstable and hence were removed from further analysis.

The Ct values for the remaining six genes ranged between 17 and 33 (highest Ct value obtained for eEF1α and lowest for RPL13), the average of the Ct values is represented in

Figure 3.1.

Figure 3. 1Average cycles to threshold (Ct) values for the six candidate reference genes used for all the Fraxinus spp. samples.*PY:phloem from young trees (<5 yrs old), PO: phloem from old trees (>5 yrs old), LY:leaves from young trees, LO: leaves from old trees, IL: immature leaves, ML: mature leaves, SH: shoots, RT: roots, Above: phloem samples above girdling, Below: phloem samples below girdling. The acronyms for the genes stand for: Cyp: Cyclophilin, eEF1β: translation elongation factor β, G6PD: Glucose-6-phosphate dehydrogenase, RPL13: Ribosomal protein L13, eEF1α: translation elongation factor 1α, E3upl: E3 ubiquitin protein ligase.

3. 1 GeNorm Analysis

The stability of the reference genes was calculated using GeNorm, a visual basic application (VBA) for Excel. GeNorm determines the pairwise variation of all control genes as the standard deviation of the logarithmically transformed expression ratios. It measures a gene expression stability value (M), which is the average pairwise variation of a gene compared to the other control genes included in the same analysis. Genes with the

58 lowest M value are considered to be the most stable [Vandesompele et al, 2002].

GeNorm suggests M=1.5 as a cutoff value, meaning that genes with M values higher than

1.5 should not be used as reference genes.

The value of M for the six reference genes showed eEF1α as a potential reference gene across all the samples assayed with E3upl and RPL13 as the least stable genes

(Table 3.2). When all the species were considered as a pool, the most stable genes were eEF1α, eEF1β and G6PD with M values of 1.038, 1.102, and 1.222, respectively. When each species was considered as a separate subgroup, eEF1α was the most stable for all ash species. In order to discard the possibility of eEF1α and eEF1β being co-regulated, an exclusion analysis was performed wherein each gene was excluded in separate analyses.

The ranking of the genes was still the same with very similar M values, indicating no co- regulation between eEF1α and eEF1β (data not shown).

3.4.2 NormFinder Analysis

NormFinder is also an Excel add-in that uses a mathematical model which performs separate analysis of sample subgroups, estimates intra- and inter-expression variation and calculates a stability value [Andersen et al, 2004]. Genes with a lower stability value are considered to be more stable i.e. there is lower variation of gene expression across the samples. NormFinder indicated eEF1α as the most stable gene for all the samples with a stability value of 0.028. When analyses were done per species, eEF1α was the most stable gene for Manchurian ash (0.029) while eEF1β and RPL13 were the most stable genes for green (0.020) and white ash (0.028), respectively. eEF1α

59 ranked as the second most stable gene for both the latter species (Table 3.2). The reference gene Cyp displayed the highest stability value (least stable) in the overall analysis. Despite the separate analysis, we noticed some similarities such as: 1) eEF1α was consistently among the top three genes both with and without subgroups, and 2) Cyp was consistently among the lowest three genes in all the analyses performed. This trend in the stability values obtained for eEF1α and Cyp is in agreement with other studies in plants, albeit within a species [Tong et al, 2009].

Table 3. 2Fraxinus reference genes ranking according to NormFinder and geNorm softwares. Numbers in parenthesis indicate stability values, smaller values indicate higher stability. Abbreviations stand for Cyp: Cyclophilin, eEF1β: translation elongation factor β, G6PD: Glucose-6-phosphate dehydrogenase, RPL13: Ribosomal protein L13, eEF1α: translation elongation factor 1α, E3upl: E3 ubiquitin protein ligase.

NormFinder GeNorm Overall Manch Green White Overall Manch Green White

eEf1α eEf1α eEF1β RPL13 eEf1α eEf1α eEf1α eEf1α (0.028) (0.029) (0.020) (0.028) (1.038) (1.225) (0.850) (0.713) eEF1β eEF1β eEf1α eEf1α eEF1β Cyp eEF1β eEF1β (0.035) (0.041) (0.027) (0.031) (1.102) (1.252) (0.886) (0.741) E3upl E3upl G6PD eEF1β G6PD eEF1β G6PD RPL13 (0.042) (0.051) (0.027) (0.031) (1.222) (1.370) (0.906) (0.780) G6PD Cyp E3upl E3upl Cyp G6PD Cyp E3upl (0.044) (0.051) (0.032) (0.035) (1.231) (1.454) (0.976) (0.800) RPL13 G6PD Cyp G6PD E3upl E3upl E3upl Cyp (0.058) (0.056) (0.047) (0.038) (1.327) (1.753) (1.002) (0.836) Cyp RPL13 RPL13 Cyp RPL13 RPL13 RPL13 G6PD (0.068) (0.065) (0.071) (0.062) (1.472) (1.762) (1.589) (0.952)

Analysis of potential reference genes for the three species indicated a high variability. RTq-PCR is often used to analyze the relative expression of a gene under different conditions in the same species. However, on-going functional studies include analysis of gene expression in different Fraxinus spp., thus increasing the need to find good and reliable reference genes across species. It was possible to observe that

60 irrespective of the samples pertaining to different Fraxinus spp., eEF1α was observed to be highly consistent. We thus recommend eEF1α as a candidate reference gene for gene expression studies in ash. To our knowledge this is the first report on validating reference genes across different tree species.

3.5 References

Andersen CL, Jensen JL, Orntoft TF. 2004. Normalization of real-time quantitative

reverse transcription–PCR data: a model-based variance estimation approach to

identify genes suited for normalization, applied to bladder and colon cancer data

sets. Cancer Res 64: 5245-5250.

Bai X, Rivera-Vega L, Mamidala P, Bonello P, Herms DA, Mittapalli O. 2011.

Transcriptomic signatures of ash (Fraxinus spp.) phloem. PLoS ONE 6:e16368.

Baldwin HI. 1934. Some Physiological Effects of Girdling Northern Hardwoods. Bull

Torrey Bot Club 5:249-257.

Bustin SA. 2002. Quantification of mRNA using real-time reverse transcription PCR

(RT-PCR): trends and problems. J Mol Endocrinol 29:23-39.

Bustin SA, Nolan T. 2004. Pitfalls of quantitative real-time reverse transcription

polymerase chain reaction. J Biomol Tech 15:155-166.

Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A.

2005. The implications of using an inappropriate reference gene for real-time

reverse transcription PCR data normalization. Anal Biochem 344:41-143.

61

Ginzinger DG. 2002. Gene quantification using real-time quantitative PCR: an emerging

technology hits the mainstream. Exp Hematol 30:503-512.

Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefevre JF, Lovet R, Rusterucci C, Moritz

T, Guerineau F, Bellini C, Wuytswinkel OV. 2008. The lack of a systematic

validation of reference genes: a serious pitfall undervalued in reverse transcription-

polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotech J 6:609-618.

Kovacs KF, Haight RG, McCullough DG, Mercader RG, Seigert NW, Leibhold AM.

2010. Cost of potential emerald ash borer damage in U.S. communities 2009-2019.

Ecol Econ 69:569-578.

Li QF, Sun SSM, Yuan DY, Yu HX, Gu MT Liu QQ. 2010. Validation of Candidate

Reference Genes for the accurate normalization of Real-Time Quantitative RT-PCR

Data in Rice during seed development. Plant Mol Biol Rep 28:49-57.

Phillips MA, D‟Auria JC, Luck K, Gershenzon J. 2009. Evaluation of Candidate

Reference Genes for Real-Time Quantitative PCR of Plant Samples Using

Purified cDNA as Template. Plant Mol Biol Rep 27:407-416.

Rebek EJ, Herms DA, Smitley DR. 2008. Interspecific variation in resistance to Emerald

ash borer (Coleoptera: Buprestidae) among North American and Asian ash

(Fraxinus spp.). Environ Entomol 37: 242–246.

Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z. 2009. Selection of reliable reference genes

for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.

2002. Accurate normalization of real-time quantitative RT–PCR data by geometric

averaging of multiple internal control genes. Genome Biol 3: RESEARCH 0034.

62

Chapter 4

Gene Expression Profiles of Three Ash species (Fraxinus spp) Using RNA-Seq.

4.1 Abstract

Ash trees (Fraxinus spp.) are widely spread throughout eastern North America and represent an important tree species in urban landscape and natural settings. Since the accidental introduction of the invasive insect pest, emerald ash borer (Agrilus planipennis

Fairmaire), millions of ash trees have been killed. However, in Asia, A. planipennis’ natural habitat, the damage to native ash is isolated and only observed in trees under stressed conditions, indicating some level of resistance, presumably due to a shared co- evolutionary history. Despite the high impact status of A. planipennis, there is little information available about the molecular biology of any of the North American and

Asian Fraxinus species. Fundamental molecular biology knowledge on both susceptible and resistant ash could provide the tools to mitigate the A. planipennis invasion. In this study, constitutive gene expression profiles among susceptible ash species, including black (Fraxinus nigra) and green ash (F. pennsylvanica), and resistant Manchurian ash

(F. mandshurica) were compared using RNA-Seq on an Illumina platform. A total of

37,516 high quality expressed sequence tags (ESTs) for Manchurian, 41,885 for black and 35,676 for green ash, were generated. Out of these transcripts, 8,691 were found to

63 be orthologs for all three species. Differential gene expression analysis was done using these orthologs, between Manchurian and black ash and Manchurian and green ash, separately. These comparisons revealed 230 genes differentially expressed between

Manchurian and black ash and 527 differentially expressed genes between Manchurian and green ash. Out of these comparisons, it was possible to identify 84 genes which were significantly differentially expressed between resistant and susceptible ash. Several of these genes are potentially involved in plant response to both biotic and abiotic stimulus.

The expression of eight differentially expressed genes was validated using real time quantitative PCR (RT-qPCR). Finally, molecular marker prediction for each species revealed an average of 30,000 SNPs and more than 1,000 microsatellites. The information obtained in this study will be of great importance in future functional studies and ash breeding programs.

4.2 Introduction

Ash trees (Fraxinus spp.) are widely spread in eastern North America and extensively planted in urban landscapes [MacFarlane and Meyer, 2005]. Haack et al

[2002] described a new exotic invasive pest of ash - the emerald ash borer (Agrilus planipennis) - a buprestid native to eastern Asia [Akiyama and Ohmomo, 2000]. Since then, it has been reported in managed and natural landscapes in the United States and Canada.

A. planipennis has killed millions of ash trees in North America, threatening the very survival of the entire genus and causing great economical, environmental and ecological damage (Poland and McCullough, 2006). A. planipennis attacks trees of different sizes,

64 from saplings to fully mature trees, and both healthy and stressed [Cappaert et al, 2005], of all North American ash species, including green (F. pennsylvanica Marshall), white

(F. americana L.), black (F. nigra Marshall), and to some extent blue ash (F. quadrangulata Michaux) [Rebek et al, 2008, Anulewicz et al, 2007]. Freshly hatched larvae bore through the bark and begin feeding on the phloem excavating “S-shaped” galleries just beneath the bark [Wei et al, 2007], finally killing the trees within 1-4 years

[Poland and McCullough, 2006].

In contrast to the economic losses caused by this pest in North America, incidences of damage have been reported to be isolated in some of the native Asian ash species (F. chinensis Roxb, F. mandshurica Rupr and F. rynchophylla L.), usually only in trees under stressed conditions, suggesting coevolution of the pest with the native species [Herms et al, 2004]. It is likely, therefore, that Asian ash species express constitutive defenses to this pest.

More recently, transcriptomic studies have become easier and more affordable to carry out. The use of technologies such as RNA-Seq have allowed for a global understanding of organisms such as: Anopheles funestus [Crawford et al, 2010], Persea americana [Wall et al, 2009], Eucalyptus grandis [Novaes et al, 2008], Camellia sinensis

[Shi et al, 2011], Vitis vinifera [Zenoni et al, 2010], among others. RNA-Seq refers to the sequencing of whole transcriptomes of different tissues or organisms in order to reveal transcriptomic adjustments (gene expression studies), discovery of novel transcripts, identification of alternate splicing, and molecular marker discovery [Zhang et al, 2011;

Crawford et al, 2010;Yang et al, 2011;Shi et al, 2011;Pitts et al, 2011]. It uses deep sequencing to quantify levels of transcripts in different samples [Wang et al 2009]. Given

65 that the transcriptomic information for ash is limited and that the primary goal of this study is to compare expression profiles among different ash species, RNA-Seq was applied. Such comparisons can shed light into the constitutive gene expression in ash.

Transcriptomic differences were determined between susceptible (black and green ash) and resistant (Manchurian ash) species. These efforts will allow for gene discovery, uncovering the genetic landscape of ash genome and eventually leading to the identification of candidate genes involved in resistance to A. planipennis attack.

4.3 Materials and Methods

4.3.1 Samples and RNA isolation

Two 10 mm diameter phloem plugs from green (F. pennsylvanica), black (F. nigra), and Manchurian ash (F. mandshurica) were collected from a common garden established in 2003 at Novi, MI and from the Ohio Agricultural Research and

Development Center at Wooster, OH. The trees sampled did not have D-shaped exit holes and/or vertical splits on the trunk which are indicators of A. planipennis infestation

[Poland and McCullough, 2006]. Phloem plugs were immediately wrapped in aluminum foil and stored in liquid nitrogen. Approximately 70 mg of phloem tissue homogenized in liquid nitrogen were used for RNA extraction. Total RNA was extracted using Trizol

Reagent (Invitrogen, Carlsberg, CA) following manufacturer‟s protocol and stored at -

80oC until further use. RNA integrity was checked using the Agilent 2100 Bioanalyzer TM

(Agilent Technologies, Palo Alto, CA).

66

4.3.2 cDNA library construction and Sequencing

cDNA library preparation and sequencing were conducted at the Molecular

Cellular and Imaging Center (Wooster, OH). There were two biological replicates per species, with each biological replicate representing different locations (Novi. MI and

Wooster, OH). Library preparation was done following Illumina mRNA sequencing protocol. Briefly, mRNA was purified from ~1 µg of total RNA using poly-T oligos attached to magnetic beads and then fragmented under elevated temperature. Next, the mRNA was used as template for first-strand cDNA synthesis using random primers. This was followed by a second strand synthesis using DNA polymerase I. After that, a single

A base was added to the ends of the strands and ligated to adapters. Finally, the products were enriched through PCR and sequenced on an Illumina GAII platform at MCIC

(OARDC, Wooster, OH). One capillary lane per sample was subjected to paired-end sequencing.

4.3.3 De novo assembly

The resulting Illumina reads for each Fraxinus sp. were assembled de novo. The paired-end reads were processed first to remove low-quality reads (at least 80% of an entire read with a PHRED score of less than 20) and low complexity reads (high number of repetitive bases). The processed reads were then assembled using a combination of

Velvet [Zerbino and Birney, 2008] and Oases (http://www.ebi.ac.uk/~zerbino/oases/) programs with k-mer lengths of 41, 43, 45, 47, 49, 51, 53, and 55. The resultant sequences were combined, processed to remove duplicates, and further assembled after

67 examining the overlapped regions identified by Vmatch program [Kurtz, 2011]. The resulting contigs were then further assembled using PHRAP program [Green, 2008] to obtain the final transcriptome with a cutoff of 100 bp. These transcriptome assemblies were used as a reference for gene expression mapping.

4.3.4 Functional annotation

The Fraxinus transcriptomes were annotated by searching against the Swissprot database for similar sequences. The sequences that were potentially of archaea, bacterial, fungal or viral origins were considered potential contaminants and therefore removed from further analyses. Sequence similarity information was used in the BLAST2GO program [Gotz et al, 2008] to assign Gene Ontology terms [Ashburner et al, 2000] and

KEGG (metabolic) pathways [Kanehisa et al, 2008]. The deduced protein sequences were subjected to a protein domain search using HMMER3 program [Eddy, 1998].

Molecular markers were also predicted from the library. The Msatfinder v2.0.9 program

[Thurston and Field, 2005] was used for microsatellite repeat prediction with 9 repeats as a cutoff for di-nucleotide units and 5 repeats for tri-, tetra-, penta-, and hexa-nucleotide units. Single nucleotide polymorphisms (SNPs) were predicted separately by aligning their respective sets of reads to the transcriptome for SNP calling with MAQ program

(http://maq.sourceforge.net/index.shtml). SNPs were called at the positions that were covered by at least 100 Illumina reads.

68

4.3.5 Ortholog Identification and Expression analysis

Sequence similarity searches were used to identify the orthologous transcripts among the Fraxinus transcriptomes. An E value cutoff of 1e-10 at the amino acid level was used in the tBLASTx searches. The original Illumina reads for different Fraxinus sp. were mapped to the corresponding assembled transcriptomes using bowtie aligner

[Langmead et al, 2009]. Only the uniquely mapped reads were retained for further analysis. To assess differential gene expression, the expression levels of the transcripts that were considered as orthologs among all three Fraxinus sp. were compared as described above. The expression level of each transcript in different Fraxinus transcriptomes was calculated as number of reads per kilobase of the transcript per million of total reads (RPKM) [Mortazavi et al, 2008]. The differential expression was analyzed using the edgeR package using common dispersion estimation [Robinson et al,

2010]. Differences in transcript levels were considered as statistically significant at P <

0.05, after Benjamini and Hochberg adjustment [Benjamini and Hochberg, 1995] to account for false discovery rate (FDR).

4.3.6 Gene validation and real time quantitative PCR (RT-qPCR)

Eight genes that were differentially expressed were validated in samples obtained from a nursery at the US Forest Service, Delaware, OH (Manchurian and green ash) and collections at OARDC, Wooster, OH (black ash). We included three biological replicates per species, i.e. three individual trees from resistant Manchurian ash, three from susceptible green ash and three from susceptible black ash. Sample collection and RNA isolation were done as previously described. Turbo DNase (Ambion, Austin, TX) was

69 used to eliminate any potential genomic contamination. First strand cDNA was synthesized using a Super ScriptTM First-Strand synthesis kit (Invitrogen, Carlsber, CA) following manufacturer‟s protocol. Primers were designed using Beacon Designer 7 software (Table 4.1). The cycling parameters were 95oC for 5 min followed by 39 cycles of 95oC for 10 s and 60oC for 39 s ending with a melting curve analysis (65oC to 95oC in increments of 0.5oC every 5 s) to check for nonspecific product amplification. Relative gene expression was analyzed by the standard curve method (ABI Bulletin No. 2).

Transcription elongation factor (eEF1α) was used as the internal reference gene [Rivera-

Vega et al, 2001]. A standard curve was done for each set of primers to check for primer efficiency.

Table 4. 1Primer sequences for eight genes used in real time quantitative PCR (RTqPCR) for RNA-Seq validation.

Size Gene Name Sequence (bp) R2 Major Allergen FALLERqF GCC TTC GTT CTT GAT GCT GAT AA 100 0.99 FALLERqR TGA CTG TTC CAA CTC CAC CAT

F-Box FFBOXqF AAT CTG GTG GCT TGA AGT 186 0.99 FFBOXqR TGT CCG TCT GAA GTT GAG

Zinc Finger CCCH FC3HqF CCT AAT ACT TCA ACT CCA CCA AT 158 0.98 FC3HqR TCC ATA TCC AAC TCC ATA TCT CT

Phenylalanine- FPALqF GCT GCT GCT ATA ATG GAA CA 161 0.99 ammonia-lyase FPALqR GCT GAA CGA ATG ACC TCT ATT SGT1 FSGT1qF ACA GGT CAA CTC AAG TCT CA 197 0.99 FSGT1qR TCG GCG TCG TAA GGA TTA

Transcinnamate-4- FTC4MqF CCA CCA CAC GAC CAC CATT 113 0.99 monooxygenase FTC4MqR AGA GAC TAC AGC GGC GAC TAT Universal stress FUSPqF GAC ACT GCT GGT AGA CAA 172 0.99 protein FUSPqR CAT CAC ATA ATT GGT CAC ACT WRKY transcription FWRKYqF GGC AAC GGA ACT ACC TCT T 115 0.99 factor FWRKYqR TCA TCT CCT TCA CCT TCA TAA CC

70

4.4 Results and Discussion

To date, only two EST databases are available for ash: one for European ash

(Fraxinus excelsior; available at NCBI EST database), and one from a pooled library that included white, green, black, blue and Manchurian ash (SRA020745.3). However, since the latter database was prepared from a pooled sample, it made it difficult to identify transcriptomic differences among the species and cannot be used for building a reference contig file. This study addresses that limitation and provides insights into transcriptomic adjustments (expression differences) among three ash species – two susceptible (F. pennsylvanica; green and F. nigra; black) and one resistant (F. mandshurica;

Manchurian). Sequencing yielded a total of 49,702,070 bp for Manchurian ash,

51,926,637 bp for black ash, and 45,307,941 bp for green ash, assembled into 37,516,

41,885, and 35,676 high quality transcripts for Manchurian, black and green ash, respectively (Table 4.2). An ortholog comparison revealed that 20% of the transcripts were orthologous among all three species (Fig. 4.1). In pairwise comparisons, on average about 40% of the transcripts were orthologs to one of the other species.

Table 4. 2Statistics of the assembly of the transcriptomes of Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem.

F. mandshurica F. nigra F. pennsylvanica Total number of 76-bp Illumina reads 62,593,508 75,760,784 66,487,298 Total bases of assembled transcriptomes 49,702,070 51,926,637 45,307,941 (bp) Number of transcripts in the 37,516 41,885 35,676 transcriptome N50 transcriptome (bp) 2,033 1,861 1,916 Minimal transcript length (bp) 108 108 101 Maximal transcript length (bp) 15,157 17,131 9,696

71

Figure 4. 1 Venn diagram of Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem ortholog comparisons. Sequences similar at an E-value cutoff of 1e-10 at the amino acid level using tBLASTx searches were considered orthologs.

4.4.1 Functional Comparisons

A total of 20,816 (55%) sequences were annotated for Manchurian ash, 22,805

(54%) for black ash, and 19,583 (55%) for green ash. The search for protein domains identified an average of 3,000 domains for each of the ash databases. In general, the top domains were similar for all species and included: protein kinase, protein tyrosine kinase,

RNA recognition motif, PPR repeat, WD Domain, helicase conserved C terminal, Myb- like DNA binding, Zinc finger, and Cytochrome p450 (Table 4.3). As expected, the metabolic pathways associated with each library were also highly similar (Table 4.4). The predominant pathways deduced are related to secondary metabolism including: biosynthesis of phenylpropanoids and terpenoids, etc. However, the pathway for microbial metabolism in diverse environments was highly represented (second in abundance) within the databases. These functional results are in accordance with previous ash phloem transcriptome studies (Bai et al 2011).

72

Table 4. 3Top protein domains in Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem databases.

Number of sequences Domain Name Description F. F. F. mandshurica nigra pennsylvanica Pkinase Protein kinase domain 1228 1405 1093 Pkinase_Tyr Protein tyrosine kinase 1163 1366 1033 RRM_1 RNA recognition motif 610 526 532 PPR PPR repeat 384 266 301 WD40 WD domain, G-beta repeat 269 263 261 Helicase_C Helicase conserved C-terminal domain 221 194 209 Myb_DNA- Myb-like DNA-binding domain 207 239 210 binding zf-C3HC4 Zinc finger, C3HC4 type (RING finger) 194 250 219 DEAD DEAD/DEAH box helicase 173 131 146 p450 Cytochrome P450 166 207 146

Table 4. 4Top ten metabolic pathways in Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem databases.

KEGG Pathway Number of transcripts F. F. F. mandshurica nigra pennsylvanica Biosynthesis of secondary metabolites 739 941 719 Microbial metabolism in diverse environments 410 511 438 Biosynthesis of plant hormones 348 413 358 Biosynthesis of phenylpropanoids 232 332 258 Starch and sucrose metabolism 307 318 264 Biosynthesis of alkaloids derived from shikimate pathway 203 273 223 Biosynthesis of terpenoids and steroids 213 256 233 Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid 186 242 215 Biosynthesis of alkaloids derived from histidine and purine 180 239 201 Biosynthesis of alkaloids derived from terpenoid and polyketide 192 231 200

4.4.2 Differential expression analysis

Comparisons for identifying differential expressions were done in pairs –

Manchurian vs black ash (Fm vs Fn), and Manchurian vs green ash (Fm vs Fp). For Fm vs Fn, 230 transcripts were found to be significantly differentially expressed, wherein 141 transcripts were expressed significantly higher in Manchurian ash. The Fm vs Fp

73 comparison revealed 527 significantly different transcripts, of which 279 of the transcripts were higher in expression in Manchurian ash. A comparison between green and black ash – Fp vs Fn – was also done, but is not further discussed in this paper due to its little relevance to this study (Supplementary Table 4.1-4.34).

In order to narrow down to genes potentially involved in resistance, only those genes which were differentially expressed between Manchurian ash (resistant) and both white and green ash (susceptible) were analyzed. From this comparison, 43 genes were expressed more highly in resistant ash and 41 in susceptible ash. Gene ontology terms were assigned to these 84 genes and based on their annotation, 14 of these differentially expressed genes were categorized into biological processes such as response, including response to abiotic, biotic and chemical stimulus (Table 4.5).

Table 4. 5Candidate genes potentially involved in response to biotic and abiotic stimulus in both resistant (Fraxinus mandshurica) and susceptible (F. nigra and F. pennsylvanica) phloem according to gene ontology (GO) annotation.

Annotation p-value Higher in: MLO-like protein 1 0.049239 Resistant Zinc finger CCCH domain-containing protein 66 4.41E-06 Resistant Putative late blight resistance protein homolog R1A-6 0.00076 Resistant Dehydrin COR47 1.65E-05 Resistant Protein SGT1 homolog 0.006335 Resistant Receptor-like serine/threonine-protein kinase ALE2 0.031636 Resistant Disease resistance protein RPM1 0.001154 Resistant Probable aquaporin PIP1-5 0.002338 Resistant Nucleolysin TIAR 0.001349 Susceptible GDP-L-galactose phosphorylase 1 0.000124 Susceptible Aquaporin PIP2-7 2.13E-05 Susceptible Disease resistance response protein 206 0.000484 Susceptible Protein MAM3 0.020836 Susceptible Lactoylglutathione lyase 2.90E-05 Susceptible

4 Supplementary tables for this chapter in Appendix A.1-3.

74

4.4.3 Validation

In order to validate the accuracy of the RNA-Seq results, gene expression was quantified for eight candidate genes using RT-qPCR on new samples obtained from a nursery in Delaware, OH and a collection at Wooster, OH. These candidate genes included some highly expressed in both resistant and susceptible ash. The genes analyzed were related to biotic (2) and abiotic stress (4), or involved in the phenylpropanoid pathway (2). The genes involved in biotic stress were deduced as a major allergen and a

SGT1 (suppressor of G2 allele of SKP1) homolog. Allergens can belong to a series of protein families such as pathogenesis-related protein 10, thaumatin-like proteins, lipid transfer proteins, profilins, etc. [Chen et al, 2008], and used by plants as a means of defense [McGee et al, 2001]. Also, an allergen protein was previously reported as being differentially expressed among ash species [Whitehill et al, in press]. The SGT1 homolog is a protein that usually functions along with RAR1 and HSP90 proteins in plant response to microbes [Wang et al, 2008]. The genes related to abiotic response were: a universal stress protein. i.e. a small cytoplasmic protein that has been found to upregulate during stress, such as drought [Maqbool et al, 2007]; a WRKY transcription factor which has also been seen to respond to stress, including cold and drought [Mare et al, 2004]; a zinc finger CCCH transcription factor [Wang et al, 2008] and an F-BOX protein, which are proteins originally characterized as component of the SCF ubiquitin-ligase complex involved in ubiquitin-mediated proteolysis [Kipreos and Pagano, 2000]. Finally, the last two genes were phenylalanine ammonia lyase (PAL) and trans-cinnamate-4- monooxygenase, which are involved in the phenylpropanoid pathway, and thus

75 participates in the synthesis of secondary compounds such as coumarins, flavonoids, benzoic acids, etc. [Dixon et al, 2002].

In a comparison between Manchurian and black ash, five out of the eight genes showed differences in the same direction (higher in both methods, or lower in both methods; Figure 4.2a), meanwhile in the comparison between Manchurian and green ash, seven out of the eight genes were validated (Figure 4.2b). The difference in the results obtained with the two methods could be explained by the different sensitivities of the techniques (background noise) and/or the variation within the samples (e.g. age, environment, time of sampling, etc). These results are similar to those seen in other system such as Vitis vinifera where 80% of the validated genes were in agreement with

RNA-Seq data [Zenoni et al, 2010].

400

RNASeq qPCR 150 300

200 100

100 50

0

Fold change Fold 0 change Fold

Allergen F-box Zinc finger PAL SGT1 TC4m USP WRKY Allergen F-box Zinc finger PAL SGT1 TC4m USP WRKY

Figure 4. 2Expression comparisons between RNA-Seq and real time quantitative PCR in eight genes for a gene expression comparison between (A) resistant Manchurian (Fraxinus mandshurica) and susceptible black (F. nigra)ash and (B) resistant Manchurian and susceptible green (F. pennsylvanica) ash. Fold change was calculated by dividing the expression level of resistant by susceptible ash; if expression above X-axis then resistant ash was higher than susceptible, if expression below X-axis then susceptible ash was higher than resistant. The genes analyzed were: an allergen, an F-box protein, a Zinc finger CCCH transcription factor, phenylalanine ammonia lyase (PAL), suppressor of G2 allele of SKP1 (Sgt1), transcinnamante-4- monooxygenase (TC4M), universal stress protein (USP) and a WRKY transcription factor.

76

An intriguing result obtained from these validations is the difference observed in gene expression for an allergen protein from a previous study (Whitehill et al, in press).

In the proteomic study an allergen was seen to be significantly higher expressed in resistant Manchurian ash compared to the susceptible black ash. Nevertheless, our study indicates the opposite. It is important to take into consideration that these could be two different proteins that belong to the same family. Before definitive conclusions can be made with regards to these proteins, it is highly recommendable to fully sequence the gene and protein and compare them. Also, expression quantification with a higher number of samples is advisable, followed by more functional studies including gene silencing. Similar precautions need to be taken with the rest of the candidate genes in this and previous studies. However, a platform for future research has been developed.

4.4.4 Molecular marker prediction

The databases were also analyzed to identify potential molecular markers including single nucleotide polymorphisms (SNPs) and microsatellites. SNPs were found both in the form of transitions (changes within the same nitrogenous bases) and transversions (changes from purines to pyrimidines or vice versa). A total of 42,944

SNPs for Manchurian ash, 42,023 for black ash, and 32,580 for green ash were detected.

More than 60% of the SNPs detected in each of the libraries were transitions (Table 4.5).

Msatfinder v2.0.9 was used to detect potential microsatellite markers. This search discovered approximately 2,000 potential microsatellites in Manchurian ash, 2262 in black ash, and 1,768 in green ash. These microsatellites range from di-nucleotide to octa-

77 nucleotide repeats, with the repeats ranging from five to twenty-eight (Table 4.6).

Molecular markers are widely used in population genetics, plant breeding programs, and development of linkage maps, among other studies [Julier et al, 2003; Sledge et al, 2005;

Vignal et al, 2002] and because of these potential uses, validation of these molecular markers would be of great importance for future studies in this system.

These results confirm that RNA-Seq is a suitable method for high throughput gene expression studies. We must keep in mind that this is a relatively new technique and as such there are still a number of biases inherent to it which haven‟t been fully dealt with

[Wang et al, 2009; Oshlack and Wakefield, 2009; Young et al, 2010; Hansen et al, 2010].

Further, the ash genome is yet to be sequenced. Nevertheless, an advantage of using a technique such as RNA-Seq is that it allows for a global understanding of the biology of the organism. Also, these results have expanded our previous knowledge on the ash transcriptome by increasing the number of ESTs and molecular markers available, as well as providing a number of differentially expressed genes [Bai et al, 2011].

Table 4. 6Comparison of single nucleotide polymorphism types among Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem.

F. mandshurica F. nigra F. pennsylvanica Transitions A-G (R) 14,217 13,484 10,297 C-T (Y) 14,228 13,789 10,683 Transversions G-T (K) 3,612 3,767 2,988 A-C (M) 3,662 3,865 2,914 C-G (S) 2,880 2,612 2,236 A-T (W) 4,345 4,506 3,462 Total 42,944 42,023 32,580

78

Table 4. 7Summary of microsatellite repeats predicted in Fraxinus mandshurica (Manchurian ash), F. nigra (black ash) and F. pennsylvanica (green ash) phloem. F. mandshurica F. nigra F. pennsylvanica

Di- Tri- Tetra- Oct- Hex- Di- Tri- Tetra- Oct- Hex- Di- Tri- Tetra- Oct- Hex- 5 703 15 8 67 716 45 21 66 549 27 11 46

6 275 5 3 22 311 6 4 40 242 5 4 10

7 75 6 119 1 13 82 4 3

21 8 51 3 194 45 7 177 58 3 4 16 9 17 2 148 33 132 26 1 6 11 10 9 138 15 87 7 0 11 52 5 75 4 78 11

12 41 3 51 3 47 7

79 13 45 3 52 4 34

14 20 22 1 33 3

15 16 28 14 2

16 24 1 28 30 2

17 22 40 16

18 10 14 12

19 4 13 5

20 2 4

21 1

… 28 1

72 1,25 Subtotal 1,142 20 11 100 808 51 26 126 665 989 36 15 63 7 1

4.5 References

Akiyama K, Ohmomo S. 2000. A checklist of the Japanese Buprestidae. Gekkan-Mushi,

Supplement 1.

Anulewicz AC, McCullough DG, Cappaert DL. 2007. Emerald ash borer (Agrilus

planipennis) density and canopy dieback in three North American ash species.

Arboric Urban For. 33:338-349.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski

K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis

S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat

Genet 25(1): 25-29.

Bai X, Rivera-Vega L, Mamidala P, Bonello P, Herms DA, Mittapalli O. 2011.

Transcriptomic signatures of ash (Fraxinus spp.) phloem. PLoS One. 6: e16368.

Benjamini, Y. and Y. Hochberg (1995). "Controlling the false discovery rate: a practical

and powerful approach to multiple testing." Journal of the Royal Statistical

Soceity: Series B 57: 289-300.

Cappaert D, McCullough DG, Poland TM, Siegert NW. 2005. Emerald Ash Borer in

North America: A Research and Regulatory Challenge. Am Entomol 51: 152-165.

Chen L, Zhang S, Illa E, Song L, Wu S, Howad W, Arús P, van de Weg E, Chen K, Gao

Z (2008) Genomic characterization of putative allergen genes in peach/almond

and their synteny with apple. BMC Genomics 9:543

80

Crawford JE, Guelbeogo WM, Sanou A, Traore A, Vernick KD, Sagnon N, Lazzaro BP.

2010. De Novo transcriptome sequencing in Anopheles funestus using Illumna

RNA-Seq Technology. PLoS ONE 12:e14202

Dixon RA, Achnine L, Kota P, Li, C-J, Reddy MSS, Wang L. 2002. The

phenylpropanoid pathway and plant defence – a genomics perspective. Mol. Plant

Pathol. 3: 371–390.

Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14(9): 755-763.

Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, RoblesM,

Talon M, Dopazo J, Conesa A. 2008. High-throughput functional annotation and

data mining with the Blast2GO suite. Nucleic Acids Res 36(10): 3420-3435.

Green P. 2008. Phrap documentation. http://www.phrap.org/phredphrap/phrap.html.

Haack R, Jendek E, Liu H, Marchant KR, Petrice TR, Poland TM, Ye H. 2002. The

Emerald Ash Borer: a new exotic pest in North America. Mich Entomol Soc

Newslett. 47:1-5.

Hansen KD, Brenner SE, Dudoit S. 2010. Biases in Illumina transcriptome sequencing

caused by random hexamer priming. Nucleic Acids Res. 38:e131.

Herms DA, Stone AK, Chatfield JA. 2004. Emerald ash borer: the beginning of the end

of Ash in North America? In: Chatfield JA, Draper EA, Mathers HM, Dyke DE,

Bennett PJ, and Boggs JF. Ornamental Plants: Annual Reports and Research

Reviews eds. 2004, Ohio Agriculture Research and Development Center, Ohio

State University Extension Special Circular 1932003. pp 62–71.

81

Julier B, Flajoulot S, Barre P, Cardinet G, Samtoni S, Huguet T, Huyghe C. 2003.

Construction of two genetic linkage maps in cultivated tetraploid alfalfa

(Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 3:9

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima

S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life

and the environment. Nucleic Acids Res. 36(Database issue): D480-484.

Kipreos E, Pagano M. 2000. The F-box protein family. Genome Biol. 1:3002-3007.

Kurtz S. 2011. The Vmatch large scale sequence analysis software. www.vmatch.de

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient

alignment of short DNA sequences to the . Genome Biol 10(3):

R25.

MacFarlane D, Meyer SP. 2005. Characterristics and disctribution of potential ash tree

hosts for emerald ash borer. Forest Ecology and Management 213:15-24.

Maqbool A, Zahur M, Riazuddin S. 2008. Identification and expression of six drought

responsive transcripts through differential display in desi cottion (Gossypium

aroreum). Mol Biol (Mosk) 42:559-565.

Mare C, Mazzucotelli E, Crosatti C, Fancia E, Stanca AM, Cattivelli L. 2004. Hv-

WRKY38: a new transcription factor involved in cold- and drought-esponse in

barley. Plant Mol Biol 55:399-416.

McGee JD, Hamer JE, Hodges TK. 2001. Characterization of a PR-10 pathogenesis-

related gene family induced in rice during infection with Magnaporthe grisea.

Mol. Plant Microbe Interact. 14, 877–886.

82

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7): 621-628.

Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M.

2008. High-throughput gene and SNP discovery in Eucalyptus grandis, and

uncharacterized genome. BMC Genomics. 9:312.

Oshlack A, Wakefield MJ. 2009. Transcript length bias in RNA-seq data confounds

systems biology. Biol. Direct. 4:14.

Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ. 2011. Transcriptome profiling of

chemosensory appendages in the malaria vector Anopheles gambiae reveals

tissue- and sex-specific signatures of odor coding. BMC Genomics. 12:271.

Poland T, McCullough D. 2006. Emerald ash borer: invasion of the urban forest and the

threat to North America‟s ash resource. J Forestry 104: 118-124.

Rebek EJ, Herms DA, Smitley DR. 2008. Interspecific variation in resistance to Emerald

ash borer (Coleoptera: Buprestidae) among North American and Asian ash

(Fraxinus spp.). Environ Entomol 37: 242–246.

Rivera-Vega L, Mamidala P, Koch JL, Mason ME, Mittapalli O. 2011. Evaluation of

reference genes for expression studies in ash (Fraxinus spp.). Plant Mol Biol Rep.

DOI 10.1007/s11105-011-0340-3.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics

26(1): 139-140.

83

Shi CY, Yan H, Weis CL, Yu O, Zhang ZZ, Jian CJ, Sun J, Li YY, Chen Q, Xia T, Wan

XC. 2011. Deep sequencing of the Camellia sinensis transcriptome revealed

candidate genes for major metabolic pathways of tea-specific compounds. BMC

Genomics. 12:131.

Sledge MK, Ray IM, Jian G. 2005. An expressed sequence tag SSR map of tetraploid

alfalfa (Medicago sativa L.). Theor Appl Genet. 111:980-992.

Thurston MI, Field D. 2005. Msatfinder: detection and characterisation of microsatellites.

Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/. CEH

Oxford, Mansfield Road, Oxford OX1 3SR.

Vignal A, Milan D, SanCristobal M, Aggen A. 2002. A review on SNP and other types of

molecular markers and their use in genetics. Genet Sel Evol. 34:275-305.

Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Lian H, Landherr L,

Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman

N, dePamphilis CW. 2009. Comparison of next generation sequencing

technologies for transcriptome characterization. BMC Genomics 10:347.

Wang YL, Gao MJ, Li Q,Wang LY,Wang JJ, Jeon JS, Qu N, Zhang Y, He Z. 2008.

OsRAR1 and OsSGT1 physically interact and function in rice basal disease

resistance. Mol. Plant Microbe Int. 21:294–303.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews. 10:57-63.

Wei X, Wu Y, Reardon R, Sun TH, Lu M, Sun JH. 2007. Biology and damage traits of

emerald ash borer (Agrilus planipennis Fairmaire) in China. Insect Science 14:

367–373.

84

Yang SS, Tu ZH, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW.

2011. Using RNA-Seq for gene identification, polymorphism detection and

transcript profiling in two alfalfa genotypes with divergent cell wall composition

in stems. BMC Genomics 12:199.

Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for

RNA-seq: accounting for selection bias. Genome Biol. 11:R14.

Zenoni S, Ferrarini A, Giacomelli E. Xumerle L, Fasoli L, Fasoli M, Malerba G, Bellin

D, Pezzotti M, Delledonne M. 2010. Characterization of transcriptional

complexity during berry development in Vitis vinifera using RNA-Seq. Plant

Physiol. 152:1787-1795.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using

de Bruijn graphs. Genome Res 18(5): 821-829.

Zhang S, Gunaratna RT, Zhang X, Najar F, Wang Y, Roe B, Jian H. 2011.

Pyrosequencing-based expression profiling and identification of differentially

regulated genes from Manduca sexta, a lepidopteran model insect. Insect

Biochem Mol Biol. 41:733-746.

85

Chapter 5

Conclusions

5.1 Summary

High throughput sequencing has become of great importance for the generation of molecular information in a relatively short period of time – especially for non-model organisms. This study clearly showcases the application of next generation sequencing

(454 pyrosequencing and Illumina) to a classical scenario of insect-plant interaction, wherein little to no genetic knowledge existed just a couple of years ago. Our datasets have now laid a solid foundation for identification of potential ash resistance factors to A. planipennis and has provided glimpses of the genetic makeup of ash phloem – expressed sequence tags (ESTs), metabolic pathways, molecular markers, etc.

Chapter 2 showcases the constitution of an ash phloem transcriptome, which was represented by ~58,000 unigenes (including white, green, black, blue and Manchurian ash). This information was obtained with the use of 454 pyrosequencing. The transcriptome was characterized by performing metabolic pathway analysis, Gene

Ontology (GO) term assignment, domain detection, and molecular marker (SNPs and microsatellites) prediction. Various metabolic pathways and candidate resistance genes/factors potentially associated to plant defense were identified in this database such

86

as phenylpropanoid biosynthesis pathway, transcription factors, proteases, lipases, PR- proteins, etc.

With a database now available for ash, it was possible to identify various housekeeping genes and analyze their expression in a series of tissues and ash species in order to identify a reliable reference gene, which is required in gene expression studies.

This part of the study indicated that transcription elongation factor 1α (eEF1α) is best suited to be used in real time quantitative PCR (RT-qPCR) based gene expression studies.

Comparison of gene expression between resistant and susceptible ash species can provide vital information on the modus operandi of resistance against A. planipennis. For this, a transcriptome wide gene expression analysis was done for green, black, and

Manchurian ash using the cutting-edge tool – RNA-Seq. The information obtained from this study also validated the phloem characteristics previously observed in Chapter 2.

Three more EST databases are now available for green, black and Manchurian ash, which in contrast to the first one are each specific to the species. Further, a higher number of molecular markers were also predicted in these databases. Several genes potentially involved in response to external stimulus, both biotic and abiotic, were observed to be differentially expressed between susceptible and resistant ash.

5.2 Future Studies

Overall, the acquired knowledge has provided critical insights into tree phloem composition in general. Moreover, this study has provided snapshots of ash transcriptome prior to A. planipennis attack (i.e. constitutive expression). The next ideal

87

step would be to profile ash phloem post A. planipennis attack in order to provide insights into induced mechanisms of ash resistance, which may be even more critical in the interaction. In order to carry out such studies, it will first be necessary to identify the best sampling time (hours, days, months or years post initial infestation). Given the feeding habit of A. planipennis (wood borer) it is difficult to properly identify an early infestation, which is vital for studies that wish to analyze the induced responses of ash to A. planipennis attack. Much effort has been put into identifying trees which are in the early stages of infestation [McCullough et al, 2009; Crook et al, 2008; Marshall et al, 2010].

Also, researchers have begun to artificially infest trees by pasting eggs on the bark

(Muilenburg; Rajarapu, personal communication). Despite these difficulties it is important to notice that progress is being made and a proper protocol to test for induced response is underway.

With regards to the candidate genes identified in this and other studies, several functional and bioassays need to be conducted for considering their incorporation into breeding programs. For example, full length sequence should be obtained for the genes in order to properly characterize them and confirm annotation. Also, functional studies such as gene silencing can provide the confirmation necessary that these genes are indeed functioning as predicted and that they are involved in plant response to herbivore attack, in particular A. planipennis. Finally gene expression analyses should be carried out in larger sample sizes as well as in trees which are currently under A. planipennis attack preferably early stages. Studies that emphasize the cloning of full-length candidate genes

(See Appendix B.1-7) that might participate in the overall resistance mechanism of ash to

88

A. planipennis are in progress. Lastly, the purified proteins of the candidate genes need to be tested for their efficacy in artificial feeding bioassays.

There is plenty of opportunity for research with the molecular markers predicted in this study. These markers could potentially be used to not only distinguish resistance phenotypes but also to allow identify different ash species. However, first these need to be validated, not only to identify those which might be due to sequencing error but also to identify markers which are polymorphic (intra- and inter-specific). These would allow for population genetic studies. Next, given that these molecular markers were obtained from ESTs it would be interesting to correlate the markers with the different genes and finally associate them with potential phenotypes in the population, including resistance levels to herbivore attack.

5.3 References

Crook DJ, Khrimian A, Francese JA, Frase I, Poland TM, Sawyer AJ, Mastro VC. 2008.

Development of a host-based semiochemical lure for trapping emerald ash borer

Agrilus planipennis (Coleoptera: Buprestidae). Environ Entomol 37:356-365.

Marshall JM, Storer AJ, Fraser I, Mastro VC. 2010. Efficacy of trap and lure types for

detection of Agrilus planipennis (Col., Buprestidae) at low density. Journal of

Applied Entomology. 134:296-302.

McCullough DG, Poland TM, Anulewicz AC, Cappaert D. 2009. Emerald ash borer

(Coleoptera: Buprestidae) attraction to stressed or baited ash trees. Environ

Entomol. 38:1668-1679.

89

Bibliography

Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. 1997.

Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-

regulated gene expression. Plant Cell 9: 1859–1868.

Abrams MD, Kubiske ME, Steiner KC. 1990. Drought adaptations and responses in five

genotypes of Fraxinus pennsylvanica Marsh.: photosynthesis, water relations and

leaf morphology. Tree Physiol. 6:305-315.

Adler LS, Karban R, Strauss SY. 2001. Direct and indirect effects of alkaloids on plant

fitness via herbivory and pollination. Ecology 82: 2032–2044.

Akiyama K, Ohmomo S. 2000. A checklist of the Japanese Buprestidae. Gekkan-Mushi,

Supplement 1.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment

search tool. J Mol Biol 215: 403–410.

Andersen CL, Jensen JL, Orntoft TF. 2004. Normalization of real-time quantitative

reverse transcription–PCR data: a model-based variance estimation approach to

identify genes suited for normalization, applied to bladder and colon cancer data

sets. Cancer Res 64: 5245-5250.

90

Anulewicz AC, McCullough Dg, Cappaert Dl. 2007. Emerald ash borer (Agrilus

planipennis) density and canopy dieback in three North American ash species.

Arboric Urban For 33:338-349.

APHIS-USDA. 2011. Cooperative Emerald Ash Borer project. Quarantine map.

Accessed online at:

http://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloa

ds/

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski

K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis

S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat

Genet 25(1): 25-29.

Bai RK, Wong LJC. 2004. Detection and quantification of heteroplasmic mutant

mitochondrial DNA by Real-time amplification refractory mutation system

quantitative PCR analysis: a single-step approach. Clinic Chemistry. 50: 996-

1001.

Bai X, Rivera-Vega L, Mamidala P, Bonello P, Herms DA, Mittapalli O. 2011.

Transcriptomic signatures of ash (Fraxinus spp.) phloem. PLoS ONE 6:e16368.

Baldwin HI. 1934. Some Physiological Effects of Girdling Northern Hardwoods. Bull

Torrey Bot Club 5:249-257.

Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff

R, Carlson JE. 2009. Comparison of the transcriptomes of American chestnut

91

(Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the

chestnut blight infection. BMC Plant Biol 9: 51.

Barbazuk B, Emrich S, Chen H, Li L, Schnable P. 2007. SNP discovery via 454

transcriptome sequencing. Plant J 51: 910–918.

Barizza E, Sciavo FL, Terzi M, Filippini F. 1999. Evidence suggesting protein tyrosine

phosphorylation in plants depends on the developmental conditions. FEBS Lett

447: 191–194.

Bauer-Mehren A, Furlong LI, Sanz F. 2009. Pathway databases and tools for their

exploitation: benefits, current limitations and challenges. Molecular Systems

Biology. 5:290.

Benjamini, Y. and Y. Hochberg (1995). "Controlling the false discovery rate: a practical

and powerful approach to multiple testing." Journal of the Royal Statistical

Soceity: Series B 57: 289-300.

Bennett ST. 2004. Solexa Ltd. Pharmacogenomics. 5:433-438.

Bentley DR. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545–552.

Bernays EA. 1981. Plant tannins and insect herbivores: an appraisal. Eco Entomol 6:

353–60.

Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a

conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383–

2393.

Botton A, Galla G, Conesa A, Bachem C, Ramina A, Barcaccia G. 2008. Large-scale

Gene Ontology analysis of plant transcriptome-derived sequences retrieved by

AFLP technology. BMC Genomics 9: 347.

92

Bustin SA, Nolan T. 2004. Pitfalls of quantitative real-time reverse transcription

polymerase chain reaction. J Biomol Tech 15:155-166.

Bustin SA. 2002. Quantification of mRNA using real-time reverse transcription PCR

(RT-PCR): trends and problems. J Mol Endocrinol 29:23-39.

Caicedo AL, Purugganan MD. 2005. Comparative plant genomics. Frontiers and

prospects. Plant Physiol 138: 545–547.

Cappaert D, McCullough DG, Poland TM, Siegert NW. 2005. Emerald Ash Borer in

North America: A Research and Regulatory Challenge. Am Entomol 51: 152-165.

Century K, Reuber TL, Ratcliffe OJ. 2008. Regulating the regulators: the future prospects

for transcription-factor-based agricultural biotechnology products. Plant Physiol

147: 20–29.

Chapple C. 1998. Molecular genetics analysis of plant cytochrome P450-dependent

monooxygenases. Ann Rev Plant Physiol Mol Biol 49: 311–343.

Chen L, Zhang S, Illa E, Song L, Wu S, Howad W, Arús P, van de Weg E, Chen K, Gao

Z (2008) Genomic characterization of putative allergen genes in peach/almond

and their synteny with apple. BMC Genomics 9:543

Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levewque CA,

Tisserat N, Buell CR. 2008. Analysis of the Pythium ultimum transcriptome using

Sanger and pyrosequencing approaches. BMC Genomics 9: 542.

Cipollini D, Wang Q, Whitehill JGA, Powell JR, Bonello P, Herms DA. 2011.

Distinguishing defensive characteristics in the phloem of ash species resistant and

susceptible to emerald ash borer. J Chem Ecol. 37:450-459.

93

Cogill P, Finn RD, Bateman A. 2008. Identifying protein domains with Pfam database.

Curr Protoc Bioinformatics 2: 2.5.

Collins DW, Jukes TH. 1994. Rates of transition and transversion in coding sequences

since the human-rodent divergence. Genomics 20: 386–396.

Conesa A, Goetz S, Garcia JM, Terol J, Talon M, Robles Montserrat. 2005. Blast2GO: a

universal tool for annotation, visualization and analysis in functional genomics

research. Bioinformatics 21: 3674–3676.

Conesa A, Gotz S. 2008. Blast2GO: a Comprehensive Suite for Functional Analysis in

Plant Genomics. Int. J. Plant Genomics 28: 619–632.

Crawford JE, Guelbeogo WM, Sanou A, Traore A, Vernick KD, Sagnon N, Lazzaro BP.

2010. De Novo transcriptome sequencing in Anopheles funestus using Illumna

RNA-Seq Technology. PLoS ONE 12:e14202

Crook DJ, Khrimian A, Francese JA, Frase I, Poland TM, Sawyer AJ, Mastro VC. 2008.

Development of a host-based semiochemical lure for trapping emerald ash borer

Agrilus planipennis (Coleoptera: Buprestidae). Environ Entomol 37:356-365.

Delannoy E, Stanley WA, Bond CS, Small ID. 2007. Pentatricopeptide repeat (PPR)

proteins as sequence-specificity factors in post-transcriptional processes in

organelles. Biochem Soc Trans 35: 1643–1647.

Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A.

2005. The implications of using an inappropriate reference gene for real-time

reverse transcription PCR data normalization. Anal Biochem 344:41-143.

94

Dixon RA, Achnine L, Kota P, Li, C-J, Reddy MSS, Wang L. 2002. The

phenylpropanoid pathway and plant defence – a genomics perspective. Mol. Plant

Pathol. 3: 371–390.

Dong J, Chen C, Chen Z. 2003. Expression profiles of the Arabidopsis WRKY gene

superfamily during plant defense response. Plant Mol Biol 51: 21–37.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB

transcription factors in Arabidopsis. Trends Plant Sci 15: 573–581.

Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14(9): 755-763.

Emrich S, Barbazuk W, Li L, Schnable P. 2007. Gene discovery and annotation using

LCM-454 transcriptome sequencing. Genome Res 17: 69–73.

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. TheWRKY superfamily of plant

transcription factors. Trends Plant Sci 5: 199–206.

Eyles A, Jones W, Riedl K, Cipollini D, Schwartz S, Chan K, Herms DA, Bonello P.

2007. Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and

two North American Ash species (F. americana and F. pennsylvanica). J Chem

Ecol 33: 1430–1448.

Fowells HA. 1965. Silvics of forest trees of the United States. USDA Forest Service

Handbook. 271 p.

Gachon C, Mingam A, Charrier B. 2004. Real-time PCR: what relevance to plant

studies? J Exp Bot. 55:1445-1454.

Gandhi KJK, Herms DA. 2010. Direct and indirect effects of alien insect herbivores on

ecological processes and interactions in forests of eastern North America. Biol

Invasions 12: 389–405.

95

Gene Ontology Consortium. 2004. The gene ontology (GO) database and information

resource. Nucl Acids Res. 32:D258-D261.

Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta Jeannette E. 2008. Protein

tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid

dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148:

1668–1680.

Ginzinger DG. 2002. Gene quantification using real-time quantitative PCR: an emerging

technology hits the mainstream. Exp Hematol 30:503-512.

Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW. 1999. Long day up-

regulation of a GAMYB gene during Lolium temulentum inflorescence formation.

Plant Physiol 119: 1271–1278.

Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P,

Monforte AJ. 2005. Simple-sequence repeat markers used in merging linkage

maps of melon (Cucumis melo L.). Theor Appl Genet 110: 802–811.

Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M,

Talon M, Dopazo J, Conesa A. 2008. High-throughput functional annotation and

data mining with the Blast2GO suite. Nucleic Acids Res 36: 3420–3435.

Green ML, Karp PD. 2006. The outcomes of pathway database computations depend on

pathway ontology. Nucl Acids Res. 34:3687-3697.

Green P. 2008. Phrap documentation. http://www.phrap.org/phredphrap/phrap.html.

Guo S, Zheng Y, Joung J, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z.

2010. Transcriptome sequencing and comparative analysis of cucumber flowers

with different sex types. BMC Genomics 11: 384–396.

96

Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefevre JF, Lovet R, Rusterucci C, Moritz

T, Guerineau F, Bellini C, Wuytswinkel OV. 2008. The lack of a systematic

validation of reference genes: a serious pitfall undervalued in reverse transcription-

polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotech J 6:609-618.

Haack R, Jendek E, Liu H, Marchant KR, Petrice TR, Poland TM, Ye H. 2002. The

Emerald Ash Borer: a new exotic pest in North America. Mich Entomol Soc

Newslett. 47:1-5.

Hahlbrock K, Scheel D. 1989. Physiology and molecular biology of phenylpropanoid

metabolism. Ann Rev Plant Physiol and Plant Mol Biol 40: 347–369.

Hansen KD, Brenner SE, Dudoit S. 2010. Biases in Illumina transcriptome sequencing

caused by random hexamer priming. Nucleic Acids Res. 38:e131.

Harfouche AL, Shivaji R, Stocker R, Williams PW, Luthe DS. 2006. Ethylene signaling

mediates a maize defense response to insect herbivory. Mol Plant-Microbe

Interact 19: 189–199.

Herms DA, Stone AK, Chatfield JA. 2004. Emerald ash borer: the beginning of the end

of Ash in North America? In: Chatfield JA, Draper EA, Mathers HM, Dyke DE,

Bennett PJ, and Boggs JF. Ornamental Plants: Annual Reports and Research

Reviews eds. 2004, Ohio Agriculture Research and Development Center, Ohio

State University Extension Special Circular 1932003. pp 62–71.

Hirt H, Scheel D. 2000. MAP Kinases in Plant Signal Transduction In Hirt, H: Results

and Problems in Cell Differentiation: (Springer, Heidelberg) . pp 85–93.

97

Huang HJ, Lin YM, Huang DD, Takahashi T, Sugiyama M. 2003. Protein tyrosine

phosphorylation during phytohormone-stimulated cell proliferation in Arabidopsis

hypocotyls. Plant Cell Physiol 44: 770–775.

Hwang IS, Hwang BK. 2009. The pepper 9-lipoxygenase gene CaLOX1functions in

defense and cell death responses to microbial pathogens. Plant Physiol 152: 948–

967.

Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T,

Tabata S, Okada K, Wada T. 2007).Arabidopsis TRANSPARENT TESTA

GLABRA2 is directly regulated by R2R3 MYB transcription factors and is

involved in regulation of GLABRA2 transcription in epidermal differentiation.

Plant Cell 19: 2531–43.

Jian B, Liu B, Bi Y, Hou W, Wu C, Han T. 2008. Validation of internal control for gene

expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9: 59.

Julier B, Flajoulot S, Barre P, Cardinet G, Samtoni S, Huguet T, Huyghe C. 2003.

Construction of two genetic linkage maps in cultivated tetraploid alfalfa

(Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 3:9

Kameyama K, Kishi Y, Yoshimura M, Kanzawa N, Sameshima M, Tsuchiya T. 2000.

Tyrosine phosphorylation in plant bending. Nature 407: 37.

Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, et al. 2010. Regulation

of Arabidopsis defense responses against Spodoptera littoralis by CPKmediated

calcium signaling. BMC Plant Biol 26: 10.

98

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima

S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life

and the environment. Nucl Acids Res. 36: D480-D484.

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T,

Araki M, Hirakawa M. 2006. From genomics to chemical genomics: new

developments in KEGG. Nucleic Acids Res 34: D354–357.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for

deciphering the genome. Nucl Acids Res. 32:D277-D280.

Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic

Acids Res 28: 27–30.

Kerk D, Templeton G, Moorhead GB. 2008. Evolutionary radiation pattern of novel

protein phosphatases revealed by analysis of protein data from the completely

sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146:

351–367.

Kipreos E, Pagano M. 2000. The F-box protein family. Genome Biol. 1:3002-3007.

Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ. 2000. A leaf lipoxygenase

of potato induced specifically by pathogen infection. Plant Physiol 124: 1121–

1130.

Kotera E, Tasaka M, Shikanai T. 2005. A pentatricopeptide repeat protein is essential for

RNA editing in chloroplasts. Nature 433: 326–330.

Kovacs KF, Haight RG, McCullough DG, Mercader RG, Seigert NW, Leibhold AM.

2010. Cost of potential emerald ash borer damage in U.S. communities 2009-2019.

Ecol Econ 69:569-578.

99

Kroeger TS, Watkins KP, Friso G, Van Wijk KJ, Barkan, A. 2009. A plantspecific RNA

binding domain revealed through analysis of chloroplast group II intron splicing.

Proc. Natl Acad. Sci. U S A 106: 4537–4542.

Kurtz S. 2011. The Vmatch large scale sequence analysis software. www.vmatch.de

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol 10(3):

R25.

Lee TI, Young RA. 2000. Transcription of eukaryotic protein-coding genes. Ann Rev

Genet 34: 77–137.

Li QF, Sun SSM, Yuan DY, Yu HX, Gu MT Liu QQ. 2010. Validation of Candidate

Reference Genes for the accurate normalization of Real-Time Quantitative RT-PCR

Data in Rice during seed development. Plant Mol Biol Rep 28:49-57.

Li S, Fu Q, Huang W, Yu D. 2009. Functional analysis of an Arabidopsis transcription

factor WRKY25 in heat stress. Plant Cell Rep 28: 683–693.

Lister R, Gregory BD, Ecker JR. 2009. Next is now: new technologies for sequencing of

genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12: 107–118.

Liu H, Bauer LS, Gao R, Zhao T, Petrice TR, Haack RA. 2003. Exploratory survey for

the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), and its

natural enemies in China. Great Lakes Entomol. 36:191-204.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-

time quantitative PCR and the 2-DDCT method. Methods 25: 402–408.

Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones

JDG, Romeis T. 2005. Ethylenemediated cross-talk between calcium-dependent

100

protein kinase and MAPK signaling controls stress responses in plants. Proc Natl

Acad Sci U S A 102:10736–10741.

MacFarlane D, Meyer SP. 2005. Characterristics and disctribution of potential ash tree

hosts for emerald ash borer. Forest Ecology and Management 213:15-24.

Maffei ME, Mithofer A, Boland W. 2007. Before gene expression: early events in plant

insect interaction. Trends Plant Sci 12: 310–16.

Mao C, Evans C, Jensen R, Sobral B. 2008. Identification of new genes in Sinorhizobium

meliloti using the Genome Sequencer FLX system. BMC Microbiol 8: 72.

Maqbool A, Zahur M, Riazuddin S. 2008. Identification and expression of six drought

responsive transcripts through differential display in desi cottion (Gossypium

aroreum). Mol Biol (Mosk) 42:559-565.

Mare C, Mazzucotelli E, Crosatti C, Fancia E, Stanca AM, Cattivelli L. 2004. Hv-

WRKY38: a new transcription factor involved in cold- and drought-esponse in

barley. Plant Mol Biol 55:399-416.

Margulies M. Egholm M, Altman WE, Attiya S, Bader JS, Bemben LS, Berka J,

Braverman MS, et al. 2005. Genome sequencing in open microfabricated high

density picoliter reactors. Nature. 15:376-380.

Maris C, Dominguez C, Allain F. 2005. The RNA recognition motif, a plastic RNA-

binding platform to regulate post-transcriptional gene expression FEBS J 272:

2118–2131.

101

Marshall JM, Storer AJ, Fraser I, Mastro VC. 2010. Efficacy of trap and lure types for

detection of Agrilus planipennis (Col., Buprestidae) at low density. Journal of

Applied Entomology. 134:296-302.

Martinez E (2002) Multi-protein complexes in eukaryotic gene transcription. Plant Mol

Biol 50: 925–947.

Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. 2004. Use of 16SrRNA gene-

targeted group=specific primers for real=time PCR analysis of predominant

bacteria in human feces. Applied Environ Microb. 10:7220-7228.

McCullough DG, Poland TM, Anulewicz AC, Cappaert D. 2009. Emerald ash borer

(Coleoptera: Buprestidae) attraction to stressed or baited ash trees. Environ

Entomol. 38:1668-1679.

McGee JD, Hamer JE, Hodges TK. 2001. Characterization of a PR-10 pathogenesis-

related gene family induced in rice during infection with Magnaporthe grisea.

Mol. Plant Microbe Interact. 14, 877–886.

Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. 2003. HCF152, an

Arabidopsis RNA binding pentatricopeptide repeat protein involved in the

processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–

1495.

Metzker ML. 2010. Sequencing technologies-the next generation. Nature Reviews

Genetics. 11:31-46.

Michel AP, Zhang W, Jung JK, Kang S, Mian MAR. 2009. Cross-species amplification

and polymorphism of microsatellite loci in the soybean aphid, Aphis glycines. J.

Econ. Entomol 102: 1389–1392.

102

Mili S, Pinol-Roma S. 2003. LRP130, a pentatricopeptide motif protein with a

noncanonical RNA-binding domain, is bound in vivo to mitochondrial and

nuclear RNAs. Mol Cell Biol 23: 4972–4982.

Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, Herms DA. 2010. Tissue

specific transcriptomics of the exotic invasive insect pest emerald ash borer. PLoS

One 5: e13708.

Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE. 2006.

Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant

Biol 6: 17.

Morey JS, Ryan JC, Van Dolah FM. 2006. Microarray validation: factors influencing

correlation between oligonucleotide microarrays and real-time PCR. Biol Proced

Online. 8:175-193.

Morozova O, Hirst M, Marra MA. 2009. Applications of new sequencing technologies

for transcriptome analysis. Annual Review of Genomics and Human Genetics.

10:135-151.

Morozova O, Marra MA. 2008. Applications of next-generation sequencing technologies

in functional genomics. Genomics 92:255-264.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7): 621-628.

Mulli KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed

chain reaction. Methods in Enzymology. 155:335-350.

multistateeab.pdf

103

Nakamura T, Schuster G, Sugiura M, Sugita M. 2004. Chloroplast RNAbinding and

pentatricopeptide repeat proteins. Biochem Soc Trans 32:571–574.

Newman LJ, Perazza DE, Juda L, Campbell MM. 2004. Involvement of the R2R3-MYB,

AtMYB61, in the ectopic lignification and dark-photomorphogenic components

of the det3 mutant phenotype. Plant J 37: 239–250.

Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P,

Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M. 2003. Comparative genomics

of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana:

Implication for land plant evolution. Proc Natl Acad Sci U S A 100: 8007–8012.

Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M.

2008. High-throughput gene and SNP discovery in Eucalyptus grandis, and

uncharacterized genome. BMC Genomics. 9:312.

Nurnberger T, Scheel D. 2001. Signal transmission in plant immune response. Trends

Plant Sci 6: 372–379.

Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S. 2007. Characterization of phloem-sap

transcription profile in melon plants. J Exp Bot 58: 3645–3656.

Oshlack A, Wakefield MJ. 2009. Transcript length bias in RNA-seq data confounds systems biology. Biology Direct. 4:14.

Pandey S, Tiwari SB, Upadhyaya KC, Sopory SK. 2000. Calcium signaling: linking

environmental signals to cellular functions. Crit Rev Plant Sci 19:291–318.

Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle A. 2010. Transcriptome

sequencing in an ecologically important tree species: assembly, annotation, and

marker discovery. BMC Genomics 11: 180.

104

Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle A. 2010. Transcriptome

sequencing in an ecologically important tree species: assembly, annotation, and

marker discovery. BMC Genomics 11: 180.

Philippe RN, Ralph SG, Mansfield SD, Bohlmann J. 2010. Transcriptome profiles of

hybrid poplar (Populus trichocarpa x deltoides) reveal rapid changes in

undamaged, systemic sink leaves after simulated feeding by forest tentcaterpillar

(Malacosoma disstria). New Phytologist 188: 787–802.

Phillips MA, D‟Auria JC, Luck K, Gershenzon J. 2009. Evaluation of Candidate

Reference Genes for Real-Time Quantitative PCR of Plant Samples Using

Purified cDNA as Template. Plant Mol Biol Rep 27:407-416.

Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad

F, Latche A, Pech JC, Bouzayen M. 2006. Sl-ERF2, a tomato ethylene response

factor involved in ethylene response and seed germination. Plant Cell Physiol 47:

1195–1205.

Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ. 2011. Transcriptome profiling of

chemosensory appendages in the malaria vector Anopheles gambiae reveals

tissue- and sex-specific signatures of odor coding. BMC Genomics. 12:271.

Poland T, McCullough D. 2006. Emerald ash borer: invasion of the urban forest and the

threat to North America‟s ash resource. J Forestry 104: 118–124.

Quesada T, Li Z, Dervinis C, Li Y, Bocock PN, Tuskan GA, Casella G, Davis JM, Kirst

M. 2008. Comparative analysis of the transcriptomes of Populus trichocarpa and

105

Arabidopsis thaliana suggests extensive evolution of gene expression regulation

in angiosperms. New Phytol 180: 408–420.

Raupp MJ, Cumming AB, Raupp EC. 2006. Street tree diversity in eastern North

America and its potential for tree loss to exotic borers. Arbor Urban For 32: 297–

304.

Rayapureddi JP, Kattamuri C, Chan FH, Hegde RS. 2005. Characterization of a plant,

tyrosine-speciWc phosphatase of the aspartyl class. Biochemistry 44: 751–758.

Rebek EJ, Herms DA, Smitley DR. 2008. Interspecific variation in resistance to emerald

ash borer (Coleoptera: Buprestidae) among North American and Asian Ash

(Fraxinus spp.). Environ Entomol 37: 242–246.

Rhee SY, Wood V, Dolinski K, Draghici S. 2008. Use and misuse of the gene ontology

annotations. Nature Reviews Genetics. 9:509-515.

Rivera-Vega L, Mamidala P, Koch JL, Mason ME, Mittapalli O. 2011. Evaluation of

reference genes for expression studies in ash (Fraxinus spp.). Plant Mol Biol Rep.

DOI 10.1007/s11105-011-0340-3.

Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. 2011. Improving RNA-Seq

expression estimates by correcting for fragment bias. Genome Biology. 1:R22.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics

26(1): 139-140.

Romeis T, Ludwig AA, Martin R, Jones JDG. 2001. Calcium-dependent protein kinases

play an essential role in a plant defence response. EMBO J 20:5556–5567.

106

Romeis T. 2001. Protein kinases in the plant defence response. Curr. Opin. Plant Biol 4:

407–414.

Roosens NH, Bernard C, Leplae R, Verbruggen N. 2004. Evidence for copper

homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi

caerulescens. FEBS Lett 577: 9–16.

Rowe JW, Conner AH. 1979. Extractives in eastern hardwoods – a review. General

Technical Report FPL. 18 Forest Products Laboratory, US Dept of Agric,

Madison Wisconsin. 72 p.

Rushton PJ, Somssich IE, Ringler P Shen QJ (2010) WRKY transcription factors. Trends

Plant Sci 15: 247–258.

Sathiyamoorthy S, In JG, Gayathri S, Kim Y, Yang DC. 2010. Gene ontology study of

methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify

genes involved in secondary metabolic pathway. Russ J Genet 7:828–835.

Schmitz-Linneweber C, Williams-Carrier R, Barkan A. 2005. RNA immunoprecipitation

and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be

associated with the 59 region of mRNAs whose translation it activates. Plant Cell

17: 2791–2804.

Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments.

Nat Biotechnol 18: 233–234.

Schuler MA. 1996. The role of cytochrome P450 monooxygenases in plant-insect

interactions. Plant Physiol 112: 1411–1419.

Schuster G, Gruissem W. 1991. Chloroplast mRNA-39 end processing requires a nuclear-

encoded RNA-binding protein. EMBO J 10: 1493–1502.

107

Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, et al. 2002. Functional annotation of

a full-length Arabidopsis cDNA collection. Science 296:141–145.

Shi CY, Yan H, Weis CL, Yu O, Zhang ZZ, Jian CJ, Sun J, Li YY, Chen Q, Xia T, Wan

XC. 2011. Deep sequencing of the Camellia sinensis transcriptome revealed

candidate genes for major metabolic pathways of tea-specific compounds. BMC

Genomics. 12:131.

Sledge MK, Ray IM, Jian G. 2005. An expressed sequence tag SSR map of tetraploid

alfalfa (Medicago sativa L.). Theor Appl Genet. 111:980-992.

Small ID, Peeters N. 2000. The PPR motif - a TPR-related motif prevalent in plant

organellar proteins. Trends Biochem Sci 25: 46–47.

Smith A. 2006. Effects of community structure on forest susceptibility and response to

the emerald ash borer invasion of the Huron River watershed in southeast

Michigan. MS thesis. The Ohio State University, Columbus, OH.

Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y.

2008. Large-scale phosphorylation mapping reveals the extent of tyrosine

phosphorylation in Arabidopsis. Mol Syst Biol 4: 193.

Sun CX, Hoglund AS, Olsson H, Mangelsen E, Jansson C. 2005. Antisense

ligodeoxynucleotide inhibition as a potent strategy in plant biology: identification

of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant Journal

44: 128–138.

Sun CX, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. 2003. A novel

WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by

108

binding to the sugar responsive elements of the iso1 promoter. Plant Cell 15:

2076–2092.

Sydnor TD, Burngardner M, Todd A. 2007. The potential economic impacts of merald

ash borer (Agrilus planipennis) on Ohio, U.S., communities. Arbor Urban Forest.

33:48-54.

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A,

Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. 2005. A novel

cytochrome P450 is implicated in brassinosteroid biosynthesis via the

characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant

Cell 17: 776–790.

Tena G, Asai T, Chiu WL, Sheen J. 2001. Plant MAP kinase signaling cascades. Curr.

Opin. Plant Biol 4: 392–400.

Thiel T, Michalek W, Varshney R, Graner A. 2004. Exploiting EST databases for the

development and characterization of gene-derived SSR-markers in barley

(Hordeum vulgare L.). Theor Appl Genet 106: 411–422.

Thurston MI, Field D. 2005. Msatfinder: detection and characterisation of microsatellites.

Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/. CEH

Oxford, Mansfield Road, Oxford OX1 3SR.

Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z. 2009. Selection of reliable reference genes

for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71.

Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their

biosynthesis. Plant Biol 7: 581–591.

109

Ulker B, Somssich IE. 2004. WRKY transcription factors: from DNA binding towards

biological function. Curr Opin Plant Biol 7: 491–498.

Valasek MA, Repa JJ. 2005. The power of real-time PCR. Adv Physiol Edu. 29:151-159.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.

2002. Accurate normalization of real-time quantitative RT–PCR data by geometric

averaging of multiple internal control genes. Genome Biol 3: RESEARCH 0034.

Veronesi C, Rickauer M, Fournier J, Pouenat ML, Esquerre-Tugaye MT. 1996.

Lipoxygenase gene expression in the tobacco-Phytophthora parasitica nicotianae

interaction. Plant Physiol 112: 997–1004.

Vignal A, Milan D, SanCristobal M, Aggen A. 2002. A review on SNP and other types of

molecular markers and their use in animal genetics. Genet Sel Evol. 34:275-305.

Viswanathan, GA, Seto J, Patil S, Nudelman G, Sealfon SC. 2008. Getting started in

biological pathway construction and analysis. PLoS Computational Biology.

4:e16. von Dahl CC, Baldwin IT. 2007. Deciphering the role of ethylene in plant-herbivore

interactions. J Plant Growth Regul 26: 201–209.

Wall PK, Leebens-Mack J, Chanderbali A, Barakat A, Wolcott E, Liang H, Landherr L,

Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman

N, dePamphilis CW. 2009. Comparison of next generation sequencing

technologies for transcriptome characterization. BMC Genomics. 10:347.

Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant

Syst Evol 273: 25–49.

110

Wang D, Eyles A, Mandich D, Bonello P. 2006. Systemic aspects of host-pathogen

interactions in Austrian pine (Pinus nigra): a proteomics approach. Physiol and

Mol Plant Pathol 68: 149–157.

Wang XY, Yang ZQ, Gould JR, Zhang Y-N, Liu GJ, Liu E. 2010. The biology and

ecology of the emerald ash borer, Agrilus planipennis, in China. Journal of Insect

Science. 10:1-23.

Wang YL, Gao MJ, Li Q,Wang LY,Wang JJ, Jeon JS, Qu N, Zhang Y, He Z. 2008.

OsRAR1 and OsSGT1 physically interact and function in rice basal disease

resistance. Mol. Plant Microbe Int. 21:294–303.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews. 10:57-63.

Weber A, Weber K, Carr K, Wilkerson C, Ohlrogge J. 2007. Sampling the Arabidopsis

transcriptome with massively parallel pyrosequencing. Plant Physiol 144: 32–42.

Wei X, Wu Y, Reardon R, Sun TH, Lu M, Sun JH. 2007. Biology and damage traits of

emerald ash borer (Agrilus planipennis Fairmaire) in China. Insect Science 14:

367–373.Wicker T, Schlagenhauf E, Graner A, Close T, Keller B, Stein N. 2006.

454 sequencing put to the test using the complex genome of barley. BMC

Genomics 7: 275.

Winz RA, Baldwin IT. 2001. Molecular interactions between the specialist herbivore

Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana

attenuata. IV.Insect-induced ethylene reduces jasmonate-induced nicotine

accumulation by regulating putrescine N-methyltransferase transcripts. Plant

Physiol 125: 189–202.

111

Wu G, Li H, Yang Z. 2000. Arabidopsis RopGAPs are a novel family of Rho GTPase-

activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-

specific GTPase stimulation Plant Physiol 124: 1625–1636.

Wu Z, Wang X, Zhang X. 2011. Using non-uniform read distribution models to improve

isoform expression inference in RNA-Seq. Bioinformatics. 27:502-508.

Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F,

Rahnenfuhrer J, von Mering C, Grossniklaus U. 2010. Arabidopsis Female

Gametophyte Gene Expression Map Reveals Similarities between Plant and

Animal Gametes. Curr Biol 20: 506–512.

Yang SS, Tu ZH, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW.

2011. Using RNA-Seq for gene identification, polymorphism detection and

transcript profiling in two alfalfa genotypes with divergent cell wall composition

in stems. BMC Genomics 12:199.

Young MD, Wakefield MJ, Smyth G, Oshlack A. 2010. Gene ontology analysis for

RNA-Seq: accounting for selection bias. Genome Biology. 11:R14.

Yu C. 1992. Agrilus arcopoli Obenberger. In: Xiao GR (ed) Forest insects of China, 2nd

edn. Beijing: China Forestry Publishing House. pp 400–401.

Zenoni S, Ferrarini A, Giacomelli E. Xumerle L, Fasoli L, Fasoli M, Malerba G, Bellin

D, Pezzotti M, Delledonne M. 2010. Characterization of transcriptional

complexity during berry development in Vitis vinifera using RNA-Seq. Plant

Physiol. 152:1787-1795.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using

de Bruijn graphs. Genome Res 18(5): 821-829.

112

Zhang S, Gunaratna RT, Zhang X, Najar F, Wang Y, Roe B, Jian H. 2011.

Pyrosequencing-based expression profiling and identification of differentially

regulated genes from Manduca sexta, a lepidopteran model insect. Insect

Biochem Mol Biol. 41:733-746.

Zhang S, Klessig DF. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci

6: 520–527.

Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in

eukaryotes and expansion in plants. BMC Evol Biol 5: 1.

Zhou Y, Zhang X, Kang X, Zhao X, Ni M. 2009. SHORT HYPOCOTYL UNDER

BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate

Arabidopsis seed development. Plant Cell 21: 106–117.

Ziegler J, Facchini PJ. 2008. Alkaloid biosynthesis: metabolism and trafficking. Ann Rev

Plant Biol 59: 735–69.

113

Appendices

Appendix A: Supplementary Table 4.1-Differentially expressed orthologs

A.1 Supplementary Table 4.1 -F. mandshurica vs F. nigra

Index Orthologs FmRep FmRep FnRep1 FnRep Descriptions P value 1 2 2 29 fmtx013169,fntx005866,fptx013344 47.64 39.29 0.33 0.00 Isocitrate dehydrogenase [NADP] 2E-05 32 fmtx017700,fntx025685,fptx026268 3.76 2.69 156.13 1.36 Cytochrome P450 78A3 1E-04 45 fmtx025716,fntx021666,fptx019476 46.57 19.06 1.30 1.43 4-coumarate--CoA ligase-like 9 2E-03 52 fmtx016881,fntx015716,fptx024013 1.87 0.00 16.62 13.23 Elongation factor 1-delta 1 3E-02 54 fmtx011621,fntx014534,fptx017475 1.79 1.58 11.15 21.87 Probable methyltransferase PMT20 3E-02 57 fmtx020993,fntx000597,fptx011722 103.18 80.13 3.36 4.23 Uncharacterized protein At5g10860 2E-04 85 fmtx012761,fntx005289,fptx009807 43.65 32.29 0.93 0.33 NA 1E-04 128 fmtx010383,fntx011821,fptx016776 29.92 32.39 6.10 1.65 40S ribosomal protein S20-2 3E-02 160 fmtx025201,fntx017966,fptx007641 13.94 32.69 1.90 2.14 65-kDa microtubule-associated protein 6 2E-02

114 166 fmtx007080,fntx028103,fptx009252 28.75 10.17 290.71 167.37 60S acidic ribosomal protein P1 1E-03

170 fmtx025338,fntx021671,fptx013400 9.52 9.56 0.37 0.65 MLO-like protein 1 5E-02 193 fmtx017440,fntx026922,fptx000552 0.41 0.00 66.15 18.31 NA 2E-05 226 fmtx026010,fntx010050,fptx000990 77.52 113.18 6.32 4.96 Exosome complex exonuclease RRP45 5E-04 233 fmtx019579,fntx004487,fptx022141 20.11 8.07 0.33 0.00 NA 3E-03 290 fmtx007203,fntx011945,fptx018313 4.48 2.21 60.19 54.36 Nucleolysin TIAR 1E-03 322 fmtx022848,fntx029260,fptx024418 28.18 25.59 2.87 1.31 Regulatory-associated protein of Mtor 9E-03 356 fmtx017429,fntx025678,fptx025404 50.25 48.78 2.72 1.37 Protein CutA 5E-04 363 fmtx017753,fntx016201,fptx013384 24.90 38.04 0.47 1.10 E3 ubiquitin-protein ligase MARCH3 1E-03 418 fmtx018876,fntx022044,fptx006491 49.11 40.63 5.10 5.24 Ubiquitin-fold modifier-conjugating enzyme 1 1E-02 430 fmtx002604,fntx026770,fptx026794 89.31 53.59 1.36 1.81 Putative leucine-rich repeat-containing protein 4E-05

450 fmtx025639,fntx002822,fptx020640 30.88 44.15 8.68 3.78 NA 5E-02 478 fmtx019004,fntx003557,fptx019382 31.13 31.73 7.38 0.00 RWD domain-containing protein 1 2E-02 496 fmtx011743,fntx015466,fptx015462 16.85 15.71 2.83 0.48 Riboflavin biosynthesis protein ribBA 4E-02 505 fmtx005415,fntx029142,fptx005274 0.74 1.32 8.25 621.82 S-adenosylmethionine synthase 3 4E-09 510 fmtx008842,fntx016687,fptx010031 8.70 6.12 70.19 121.78 Universal stress protein A-like protein 2E-03 512 fmtx024533,fntx017534,fptx021341 51.66 35.14 2.32 1.28 DEAD-box ATP-dependent RNA helicase 20 1E-03 519 fmtx012639,fntx027911,fptx023962 90.69 76.02 2.00 3.07 Receptor-like protein kinase HAIKU2 6E-05 525 fmtx026278,fntx027957,fptx022058 25.14 17.42 1.46 3.18 Glycine-rich RNA-binding protein 8 4E-02 541 fmtx024957,fntx011980,fptx023647 84.23 29.29 6.63 4.66 E3 ubiquitin-protein ligase RGLG2 6E-03 550 fmtx023692,fntx027525,fptx004870 36.24 19.08 1.85 5.23 Serologically defined colon cancer antigen 1 3E-02 583 fmtx019921,fntx029606,fptx022423 0.98 0.00 14.69 14.44 Serine/threonine-protein phosphatase PP1 isozyme 2 1E-02 629 fmtx024949,fntx028551,fptx021552 86.97 20.64 1.84 5.17 NA 2E-03 670 fmtx003755,fntx028689,fptx012983 3.95 2.47 116.49 108.12 Alpha-1,4-glucan-protein synthase [UDP-forming] 2 3E-05 696 fmtx033422,fntx003366,fptx026439 6.51 46.66 1.56 2.16 Uncharacterized protein At1g77540 1E-02 702 fmtx022121,fntx009929,fptx018369 51.88 15.45 1.08 7.58 Zinc finger protein JACKDAW 3E-02 703 fmtx012612,fntx022249,fptx021094 304.24 190.27 34.56 12.71 NA 2E-03 715 fmtx018993,fntx006142,fptx010791 49.89 56.30 1.98 0.00 R3H domain-containing protein 1 7E-05 719 fmtx006053,fntx009624,fptx013441 20.69 17.83 1.41 0.73 RNA polymerase II-associated protein 3 9E-03

115 733 fmtx018362,fntx028423,fptx016195 75.68 40.28 0.33 0.00 Zinc finger CCCH domain-containing protein 66 4E-06

749 fmtx005317,fntx021645,fptx023425 1.69 0.97 28.74 4.70 NA 3E-02 777 fmtx011908,fntx018181,fptx009750 4.25 3.13 55.42 2.84 U-box domain-containing protein 4 3E-02 821 fmtx026099,fntx012591,fptx019179 50.58 54.81 1.39 4.01 Putative late blight resistance protein homolog R1A-6 8E-04 829 fmtx023147,fntx004676,fptx008911 133.61 130.54 7.41 37.68 Hypersensitive-induced response protein 1 3E-02 857 fmtx025066,fntx025805,fptx024294 92.99 141.13 6.25 9.14 Protein gar2 6E-04 865 fmtx019019,fntx027371,fptx021607 43.65 15.66 419.28 62.31 Acyl-[acyl-carrier-protein] desaturase 6E-03 966 fmtx004517,fntx003822,fptx009461 1.30 0.93 31.26 7.83 Enolase 1 8E-03 967 fmtx004992,fntx018557,fptx010974 0.83 0.00 30.32 13.97 Sphingosine kinase 1 2E-03 969 fmtx014522,fntx025044,fptx022475 1.30 0.00 36.45 12.16 NA 1E-03 988 fmtx021615,fntx002820,fptx023087 17.65 16.76 1.00 1.72 Zinc finger CCCH domain-containing protein 55 3E-02 1000 fmtx022608,fntx009964,fptx005478 80.24 11.01 3.50 1.66 Homeobox-leucine zipper protein HAT14 1E-03

1019 fmtx009162,fntx022102,fptx023132 18.14 14.84 0.74 0.54 Two-component response regulator ARR2 6E-03 1034 fmtx024224,fntx000102,fptx022603 86.49 91.30 15.82 0.00 40S ribosomal protein S16 3E-03 1038 fmtx004951,fntx003086,fptx020869 34.26 34.35 1.84 0.00 LRR repeats and ubiquitin-like domain-containing protein 7E-04 At2g30105 1087 fmtx014958,fntx008984,fptx012721 14.31 12.72 0.65 0.00 ABC transporter I family member 6 2E-02 1097 fmtx025428,fntx027165,fptx020598 25.52 9.21 0.86 0.00 Protein PAT1 homolog 1 5E-03 1116 fmtx019836,fntx005258,fptx023103 1.49 11.70 218.03 60.38 GDP-L-galactose phosphorylase 1 1E-04 1167 fmtx024052,fntx020559,fptx023702 5.39 115.51 2.84 0.00 Inositol-3-phosphate synthase 8E-05 1171 fmtx017594,fntx028085,fptx010403 1.03 0.81 216.22 73.23 Vesicle-associated membrane protein 722 3E-07 1183 fmtx017803,fntx027488,fptx023579 82.93 68.10 6.39 0.00 Long chain acyl-CoA synthetase 8 2E-04 1229 fmtx020678,fntx001174,fptx026356 15.26 11.26 1.45 0.00 DEAD-box ATP-dependent RNA helicase 13 2E-02 1257 fmtx004019,fntx007951,fptx014903 3.88 6.06 208.39 122.46 Aquaporin PIP2-7 2E-05 1262 fmtx010027,fntx027669,fptx023803 2079.69 289.64 24.46 67.29 Dehydrin COR47 2E-05 1313 fmtx021826,fntx022469,fptx021560 99.91 78.22 0.33 0.00 NA 3E-07 1322 fmtx018174,fntx025458,fptx013914 10.70 4.48 355.14 4.27 Probable carboxylesterase 8 6E-05 1324 fmtx012796,fntx028381,fptx023710 1.85 0.00 22.99 13.90 Probable WRKY transcription factor 2 1E-02 1360 fmtx021793,fntx022929,fptx013820 19.50 14.29 1.83 0.96 SPX domain-containing protein 4 3E-02 1386 fmtx025138,fntx004291,fptx008211 29.73 1.50 2.30 0.00 Tubby-like F-box protein 3 2E-02 1403 fmtx018542,fntx013202,fptx009024 10.53 1.55 39.41 67.65 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 4 1E-02

116 1412 fmtx016470,fntx018055,fptx014872 16.45 1.06 322.28 30.40 Phenylalanine ammonia-lyase 1E-04

1421 fmtx018348,fntx010405,fptx001635 33.60 78.72 3.62 11.12 Protein mago nashi homolog 2E-02 1439 fmtx019445,fntx005524,fptx018321 22.49 32.33 1.44 3.77 Acyl-[acyl-carrier-protein] desaturase 1E-02 1450 fmtx010008,fntx013477,fptx016081 46.56 19.06 0.53 1.49 Putative two-component response regulator ARR19 9E-04 1469 fmtx024137,fntx023471,fptx010591 14.71 9.90 1.23 1.24 DnaJ homolog subfamily C member 13 5E-02 1476 fmtx022135,fntx020696,fptx011147 57.83 2.39 2.20 6.05 NA 4E-02 1505 fmtx005652,fntx025703,fptx018412 0.61 0.00 14.44 12.86 Cleavage and polyadenylation specificity factor subunit 2E-02 CG7185 1519 fmtx015700,fntx019334,fptx035346 5.79 31.15 301.92 2.68 NA 7E-03 1542 fmtx007127,fntx025684,fptx010577 3.41 3.26 37.03 16.65 UPF0047 protein yjbQ 4E-02 1558 fmtx018406,fntx016392,fptx017609 40.05 23.06 2.00 0.66 Histidine kinase 3 2E-03 1565 fmtx005782,fntx026564,fptx017211 0.86 1.09 7.00 23.79 Cytosolic Fe-S cluster assembly factor narfl 2E-02

1583 fmtx033394,fntx030518,fptx020153 0.79 6.00 48.04 4.21 Uncharacterized protein At4g06744 4E-02 1630 fmtx016807,fntx037170,fptx010736 3.12 0.41 45.13 1.40 Thioredoxin H2 2E-02 1660 fmtx024810,fntx005425,fptx009223 10.43 13.64 0.33 0.00 Probable beta-D-xylosidase 7 6E-03 1668 fmtx009265,fntx003678,fptx016859 54.97 66.76 5.63 3.80 NA 2E-03 1687 fmtx017577,fntx023415,fptx014067 86.14 131.74 13.02 8.45 NA 3E-03 1714 fmtx026158,fntx021822,fptx002325 36.52 28.82 6.11 2.56 Proteasome activator complex subunit 4 4E-02 1727 fmtx024744,fntx029854,fptx009016 222.76 158.80 24.40 8.22 Alcohol dehydrogenase class-3 1E-03 1744 fmtx024171,fntx025240,fptx018792 5.97 9.80 158.48 102.16 Disease resistance response protein 206 5E-04 1793 fmtx025618,fntx027451,fptx022797 116.28 108.92 6.70 17.16 Homeobox-leucine zipper protein ATHB-7 5E-03 1795 fmtx003244,fntx012827,fptx021198 3.42 26.19 0.62 0.62 Cation/calcium exchanger 4 1E-02 1796 fmtx022146,fntx023828,fptx021181 22.95 18.31 3.63 1.75 Auxin-responsive protein IAA26 5E-02 1805 fmtx015629,fntx021062,fptx021457 3.72 6.14 63.37 17.46 Tropinone reductase homolog 2E-02 1811 fmtx017404,fntx026841,fptx008385 49.82 22.55 5.11 0.61 Myb-like protein J 7E-03 1812 fmtx029249,fntx034846,fptx030801 2.49 1.07 35.72 1.02 Cucumber peeling cupredoxin 4E-02 1819 fmtx010691,fntx023223,fptx012369 21.69 5.49 0.47 1.88 E3 ubiquitin-protein ligase RGLG1 4E-02 1833 fmtx004313,fntx021947,fptx018215 36.82 72.23 3.01 2.46 NA 6E-04 1834 fmtx015366,fntx019359,fptx009315 4.54 10.62 517.01 2.91 PPPDE peptidase domain-containing protein 1 1E-05 1900 fmtx007395,fntx025783,fptx004212 3.95 1.24 130.95 55.01 Probable serine incorporator 4E-05

117 1909 fmtx020949,fntx017281,fptx019830 34.92 4.36 1.79 0.00 Probable cinnamyl alcohol dehydrogenase 6 8E-03

1937 fmtx024523,fntx026852,fptx024116 109.63 73.00 0.92 12.79 Thioredoxin-like protein CXXS1 2E-03 1942 fmtx014865,fntx022333,fptx009918 18.68 28.08 1.40 0.71 Cryptochrome-1 4E-03 1970 fmtx011551,fntx016567,fptx021436 49.39 73.86 1.14 2.12 REF/SRPP-like protein At1g67360 7E-05 1983 fmtx013265,fntx000772,fptx025133 19.29 33.63 2.82 2.34 Heterogeneous nuclear ribonucleoprotein U-like protein 1 2E-02 1989 fmtx025278,fntx009337,fptx023546 12.89 13.17 0.70 1.42 KH domain-containing protein At4g18375 4E-02 1994 fmtx024536,fntx013856,fptx018827 30.59 26.07 0.65 0.00 Dolichyldiphosphatase 1 6E-04 2013 fmtx006118,fntx016220,fptx018425 0.43 0.00 9.08 6.38 Threonyl-tRNA synthetase 3E-02 2025 fmtx004323,fntx006039,fptx009584 12.34 12.88 0.37 0.33 NA 2E-02 2038 fmtx018936,fntx027393,fptx021515 15.30 12.10 2.05 0.00 CBL-interacting serine/threonine-protein kinase 23 4E-02 2070 fmtx024308,fntx025922,fptx021562 36.79 241.48 27.79 18.87 Uncharacterized protein At5g49945 3E-02 2087 fmtx025092,fntx021040,fptx008597 27.09 25.90 0.86 0.49 Pumilio homolog 1 8E-04

2122 fmtx017997,fntx019889,fptx017460 38.03 37.68 2.41 9.12 Protein DEK 5E-02 2124 fmtx025499,fntx018634,fptx024564 24.10 18.38 0.86 1.60 60S ribosomal protein L36-2 6E-03 2130 fmtx009240,fntx005706,fptx024916 18.57 21.31 1.89 1.49 Diaminopimelate epimerase 2E-02 2142 fmtx018582,fntx013347,fptx008886 11.09 8.87 0.37 0.33 PHD finger protein At1g33420 5E-02 2199 fmtx000729,fntx019491,fptx010158 283.40 11.54 5.53 5.60 54S ribosomal protein L24 5E-05 2219 fmtx021017,fntx019417,fptx003527 12.15 78.22 0.37 0.33 F-box protein PP2-A12 5E-05 2239 fmtx025670,fntx000682,fptx024425 88.79 4.48 739.97 172.53 Aquaporin TIP1-1 2E-03 2249 fmtx018077,fntx019381,fptx023853 36.40 255.98 20.01 7.95 Protein yippee-like At5g53940 3E-03 2313 fmtx023396,fntx028457,fptx025030 101.94 14.43 1028.4 99.20 Major allergen Pru ar 1 2E-03 0 2319 fmtx020283,fntx009858,fptx012986 25.92 26.82 0.37 0.33 Transcription factor BTF3 homolog 4 9E-04 2352 fmtx027146,fntx037012,fptx011357 66.51 16.43 2.07 4.70 NA 6E-03 2390 fmtx010001,fntx030465,fptx025790 8.59 1.06 144.31 3.21 Thaumatin-like protein 1E-03 2397 fmtx012610,fntx028750,fptx020401 582.18 37.87 54.75 8.02 NA 2E-03 2405 fmtx037194,fntx020314,fptx015378 0.43 2.29 8.79 27.71 Protein TIFY 10B 2E-02 2435 fmtx015231,fntx012088,fptx008402 4.44 1.81 32.37 14.71 NA 4E-02 2436 fmtx011022,fntx000428,fptx005762 0.55 4.89 263.58 428.94 NA 3E-08 2448 fmtx024243,fntx004546,fptx021567 31.62 26.52 2.52 2.73 Far upstream element-binding protein 3 1E-02 2454 fmtx018760,fntx024908,fptx019481 60.40 9.78 1.41 1.97 NA 1E-03

118 2456 fmtx023349,fntx018499,fptx013787 51.32 55.08 1.58 0.00 Probable UDP-N-acetylglucosamine--peptide N- 7E-05 acetylglucosaminyltransferase SEC

2470 fmtx019862,fntx031372,fptx009023 3.79 3.35 90.30 22.96 NA 1E-03 2475 fmtx010686,fntx009857,fptx013712 146.58 88.72 19.51 7.68 Protein SGT1 homolog 6E-03 2510 fmtx003498,fntx028801,fptx010684 166.09 19.57 1962.8 12.31 Probable non-specific lipid-transfer protein AKCS9 1E-03 0 2532 fmtx026279,fntx029465,fptx020642 0.43 0.41 19.97 13.28 Transmembrane 9 superfamily member 4 6E-03 2544 fmtx025807,fntx005004,fptx003485 15.18 14.40 0.70 1.08 Receptor-like protein kinase HSL1 3E-02 2545 fmtx008421,fntx010226,fptx011860 5.62 1.64 57.39 15.45 Glutathione S- 1E-02 2562 fmtx029409,fntx006561,fptx016704 18.91 18.31 1.00 1.31 Exocyst complex component SEC3A 1E-02 2619 fmtx012851,fntx009532,fptx004346 17.30 25.76 2.06 0.00 Spermidine synthase 2 5E-03 2620 fmtx026310,fntx019018,fptx022615 3.57 3.21 27.21 102.88 Probable rhamnose biosynthetic enzyme 1 8E-04 2707 fmtx010822,fntx011949,fptx004580 19.42 16.98 0.40 4.03 Serine/threonine-protein phosphatase BSL1 4E-02

2765 fmtx023888,fntx025164,fptx019996 6.18 3.62 3.60 62.93 Auxin-induced in root cultures protein 12 5E-02 2816 fmtx026354,fntx029946,fptx024302 481.11 947.84 22.18 35.65 NA 2E-05 2819 fmtx012676,fntx005829,fptx000944 26.36 14.57 5.32 0.00 Glucose-6-phosphate 1-dehydrogenase 5E-02 2823 fmtx024411,fntx004090,fptx015213 14.80 48.84 2.21 6.32 G-type lectin S-receptor-like serine/threonine-protein 4E-02 kinase At1g11330 2836 fmtx010577,fntx021809,fptx025953 3.67 1.46 21.33 142.73 NA 7E-05 2848 fmtx011672,fntx028332,fptx022901 1.20 0.81 43.53 7.25 Serine incorporator 3 3E-03 2922 fmtx011683,fntx019537,fptx011836 63.30 154.98 13.58 8.94 36.4 kDa proline-rich protein 5E-03 2945 fmtx020125,fntx014481,fptx001568 35.06 28.04 6.08 1.66 Receptor-like serine/threonine-protein kinase ALE2 3E-02 2960 fmtx032829,fntx003796,fptx002626 49.19 6.45 2.34 1.74 NA 8E-03 2972 fmtx013269,fntx005912,fptx015279 43.57 37.58 2.08 7.21 RUN and FYVE domain-containing protein 1 1E-02 2990 fmtx004722,fntx015400,fptx002301 1.68 4.82 17.72 30.29 Heterogeneous nuclear ribonucleoprotein Q 4E-02 3010 fmtx018935,fntx011284,fptx026660 67.08 421.41 1.33 26.76 NA 2E-04 3033 fmtx015263,fntx014052,fptx009155 36.24 12.44 5.78 0.00 Ubiquitin-conjugating enzyme E2 36 4E-02 3051 fmtx019630,fntx005638,fptx023442 33.56 25.98 1.07 0.33 ABC transporter G family member 3 5E-04 3058 fmtx025571,fntx015108,fptx013982 25.58 23.90 0.37 0.85 Disease resistance protein RPM1 1E-03 3071 fmtx020237,fntx028282,fptx022204 0.43 13.36 169.60 1.09 NA 2E-03 3081 fmtx019688,fntx026024,fptx013519 20.24 12.58 1.31 0.00 Eukaryotic initiation factor iso-4F subunit p82-34 6E-03 3090 fmtx022614,fntx004146,fptx020573 56.22 72.04 0.93 0.00 Peptidyl-prolyl cis-trans FKBP4 1E-05

119 3105 fmtx006564,fntx021174,fptx008636 0.41 0.00 10.86 6.20 Protein MAM3 2E-02

3111 fmtx010559,fntx011518,fptx015438 17.04 11.02 163.28 11.13 Uncharacterized protein At3g61260 3E-02 3144 fmtx022874,fntx028473,fptx013810 25.44 24.32 1.63 0.77 Serine/threonine-protein phosphatase 5 3E-03 3170 fmtx014176,fntx028766,fptx007245 0.43 1.04 6.18 14.77 Serine carboxypeptidase-like 18 4E-02 3213 fmtx026052,fntx029399,fptx016011 3.39 0.41 20.17 60.64 NA 1E-03 3221 fmtx012346,fntx017244,fptx029206 0.43 7.73 172.97 3.24 NA 2E-04 3227 fmtx004719,fntx014258,fptx009683 45.59 35.55 8.01 3.26 F-box protein At4g00755 3E-02 3261 fmtx025765,fntx029866,fptx016567 1.68 3.76 36.19 7.67 NA 4E-02 3267 fmtx025819,fntx027359,fptx008185 41.94 38.57 632.25 169.54 F-box protein FBW2 2E-03 3272 fmtx028515,fntx000359,fptx022109 14.94 13.76 0.37 0.82 RING finger protein 10 1E-02 3326 fmtx014961,fntx021950,fptx020348 26.28 5.70 0.33 0.00 HAUS augmin-like complex subunit 1 2E-03

3356 fmtx009447,fntx027312,fptx012751 0.43 0.41 28.63 16.01 Calcium-dependent protein kinase SK5 2E-03 3368 fmtx017354,fntx011528,fptx024591 739.23 1289.06 162.85 50.18 Probable aquaporin PIP1-5 2E-03 3376 fmtx017236,fntx029619,fptx009919 6.17 4.88 64.25 6.50 F-box protein SKIP19 5E-02 3377 fmtx002827,fntx020247,fptx025141 26.59 0.00 1.54 0.64 Receptor-like serine/threonine-protein kinase NCRK 4E-02 3382 fmtx005188,fntx012457,fptx009294 2.10 0.00 36.64 24.53 NA 1E-03 3390 fmtx028879,fntx023613,fptx022015 5.25 8.40 88.88 5.44 NA 3E-02 3397 fmtx018513,fntx029294,fptx024544 18.73 17.62 2.69 0.00 NA 2E-02 3433 fmtx030787,fntx029038,fptx026999 1.06 17.37 735.02 9.75 NA 4E-06 3439 fmtx010536,fntx011163,fptx010066 1.22 2.59 28.53 7.95 Auxin-induced protein 10A5 4E-02 3454 fmtx017848,fntx022320,fptx022039 30.78 32.85 1.23 7.01 Protein ISD11 3E-02 3487 fmtx019141,fntx026572,fptx013494 6.29 7.01 0.37 0.00 Sphingoid long-chain bases kinase 1 5E-02 3499 fmtx017023,fntx016006,fptx025299 67.42 26.56 0.72 10.28 NA 2E-02 3500 fmtx000549,fntx029752,fptx023279 21.35 4.99 1603.4 303.13 Auxin-repressed 12.5 kDa protein 8E-08 9 3524 fmtx014826,fntx000688,fptx008799 56.10 19.41 662.86 14.01 Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine 4E-03 amidase A 3557 fmtx015000,fntx021817,fptx003437 7.75 11.11 131.77 7.41 Subtilisin-like protease 2E-02 3562 fmtx014894,fntx009997,fptx012374 8.45 3.97 66.48 19.03 WD-40 repeat-containing protein MSI4 3E-02 3586 fmtx028511,fntx012607,fptx027069 19.81 3.58 96.44 32.22 Desiccation-related protein PCC27-45 5E-02 3647 fmtx026022,fntx029806,fptx024448 1.75 8.56 238.46 69.71 Lactoylglutathione lyase 3E-05

120 3650 fmtx022470,fntx006322,fptx021708 8.59 12.41 1.24 0.00 NA 4E-02

3676 fmtx026284,fntx004200,fptx009144 1.28 1.89 106.85 16.71 BI1-like protein 7E-05 3681 fmtx018065,fntx027592,fptx021519 28.07 8.38 286.32 57.06 Trans-cinnamate 4-monooxygenase 4E-03 3687 fmtx017470,fntx019068,fptx009860 28.21 83.49 1.61 9.17 NA 7E-03 3751 fmtx019390,fntx005869,fptx003216 15.74 16.05 0.37 0.79 Chaperone protein dnaJ 8E-03 3757 fmtx006180,fntx029318,fptx027651 0.88 1.76 45.99 2.03 NA 8E-03 3780 fmtx006072,fntx028188,fptx022340 1.47 0.72 26.41 2.41 Polygalacturonase At1g48100 3E-02 3825 fmtx009955,fntx019416,fptx008168 6.63 2.83 69.10 0.38 Superoxide-generating NADPH oxidase heavy chain 3E-02 subunit B 3834 fmtx020083,fntx011648,fptx023316 9.56 10.34 70.67 61.93 Mitochondrial import receptor subunit TOM20 3E-02 3856 fmtx019152,fntx023952,fptx002853 488.01 213.52 3497.1 345.32 Mavicyanin 3E-02 6 3862 fmtx014131,fntx022356,fptx012291 33.88 14.43 0.65 0.00 Histone-lysine N-methyltransferase NSD3 1E-03

3880 fmtx022527,fntx025828,fptx014639 24.55 8.95 1.23 0.91 Pumilio homolog 23 2E-02 3896 fmtx001803,fntx016686,fptx001155 1.26 10.93 181.52 5.42 NA 8E-04 3898 fmtx024820,fntx025433,fptx013002 69.41 84.02 2.01 13.62 Luminal-binding protein 5 6E-03 3913 fmtx009506,fntx009998,fptx017925 26.89 21.89 1.02 1.19 Probable serine/threonine-protein kinase At1g01540 3E-03 3915 fmtx002345,fntx026686,fptx022408 40.26 30.78 0.97 0.69 WW domain-containing 6E-04 3930 fmtx013610,fntx005896,fptx018822 46.50 27.12 0.41 8.94 60S ribosomal export protein NMD3 2E-02 3940 fmtx017518,fntx017329,fptx024105 20.35 13.69 3.13 0.33 Putative glycosyltransferase 2 3E-02 3946 fmtx005976,fntx023596,fptx020309 28.69 20.60 2.55 3.31 Probable E3 ubiquitin-protein ligase ARI10 4E-02 3949 fmtx028115,fntx032448,fptx020594 3.52 2.68 59.85 12.88 Glycosyltransferase 6 7E-03 3981 fmtx023960,fntx015068,fptx018195 14.81 11.22 0.37 0.33 NA 2E-02 4001 fmtx012626,fntx027819,fptx018322 8.49 62.08 4.21 1.70 Glutathione S-transferase zeta class 8E-03 4041 fmtx026051,fntx029926,fptx002940 94.81 88.13 3.70 8.42 Ketol-acid reductoisomerase 9E-04 4050 fmtx000281,fntx013359,fptx011508 27.82 15.42 0.37 1.56 Protein TRANSPORT INHIBITOR RESPONSE 1 5E-03 4173 fmtx031856,fntx015316,fptx008718 3.18 0.00 140.90 1.21 Probable calcium-binding protein CML29 4E-05 4242 fmtx013698,fntx007213,fptx013872 24.61 30.72 0.74 2.45 40S ribosomal protein S28 4E-03 4252 fmtx025684,fntx015383,fptx003234 32.93 19.81 3.13 2.00 Nitrilase homolog 1 2E-02 4259 fmtx000085,fntx014935,fptx008268 1.54 7.76 87.17 2.99 Sucrose transport protein 9E-03 4307 fmtx004693,fntx031617,fptx015551 0.43 0.83 32.76 11.31 Snurportin-1 2E-03

121 4337 fmtx011999,fntx015902,fptx020290 34.23 13.42 1.38 0.68 Probable beta-D-xylosidase 2 3E-03

4369 fmtx020919,fntx015763,fptx019848 40.43 41.14 4.35 1.94 Splicing factor 3B subunit 1 4E-03 4371 fmtx004320,fntx000496,fptx012350 80.79 22.70 1.06 3.05 Ocs element-binding factor 1 4E-04 4374 fmtx011702,fntx014910,fptx018940 71.73 39.99 2.55 5.40 Actin-depolymerizing factor 2E-03 4444 fmtx028836,fntx014578,fptx011111 22.43 33.09 1.84 1.86 Sugar transport protein 13 8E-03 4461 fmtx003429,fntx029757,fptx004588 2.15 1.07 53.92 18.86 NA 1E-03 4482 fmtx026176,fntx027269,fptx023458 21.85 21.27 363.44 43.56 Dihydroflavonol-4-reductase 3E-03 4489 fmtx011979,fntx005189,fptx010017 11.40 10.50 0.33 0.00 Peptidyl-prolyl cis-trans isomerase CWC27 homolog 8E-03 4551 fmtx009923,fntx003458,fptx008560 57.33 55.00 6.94 2.69 Probable phosphatidylinositol 4-kinase type 2-beta 5E-03 At1g26270 4562 fmtx001351,fntx028076,fptx010903 0.43 1.99 102.94 47.37 Cytochrome b-c1 complex subunit 6 1E-05 4566 fmtx031118,fntx021599,fptx026201 0.83 2.75 0.49 71.27 NA 2E-03

4576 fmtx018398,fntx004478,fptx022577 34.89 39.86 8.58 2.34 NA 4E-02 4614 fmtx004491,fntx004677,fptx008266 4.57 0.54 48.27 22.19 F-box protein CPR30 5E-03 4677 fmtx020835,fntx012146,fptx008378 13.79 9.49 97.55 43.63 NA 3E-02 4682 fmtx013686,fntx022336,fptx016218 16.14 26.85 1.70 1.33 V-type proton ATPase subunit B2 1E-02 4688 fmtx022983,fntx027603,fptx020977 1.45 0.00 27.80 15.63 Cyclin-dependent kinase F-1 2E-03

A.2 Supplementary Table 4.2- F. mandshurica vs F. pennsylvanica

Index Orthologs FmRep1 FmRep2 FpRep1 FpRep2 Descriptions P value 28 fmtx002537,fntx001397,fptx002530 92.67 42.59 0.37 0.00 NA 4.0E-12 36 fmtx022195,fntx015358,fptx008655 22.86 13.26 1.13 0.89 Putative general negative regulator of transcription C16C9.04c 3.3E-04 39 fmtx005291,fntx019422,fptx002476 25.23 19.65 5.66 4.74 40S ribosomal protein S13 1.9E-02 41 fmtx024231,fntx029426,fptx002285 17.35 14.33 2.12 2.27 ATPase family AAA domain-containing protein 1-A 5.5E-03 43 fmtx025124,fntx024431,fptx004598 15.57 10.60 4.22 0.72 Transportin-1 3.5E-02 52 fmtx016881,fntx015716,fptx024013 1.87 0.00 42.76 25.27 Elongation factor 1-delta 1 1.0E-06 54 fmtx011621,fntx014534,fptx017475 1.79 1.58 33.19 26.42 Probable methyltransferase PMT20 1.3E-05 56 fmtx029157,fntx030260,fptx026989 3.29 1.81 21.99 19.06 NA 2.1E-03

122 57 fmtx020993,fntx000597,fptx011722 103.18 80.13 257.84 323.93 Uncharacterized protein At5g10860 1.4E-02

60 fmtx005700,fntx029670,fptx021764 14.13 11.90 1.98 1.57 Calcium-transporting ATPase 1 2.3E-02 95 fmtx019493,fntx031826,fptx026175 11.74 12.63 68.05 16.71 Protein transport protein Sec61 subunit beta 2.2E-02 96 fmtx002767,fntx022100,fptx024634 0.41 0.00 12.45 14.21 DUF246 domain-containing protein At1g04910 1.1E-04 106 fmtx006387,fntx027137,fptx016873 2.50 6.54 9.67 44.37 Tubby-like F-box protein 5 3.5E-03 121 fmtx031181,fntx022193,fptx024451 0.76 1.73 38.26 21.94 Gibberellin 2-beta-dioxygenase 8 3.1E-06 138 fmtx018412,fntx025585,fptx013362 6.92 10.49 37.18 34.66 Tetratricopeptide repeat protein 35 1.1E-02 160 fmtx025201,fntx017966,fptx007641 13.94 32.69 1.89 2.18 65-kDa microtubule-associated protein 6 3.8E-04 162 fmtx025157,fntx020321,fptx004930 5.80 4.82 0.37 0.00 Coatomer subunit alpha-1 2.9E-02 170 fmtx025338,fntx021671,fptx013400 9.52 9.56 0.64 0.00 MLO-like protein 1 8.5E-03 181 fmtx009794,fntx010090,fptx026138 66.93 81.16 4.08 24.73 NA 1.1E-03

193 fmtx017440,fntx026922,fptx000552 0.41 0.00 106.17 206.99 NA 2.4E-17 203 fmtx017517,fntx020345,fptx021097 31.01 62.76 9.75 7.45 RNA polymerase II transcriptional coactivator KIWI 1.6E-03 204 fmtx033260,fntx030552,fptx025611 10.36 2.01 20.67 43.75 Cysteine proteinase inhibitor 1 4.1E-03 212 fmtx004666,fntx029819,fptx012162 2.49 1.37 39.70 40.06 DNA-directed RNA polymerase II subunit RPB2 2.3E-06 214 fmtx027703,fntx030549,fptx008034 13.38 16.85 1.39 0.00 NA 3.3E-04 226 fmtx026010,fntx010050,fptx000990 77.52 113.18 4.65 10.18 Exosome complex exonuclease RRP45 4.3E-07 233 fmtx019579,fntx004487,fptx022141 20.11 8.07 2.04 1.60 NA 1.5E-02 236 fmtx020275,fntx020315,fptx007856 80.41 154.43 5.08 23.61 NA 1.0E-05 242 fmtx014821,fntx029448,fptx018795 7.55 5.86 22.66 28.04 RNA-binding protein 39 2.7E-02 250 fmtx002875,fntx016618,fptx026300 0.90 0.00 8.63 10.01 TLD domain-containing protein KIAA1609 homolog 8.5E-03 263 fmtx017473,fntx028015,fptx016829 2.58 0.98 20.61 5.63 NA 2.3E-02 290 fmtx007203,fntx011945,fptx018313 4.48 2.21 73.80 41.60 Nucleolysin TIAR 6.5E-07 293 fmtx020065,fntx025155,fptx024024 54.12 58.39 179.55 269.37 D-3-phosphoglycerate dehydrogenase 2.7E-03 297 fmtx008470,fntx022781,fptx002976 21.60 24.10 5.00 1.67 Probable serine/threonine-protein kinase DDB_G0279405 4.2E-03 312 fmtx015050,fntx019076,fptx015658 2.15 2.48 16.94 13.03 Protein IQ-DOMAIN 32 2.0E-02 319 fmtx017878,fntx025645,fptx004417 23.13 8.68 0.42 0.00 ETHYLENE INSENSITIVE 3-like 3 protein 2.9E-05 326 fmtx026335,fntx025567,fptx020130 11.75 5.84 64.38 57.62 Splicing factor U2af large subunit B 2.2E-04 328 fmtx012653,fntx013245,fptx024178 61.89 48.51 0.91 1.03 NA 3.9E-09

123 331 fmtx024470,fntx028170,fptx012731 26.81 24.55 3.68 3.26 Ribose-phosphate pyrophosphokinase 1 1.7E-03

342 fmtx000201,fntx020217,fptx023764 25.45 41.98 6.36 3.38 UDP-sugar pyrophospharylase 1.1E-03 357 fmtx019624,fntx029487,fptx010710 29.57 30.57 7.73 7.27 Pyrophosphate-fructose 6-phosphate 1-phosphotransferase subunit alpha 1.9E-02 360 fmtx028588,fntx012912,fptx013509 16.13 16.87 3.53 1.91 ATPase family AAA domain-containing protein 2B 9.1E-03 368 fmtx026199,fntx003472,fptx006341 13.94 4.30 75.57 149.75 Nudix 17 2.7E-07 372 fmtx003548,fntx003778,fptx019838 7.48 12.00 33.63 41.69 60S ribosomal protein L36-2 1.5E-02 376 fmtx022015,fntx029241,fptx017019 4.34 1.20 20.80 26.94 NA 1.6E-03 399 fmtx024313,fntx024604,fptx004566 22.67 28.45 4.19 2.76 Nascent polypeptide-associated complex subunit alpha-like protein 2 1.7E-03 414 fmtx023946,fntx012091,fptx007312 11.09 7.80 0.42 0.89 NA 6.5E-03 418 fmtx018876,fntx022044,fptx006491 49.11 40.63 19.08 0.37 Ubiquitin-fold modifier-conjugating enzyme 1 4.0E-03 430 fmtx002604,fntx026770,fptx026794 89.31 53.59 16.43 33.18 Putative leucine-rich repeat-containing protein DDB_G0290503 4.9E-02 431 fmtx008292,fntx018997,fptx015405 0.41 0.00 5.74 7.37 Putative AC transposase 9.5E-03

433 fmtx028843,fntx012723,fptx007677 13.65 13.23 2.51 2.30 Probable phosphoribosylformylglycinamidine synthase 3.5E-02 434 fmtx026114,fntx020681,fptx009086 9.28 229.84 4.87 7.41 22.0 kDa class IV heat shock protein 4.3E-09 455 fmtx021995,fntx028955,fptx017041 13.30 10.25 59.84 64.36 Plastid-lipid-associated protein 1.4E-03 462 fmtx005919,fntx021239,fptx012630 21.16 7.92 61.15 67.13 40S ribosomal protein S3-3 3.6E-03 463 fmtx003421,fntx027989,fptx024303 1.72 2.81 13.82 38.35 Uncharacterized mscS family protein At1g78610 3.8E-04 487 fmtx025468,fntx026076,fptx007966 16.33 17.24 0.84 0.88 MLO-like protein 11 6.3E-04 495 fmtx025760,fntx021020,fptx024666 33.08 6.32 262.43 394.99 Cysteine proteinase RD21a 6.3E-10 506 fmtx017093,fntx011110,fptx008853 12.72 9.66 51.31 32.82 Ras-related protein Rab-2-B 1.5E-02 519 fmtx012639,fntx027911,fptx023962 90.69 76.02 24.87 24.35 Receptor-like protein kinase HAIKU2 1.5E-02 541 fmtx024957,fntx011980,fptx023647 84.23 29.29 12.59 6.99 E3 ubiquitin-protein ligase RGLG2 8.3E-04 545 fmtx001238,fntx001424,fptx003375 1.36 1.67 12.68 10.38 NA 1.7E-02 550 fmtx023692,fntx027525,fptx004870 36.24 19.08 1.30 0.00 Serologically defined colon cancer antigen 1 1.5E-06 554 fmtx018972,fntx000038,fptx023320 24.19 28.32 6.82 6.75 Cullin-associated NEDD8-dissociated protein 1 3.4E-02 562 fmtx011093,fntx005744,fptx007452 12.05 12.17 2.26 1.37 Gibberellin receptor GID1B 3.5E-02 572 fmtx021487,fntx025592,fptx016222 18.40 13.04 2.70 4.08 Heterogeneous nuclear ribonucleoprotein F 4.1E-02 574 fmtx025027,fntx016243,fptx005174 21.48 14.85 0.82 0.00 Casein kinase I isoform delta-like 7.5E-05 583 fmtx019921,fntx029606,fptx022423 0.98 0.00 18.43 10.99 Serine/threonine-protein phosphatase PP1 isozyme 2 4.2E-04 592 fmtx011935,fntx024591,fptx021363 22.32 16.29 1.61 3.65 Putative vacuolar protein sorting-associated protein 13D 3.7E-03

124 626 fmtx012020,fntx025302,fptx025546 11.33 7.21 21.97 43.47 NA 4.0E-02

628 fmtx003797,fntx021665,fptx026657 6.06 8.14 27.38 33.19 NA 1.4E-02 629 fmtx024949,fntx028551,fptx021552 86.97 20.64 5.66 2.04 NA 3.2E-06 638 fmtx026373,fntx028823,fptx023360 203.64 466.97 3.88 3.33 Thiazole biosynthetic enzyme 2.4E-17 646 fmtx019968,fntx027968,fptx028779 4.08 0.41 11.20 11.06 Derlin-1 4.4E-02 656 fmtx011514,fntx030779,fptx000904 42.28 26.34 0.42 0.69 Coiled-coil domain-containing protein 75 1.7E-07 660 fmtx020513,fntx027349,fptx000657 0.43 0.00 13.90 11.28 THO complex subunit 2 2.0E-04 670 fmtx003755,fntx028689,fptx012983 3.95 2.47 143.27 76.77 Alpha-1,4-glucan-protein synthase [UDP-forming] 2 8.0E-11 675 fmtx023840,fntx019968,fptx024503 2.86 0.00 34.43 56.32 MLO-like protein 1 1.7E-07 702 fmtx022121,fntx009929,fptx018369 51.88 15.45 7.50 8.77 Zinc finger protein JACKDAW 1.3E-02 703 fmtx012612,fntx022249,fptx021094 304.24 190.27 96.96 41.35 NA 5.8E-03 724 fmtx000608,fntx000110,fptx020976 3.04 2.58 17.99 18.84 Putative DEAD-box ATP-dependent RNA helicase 29 9.9E-03

733 fmtx018362,fntx028423,fptx016195 75.68 40.28 2.75 1.37 Zinc finger CCCH domain-containing protein 66 3.2E-08 738 fmtx026043,fntx028205,fptx024342 10.36 2.75 38.87 36.78 RING finger protein B 1.8E-03 749 fmtx005317,fntx021645,fptx023425 1.69 0.97 23.19 24.85 NA 1.1E-04 774 fmtx002337,fntx018973,fptx016757 1.01 4.92 31.96 24.44 Multiple C2 and transmembrane domain-containing protein 1 3.9E-04 792 fmtx017415,fntx025697,fptx013180 31.76 11.12 5.90 3.01 NAC domain-containing protein 78 1.9E-02 793 fmtx026303,fntx011559,fptx017117 83.70 58.86 13.56 16.40 NA 1.9E-03 799 fmtx017575,fntx022105,fptx004556 16.01 11.82 2.36 3.05 66 kDa stress protein 2.4E-02 802 fmtx022952,fntx019469,fptx009237 23.41 16.33 3.02 2.18 NF-X1-type zinc finger protein NFXL1 3.1E-03 819 fmtx027957,fntx020647,fptx022077 5.72 9.14 68.22 28.29 Probable carboxylesterase 13 5.3E-04 820 fmtx024836,fntx010635,fptx020925 79.29 0.00 21.53 0.63 NA 2.3E-02 821 fmtx026099,fntx012591,fptx019179 50.58 54.81 7.40 7.72 Putative late blight resistance protein homolog R1A-6 2.4E-04 823 fmtx007134,fntx020836,fptx024646 2.73 0.00 102.03 101.03 MADS-box protein JOINTLESS 6.6E-12 849 fmtx017711,fntx014236,fptx010081 6.87 3.53 20.20 20.54 UPF0424 protein At3g04780 3.3E-02 863 fmtx017601,fntx015866,fptx012306 46.99 12.26 10.10 7.76 NA 5.0E-02 864 fmtx017660,fntx018991,fptx013236 11.97 11.22 0.99 1.51 Isoflavone 2'-hydroxylase 6.8E-03 865 fmtx019019,fntx027371,fptx021607 43.65 15.66 6.13 9.66 Acyl-[acyl-carrier-protein] desaturase 2.9E-02 879 fmtx002887,fntx028359,fptx018846 5.97 1.51 20.51 21.91 Phosphoglucomutase 6.8E-03 880 fmtx018981,fntx021604,fptx008090 20.53 3.73 110.51 27.49 CLAVATA3/ESR (CLE)-related protein TDIF 5.0E-04

125 886 fmtx003801,fntx003699,fptx017457 10.43 11.64 48.47 30.33 Next to BRCA1 gene 1 protein 2.5E-02

907 fmtx004507,fntx012903,fptx013584 13.11 10.04 2.24 0.65 Protein kinase APK1B 1.7E-02 934 fmtx012257,fntx008711,fptx023053 0.82 1.39 6.78 11.34 NA 2.5E-02 935 fmtx031432,fntx031485,fptx013841 4.73 0.00 22.35 19.62 3-oxo-5-alpha-steroid 4-dehydrogenase 2 2.1E-03 937 fmtx027446,fntx029068,fptx024607 66.26 67.94 23.23 23.13 Eukaryotic translation initiation factor 3 subunit L 4.4E-02 966 fmtx004517,fntx003822,fptx009461 1.30 0.93 7.25 9.98 Enolase 1 3.3E-02 967 fmtx004992,fntx018557,fptx010974 0.83 0.00 32.90 62.76 Sphingosine kinase 1 3.9E-09 969 fmtx014522,fntx025044,fptx022475 1.30 0.00 18.22 16.18 NA 1.2E-04 974 fmtx021669,fntx025711,fptx016613 12.95 12.38 39.76 49.55 Protein BUD31 homolog 2 2.0E-02 1000 fmtx022608,fntx009964,fptx005478 80.24 11.01 0.42 2.52 Homeobox-leucine zipper protein HAT14 1.6E-07 1008 fmtx012067,fntx011946,fptx017785 0.45 0.00 11.07 16.72 Vacuolar protein sorting-associated protein 13b 8.3E-05 1015 fmtx023651,fntx029430,fptx021064 14.89 11.66 1.60 1.18 Protein CYPRO4 8.5E-03

1040 fmtx024882,fntx024168,fptx021610 31.49 28.74 6.89 10.12 Glutamate-cysteine ligase 3.5E-02 1042 fmtx011791,fntx021662,fptx000685 9.40 1.81 69.59 51.90 WUSCHEL-related homeobox 8 6.4E-06 1060 fmtx026246,fntx028810,fptx018297 27.58 7.21 143.96 190.00 60S ribosomal protein L11-2 1.1E-06 1074 fmtx022939,fntx025016,fptx006990 12.00 14.61 0.42 0.00 Bromodomain adjacent to zinc finger domain protein 2B 1.1E-04 1086 fmtx025429,fntx020209,fptx000628 11.76 29.74 4.47 6.82 UPF0667 protein C1orf55 homolog 4.7E-02 1089 fmtx010146,fntx022636,fptx016095 0.96 0.79 15.18 11.88 Uncharacterized basic helix-loop-helix protein At1g06150 3.3E-03 1103 fmtx024830,fntx006182,fptx019083 8.14 5.39 0.85 0.00 Serine/threonine-protein kinase CTR1 4.0E-02 1111 fmtx007279,fntx000401,fptx024705 25.96 33.97 7.52 9.49 Serine carboxypeptidase-like 20 3.8E-02 1115 fmtx028104,fntx031370,fptx026154 14.42 14.89 1.53 2.76 NA 9.9E-03 1116 fmtx019836,fntx005258,fptx023103 1.49 11.70 244.87 91.55 GDP-L-galactose phosphorylase 1 8.2E-11 1119 fmtx019963,fntx020929,fptx011478 17.12 9.74 1.03 0.00 NA 9.1E-04 1120 fmtx007111,fntx010178,fptx011371 5.26 30.55 2.59 4.10 Auxin-responsive protein IAA14 2.1E-02 1126 fmtx014488,fntx019187,fptx023123 3.32 2.12 35.17 29.65 Ubiquitin-conjugating enzyme E2 36 4.5E-05 1127 fmtx013293,fntx022107,fptx010112 1.00 0.00 20.12 6.82 Protein DJ-1 9.1E-04 1128 fmtx014137,fntx022383,fptx010751 2.45 1.81 14.40 16.43 NA 6.7E-03 1134 fmtx019869,fntx016186,fptx020939 1.34 0.75 16.93 22.21 Serine/threonine-protein phosphatase PP2A-2 catalytic subunit 1.7E-04 1163 fmtx026423,fntx028247,fptx012241 14.76 12.34 2.64 1.42 NA 1.5E-02 1166 fmtx005709,fntx029479,fptx021156 1.95 2.43 13.28 10.55 Scarecrow-like protein 14 2.9E-02

126 1171 fmtx017594,fntx028085,fptx010403 1.03 0.81 90.94 161.70 Vesicle-associated membrane protein 722 7.1E-14

1174 fmtx011242,fntx025251,fptx005406 39.40 19.56 13.01 4.36 GTP-binding protein SAR1A 3.8E-02 1178 fmtx027006,fntx011113,fptx010434 1.11 1.70 11.18 9.78 NA 3.5E-02 1181 fmtx022711,fntx028513,fptx018829 14.32 25.00 0.70 0.00 Rab9 effector protein with kelch motifs 3.9E-05 1183 fmtx017803,fntx027488,fptx023579 82.93 68.10 16.57 13.46 Long chain acyl-CoA synthetase 8 1.1E-03 1193 fmtx026037,fntx029256,fptx022601 26.61 16.09 2.80 4.88 Cytoskeleton-associated protein 5 1.2E-02 1206 fmtx024466,fntx024498,fptx014611 33.33 23.57 129.17 92.14 V-type proton ATPase subunit G 1 5.0E-03 1213 fmtx003682,fntx028924,fptx019602 31.77 15.55 113.90 103.39 YTH domain family protein 2 1.3E-03 1257 fmtx004019,fntx007951,fptx014903 3.88 6.06 855.75 411.31 Aquaporin PIP2-7 5.8E-20 1262 fmtx010027,fntx027669,fptx023803 2079.69 289.64 54.05 12.12 Dehydrin COR47 4.1E-15 1294 fmtx023711,fntx024673,fptx010805 27.36 30.84 3.00 6.03 60S ribosomal protein L15 2.0E-03 1296 fmtx024684,fntx021918,fptx020393 0.41 0.00 11.67 5.94 Probable beta-1,3-galactosyltransferase 20 1.7E-03

1307 fmtx006015,fntx021688,fptx000164 5.77 7.07 31.27 31.10 NA 7.7E-03 1324 fmtx012796,fntx028381,fptx023710 1.85 0.00 13.58 22.24 Probable WRKY transcription factor 2 3.9E-04 1347 fmtx011940,fntx020978,fptx014818 6.41 7.41 0.42 0.00 Protein FAR1-RELATED SEQUENCE 11 6.8E-03 1350 fmtx019608,fntx028869,fptx019972 85.57 139.33 9.69 5.02 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 3 6.4E-08 1351 fmtx025784,fntx010246,fptx013807 1.72 1.89 26.81 23.32 N-acetyltransferase 9-like protein 2.2E-04 1373 fmtx020899,fntx033984,fptx010662 34.79 5.95 6.17 1.37 NA 1.6E-02 1380 fmtx026323,fntx024883,fptx023656 33.70 30.91 5.49 6.89 E3 ubiquitin-protein ligase COP1 4.1E-03 1386 fmtx025138,fntx004291,fptx008211 29.73 1.50 4.57 0.00 Tubby-like F-box protein 3 1.6E-02 1393 fmtx026195,fntx011547,fptx017484 12.06 10.91 1.49 2.05 DNA-directed RNA polymerase I subunit rpa1 4.4E-02 1415 fmtx024213,fntx009556,fptx021950 2.65 1.72 4.84 17.62 Solute carrier family 25 member 44 4.4E-02 1416 fmtx007848,fntx014087,fptx010085 8.85 3.19 102.39 92.01 NA 6.3E-08 1421 fmtx018348,fntx010405,fptx001635 33.60 78.72 1.09 4.98 Protein mago nashi homolog 3.9E-07 1427 fmtx025568,fntx019066,fptx008979 4.88 3.44 27.88 22.55 Leucyl-tRNA synthetase 3.6E-03 1434 fmtx020227,fntx020664,fptx024653 3.60 1.78 15.71 21.12 GATA transcription factor 5 4.4E-03 1441 fmtx022884,fntx029319,fptx016091 11.40 13.48 1.63 1.92 Trehalase 2.9E-02 1445 fmtx021928,fntx028553,fptx006074 123.28 60.36 17.22 15.74 Probable WRKY transcription factor 23 3.9E-04 1471 fmtx017831,fntx027107,fptx021091 28.47 36.34 125.82 129.63 60S ribosomal protein L37a 4.1E-03 1473 fmtx004982,fntx015076,fptx021584 18.88 23.71 2.16 2.59 Probable receptor-like protein kinase At5g24010 1.8E-03

127 1475 fmtx022385,fntx031264,fptx025744 1.83 2.08 15.18 13.71 NA 1.2E-02

1482 fmtx020890,fntx015690,fptx023751 14.28 11.79 2.60 1.41 NA 1.9E-02 1489 fmtx023989,fntx027621,fptx023719 2.75 4.27 14.43 15.67 Probable complex I intermediate-associated protein 30 4.8E-02 1505 fmtx005652,fntx025703,fptx018412 0.61 0.00 11.10 8.18 Cleavage and polyadenylation specificity factor subunit CG7185 8.5E-03 1509 fmtx013174,fntx017748,fptx019430 4.32 5.09 20.69 18.48 Bifunctional aspartokinase/homoserine dehydrogenase 2.9E-02 1519 fmtx015700,fntx019334,fptx035346 5.79 31.15 0.46 1.53 NA 3.3E-04 1530 fmtx029050,fntx008814,fptx024947 75.21 2.87 8.53 7.05 Basic blue protein 4.9E-03 1533 fmtx021509,fntx024008,fptx014820 5.47 4.46 49.93 33.55 Meiosis protein mei2 1.7E-04 1541 fmtx004289,fntx010444,fptx003105 35.01 18.19 8.25 4.56 NAC domain-containing protein 18 2.2E-02 1542 fmtx007127,fntx025684,fptx010577 3.41 3.26 41.10 23.96 UPF0047 protein yjbQ 2.6E-04 1543 fmtx008763,fntx006749,fptx004449 15.79 12.85 2.89 1.16 ,Interferon-induced, double-stranded RNA-activated protein kinase 1.2E-02 1553 fmtx000779,fntx026429,fptx001288 2.93 4.98 17.18 21.63 Heterogeneous nuclear ribonucleoprotein Q 2.1E-02

1562 fmtx023573,fntx022230,fptx005695 105.60 65.88 6.03 13.81 40S ribosomal protein S26-2 1.4E-05 1565 fmtx005782,fntx026564,fptx017211 0.86 1.09 12.94 11.35 Cytosolic Fe-S cluster assembly factor narfl 5.5E-03 1573 fmtx029821,fntx015990,fptx013570 26.41 61.91 13.63 6.18 NA 6.4E-03 1578 fmtx000291,fntx018624,fptx002880 13.36 27.22 3.51 4.17 NA 1.6E-02 1582 fmtx014812,fntx004259,fptx008606 14.68 20.67 3.90 0.00 Ubiquitin-conjugating enzyme E2 28 3.0E-03 1595 fmtx023088,fntx028709,fptx022490 0.69 1.78 17.93 5.65 Probable serine/threonine-protein kinase abkC 5.5E-03 1605 fmtx000632,fntx028643,fptx012616 2.67 5.13 48.23 66.79 Tubulin beta-1 chain 1.6E-06 1606 fmtx008743,fntx021712,fptx020463 4.65 2.33 13.28 17.03 NA 4.8E-02 1608 fmtx026090,fntx025021,fptx017269 47.89 38.15 189.44 57.47 Transcription factor Bhlh144 3.5E-02 1617 fmtx023032,fntx029842,fptx007585 32.58 39.10 1.11 0.53 Neutral ceramidase 5.4E-07 1635 fmtx021870,fntx009298,fptx011459 48.45 33.41 14.23 4.66 Histidine decarboxylase 8.5E-03 1637 fmtx017938,fntx021624,fptx024293 10.36 21.36 278.14 132.60 NA 3.7E-08 1642 fmtx017868,fntx028335,fptx020608 45.54 61.65 14.82 19.44 40S ribosomal protein S6 3.4E-02 1647 fmtx012971,fntx003666,fptx014301 17.67 6.67 2.23 0.37 Transcription factor MYB48 1.7E-02 1648 fmtx014506,fntx029573,fptx013182 26.95 18.05 2.14 2.19 Cellulose synthase A catalytic subunit 2 [UDP-forming] 4.5E-04 1668 fmtx009265,fntx003678,fptx016859 54.97 66.76 14.66 14.37 NA 5.6E-03 1670 fmtx021987,fntx015884,fptx017068 7.59 8.55 36.80 23.36 Metal transporter Nramp3 2.6E-02 1679 fmtx019639,fntx031613,fptx012662 93.05 21.40 2.50 0.00 Uncharacterized membrane protein C2G11.09 2.6E-09

128 1685 fmtx020052,fntx014899,fptx026658 70.54 54.49 10.92 32.09 NA 4.6E-02

1703 fmtx004326,fntx022561,fptx021012 18.21 25.84 4.07 4.52 V-type proton ATPase subunit E 1.6E-02 1715 fmtx021512,fntx009035,fptx018878 0.43 0.63 6.32 7.10 Probable serine/threonine-protein kinase At1g54610 4.0E-02 1727 fmtx024744,fntx029854,fptx009016 222.76 158.80 23.29 18.35 Alcohol dehydrogenase class-3 1.3E-06 1733 fmtx017274,fntx029553,fptx023752 2.11 0.41 119.91 71.32 Cysteine proteinase RD21a 1.5E-11 1736 fmtx001195,fntx030250,fptx000867 33.72 16.20 3.81 5.06 NA 6.8E-03 1742 fmtx011536,fntx021433,fptx022661 11.23 24.50 0.84 3.66 NA 6.4E-03 1744 fmtx024171,fntx025240,fptx018792 5.97 9.80 67.89 81.90 Disease resistance response protein 206 1.0E-05 1759 fmtx023892,fntx028897,fptx008942 24.43 15.04 0.85 0.51 NA 3.9E-05 1766 fmtx024227,fntx026999,fptx004514 48.85 68.20 2.15 0.55 Pyruvate kinase 8.9E-09 1768 fmtx009645,fntx003670,fptx007632 30.07 20.91 0.37 0.00 E3 ubiquitin-protein ligase UPL5 3.9E-07 1787 fmtx024232,fntx013437,fptx018592 4.56 4.86 18.45 20.31 Probable methyltransferase PMT26 2.9E-02

1795 fmtx003244,fntx012827,fptx021198 3.42 26.19 51.02 42.57 Cation/calcium exchanger 4 4.1E-02 1813 fmtx029455,fntx031213,fptx013883 9.94 7.49 0.51 0.00 DNA-directed RNA polymerase II subunit RPB9 1.6E-02 1829 fmtx027627,fntx001737,fptx021170 12.52 2.84 25.06 28.43 NA 4.1E-02 1851 fmtx025023,fntx025714,fptx013527 12.67 10.33 1.78 2.38 Splicing factor U2AF 65 kDa subunit 3.5E-02 1869 fmtx018002,fntx027296,fptx000960 44.17 36.93 1.35 1.16 F-box protein At4g00755 5.9E-07 1872 fmtx011205,fntx004002,fptx015848 22.97 29.38 1.01 0.00 Abscisic acid receptor PYL8 2.6E-06 1892 fmtx022203,fntx025960,fptx024574 4.38 4.93 33.15 28.47 Myb family transcription factor APL 1.3E-03 1900 fmtx007395,fntx025783,fptx004212 3.95 1.24 125.75 78.14 Probable serine incorporator 7.6E-11 1903 fmtx009243,fntx009691,fptx009857 17.78 16.72 4.42 1.35 ATP-dependent Clp protease proteolytic subunit-related protein 3 1.5E-02 1906 fmtx019514,fntx012910,fptx026208 24.26 31.54 3.39 7.26 F-box protein At2g27310 7.8E-03 1909 fmtx020949,fntx017281,fptx019830 34.92 4.36 9.53 0.52 Probable cinnamyl alcohol dehydrogenase 6 4.3E-02 1925 fmtx017928,fntx021843,fptx014955 65.18 42.89 14.24 9.42 Protein DEHYDRATION-INDUCED 19 homolog 7 4.3E-03 1937 fmtx024523,fntx026852,fptx024116 109.63 73.00 21.55 20.12 Thioredoxin-like protein CXXS1 2.6E-03 1938 fmtx014281,fntx015025,fptx002734 17.09 6.28 0.77 1.64 Uncharacterized protein At2g37660 6.8E-03 1950 fmtx018426,fntx020162,fptx007926 122.09 325.81 0.86 2.98 Alpha-1,4 glucan phosphorylase L-1 isozyme 2.9E-16 1956 fmtx020407,fntx010234,fptx013003 0.51 3.63 63.11 57.72 NA 2.2E-08 1970 fmtx011551,fntx016567,fptx021436 49.39 73.86 4.59 3.57 REF/SRPP-like protein At1g67360 6.8E-07 1978 fmtx006277,fntx022979,fptx022137 0.78 0.69 5.91 9.18 GPI inositol-deacylase 2.1E-02

129 1993 fmtx009385,fntx019663,fptx019540 37.78 40.71 9.83 7.67 U3 small nucleolar ribonucleoprotein protein IMP3 6.2E-03

1998 fmtx019005,fntx029685,fptx003480 7.66 0.00 23.35 21.40 UDP-glucuronic acid decarboxylase 1 8.5E-03 2003 fmtx021110,fntx019677,fptx014464 3.61 8.69 23.59 27.32 Peptidyl-prolyl cis-trans isomerase CYP20-2 1.9E-02 2004 fmtx022656,fntx015843,fptx006734 36.00 26.44 7.49 9.57 Epoxide hydrolase 2 2.9E-02 2013 fmtx006118,fntx016220,fptx018425 0.43 0.00 4.70 4.55 Threonyl-tRNA synthetase 4.3E-02 2021 fmtx010393,fntx023462,fptx015203 4.64 6.21 28.20 20.96 Fumarylacetoacetase 1.7E-02 2025 fmtx004323,fntx006039,fptx009584 12.34 12.88 1.86 0.73 NA 1.4E-02 2040 fmtx004074,fntx024209,fptx010972 1.86 6.17 33.15 17.44 F-box protein At2g16365 3.6E-03 2042 fmtx013200,fntx012462,fptx023851 29.78 14.36 1.89 4.72 ABSCISIC ACID-INSENSITIVE 5-like protein 5 5.8E-03 2069 fmtx020092,fntx020353,fptx020519 0.43 0.41 8.84 39.70 Eukaryotic translation initiation factor 3 subunit A 5.6E-06 2070 fmtx024308,fntx025922,fptx021562 36.79 241.48 13.44 8.14 Uncharacterized protein At5g49945 1.4E-07 2083 fmtx012658,fntx027241,fptx021579 3.56 1.11 18.52 20.79 DNA-directed RNA polymerase I subunit RPA2 3.7E-03

2086 fmtx011331,fntx012745,fptx026322 17.08 14.58 1.61 3.12 NA 1.4E-02 2088 fmtx019060,fntx002922,fptx023003 1.98 2.95 26.51 16.44 Protein EARLY FLOWERING 3 1.8E-03 2093 fmtx019360,fntx028251,fptx010237 27.89 22.32 0.42 0.00 Cell division cycle 5-like protein 4.5E-07 2114 fmtx019025,fntx022016,fptx023235 1.02 1.84 15.56 11.71 Ubiquitin carboxyl-terminal hydrolase 17 6.8E-03 2138 fmtx024088,fntx030940,fptx010228 73.65 43.37 20.94 12.87 Plastidic glucose transporter 4 2.0E-02 2164 fmtx018509,fntx026518,fptx010713 113.15 23.16 16.56 8.53 NA 7.5E-04 2178 fmtx024434,fntx024778,fptx024245 18.87 9.31 0.71 0.00 Bromodomain-containing protein GTE3 7.0E-04 2199 fmtx000729,fntx019491,fptx010158 283.40 11.54 4.68 5.03 54S ribosomal protein L24 6.3E-11 2202 fmtx000787,fntx022613,fptx000105 7.63 15.71 4.15 0.00 Homeobox-leucine zipper protein ATHB-13 3.5E-02 2216 fmtx008457,fntx021543,fptx011345 7.04 3.67 0.37 0.00 NA 2.0E-02 2220 fmtx010764,fntx011848,fptx019014 28.33 86.98 23.90 10.62 NA 2.6E-02 2224 fmtx025620,fntx028341,fptx010958 24.19 30.32 76.12 94.51 Alpha-amylase 2.7E-02 2228 fmtx010189,fntx010515,fptx000348 56.96 56.97 15.57 23.66 Argininosuccinate synthase 4.8E-02 2231 fmtx022627,fntx027293,fptx018301 84.07 80.93 11.90 30.16 60S ribosomal protein L3 5.8E-03 2233 fmtx006303,fntx010118,fptx012018 2.65 0.83 10.10 8.88 Vacuolar protein sorting-associated protein 20 homolog 2 4.4E-02 2237 fmtx014985,fntx023630,fptx005704 7.05 8.52 21.35 36.05 Probable serine/threonine-protein kinase At4g35230 4.0E-02 2238 fmtx013446,fntx026904,fptx002112 10.80 21.18 3.29 2.21 NA 2.5E-02 2239 fmtx025670,fntx000682,fptx024425 88.79 4.48 326.56 297.92 Aquaporin TIP1-1 1.5E-05

130 2249 fmtx018077,fntx019381,fptx023853 36.40 255.98 5.57 3.73 Protein yippee-like At5g53940 3.0E-11

2255 fmtx025917,fntx028501,fptx009154 28.17 91.12 8.89 18.54 NA 4.0E-03 2256 fmtx023090,fntx028595,fptx025810 7.86 6.45 33.22 44.22 14 kDa zinc-binding protein 2.2E-03 2261 fmtx004315,fntx006553,fptx008773 5.63 0.00 19.48 21.11 Aldehyde dehydrogenase family 2 member C4 5.2E-03 2263 fmtx012657,fntx020483,fptx012187 43.87 25.77 9.40 3.99 Adagio protein 1 3.2E-03 2273 fmtx030920,fntx037066,fptx031039 1.48 1.38 43.72 16.31 NA 1.3E-05 2284 fmtx013594,fntx020774,fptx024537 2.95 10.56 43.01 62.02 Vacuolar protein sorting-associated protein 32 homolog 2 1.6E-04 2293 fmtx021388,fntx021845,fptx002879 50.80 36.56 9.27 15.28 Pre-mRNA-splicing factor SF2 2.6E-02 2295 fmtx033320,fntx021908,fptx029346 38.11 15.13 1.96 2.13 NA 1.1E-04 2299 fmtx026990,fntx031589,fptx016778 5.39 1.71 24.97 14.96 NA 9.1E-03 2304 fmtx008745,fntx010412,fptx005827 11.79 11.14 0.85 0.37 NA 2.0E-03 2308 fmtx009198,fntx015831,fptx013179 2.29 1.82 9.76 15.43 Serine/threonine-protein kinase Nek6 2.3E-02

2321 fmtx027683,fntx030729,fptx031311 21.07 15.43 6.58 2.75 Leucine-rich repeat receptor-like serine/threonine/tyrosine-protein kinase 4.4E-02 SOBIR1 2322 fmtx017817,fntx020165,fptx017514 77.37 28.73 11.39 0.46 Uncharacterized protein At4g22758 5.2E-05 2338 fmtx010769,fntx013329,fptx021667 1.53 0.78 36.06 73.11 Ubiquitin-fold modifier-conjugating enzyme 1 4.3E-09 2352 fmtx027146,fntx037012,fptx011357 66.51 16.43 5.30 1.70 NA 2.5E-05 2359 fmtx019082,fntx023036,fptx012815 0.41 0.00 20.73 4.52 Patellin-3 2.0E-04 2369 fmtx025964,fntx020930,fptx005101 12.63 12.37 3.57 0.00 Uncharacterized RNA-binding protein C25G10.01 2.9E-02 2377 fmtx026429,fntx029089,fptx021392 35.24 36.72 9.32 10.40 Heat shock 70 kDa protein 4 2.7E-02 2379 fmtx010790,fntx013814,fptx001082 14.23 8.69 1.02 0.40 U-box domain-containing protein 43 2.0E-03 2390 fmtx010001,fntx030465,fptx025790 8.59 1.06 32.59 27.70 Thaumatin-like protein 3.0E-03 2392 fmtx006640,fntx020367,fptx018028 1.70 0.00 7.28 10.83 Uncharacterized protein DDB_G0290685 3.3E-02 2421 fmtx024342,fntx029538,fptx018744 80.85 322.57 34.72 14.84 Glycine-rich protein 2 4.0E-06 2433 fmtx018067,fntx014551,fptx014388 9.50 9.13 33.37 34.02 Vesicle transport v-SNARE 13 3.0E-02 2448 fmtx024243,fntx004546,fptx021567 31.62 26.52 0.70 0.37 Far upstream element-binding protein 3 8.6E-07 2452 fmtx000076,fntx017607,fptx016193 0.82 1.81 12.85 15.86 NA 5.6E-03 2454 fmtx018760,fntx024908,fptx019481 60.40 9.78 3.02 3.24 NA 5.1E-05 2462 fmtx012113,fntx020378,fptx025064 1.98 0.00 13.23 10.54 Mediator of RNA polymerase II transcription subunit 13 6.8E-03 2474 fmtx018186,fntx028334,fptx003524 2.94 2.67 24.16 22.56 Glyoxysomal processing protease 1.9E-03 2475 fmtx010686,fntx009857,fptx013712 146.58 88.72 26.81 26.70 Protein SGT1 homolog 2.0E-03

131 2480 fmtx018633,fntx020327,fptx025831 0.95 1.32 10.48 6.48 TLD domain-containing protein KIAA1609 homolog 3.3E-02

2497 fmtx021829,fntx004682,fptx018555 0.78 1.01 23.89 18.81 NA 8.8E-05 2510 fmtx003498,fntx028801,fptx010684 166.09 19.57 5.34 2.91 Probable non-specific lipid-transfer protein AKCS9 5.5E-09 2522 fmtx018861,fntx012710,fptx014779 9.74 5.89 43.36 58.36 Brain protein 44 5.1E-04 2525 fmtx019529,fntx025342,fptx019884 18.59 12.10 1.57 2.82 Protein FRIGIDA 6.7E-03 2532 fmtx026279,fntx029465,fptx020642 0.43 0.41 24.59 25.16 Transmembrane 9 superfamily member 4 4.5E-06 2533 fmtx009474,fntx007464,fptx015527 3.88 0.99 18.66 18.58 NA 4.4E-03 2544 fmtx025807,fntx005004,fptx003485 15.18 14.40 3.00 1.50 Receptor-like protein kinase HSL1 2.0E-02 2555 fmtx011304,fntx026336,fptx006915 1.48 12.64 5.04 59.38 NA 8.8E-03 2565 fmtx011447,fntx024907,fptx012464 4.45 1.71 16.62 15.36 RING-H2 finger protein ATL57 2.0E-02 2566 fmtx025070,fntx012161,fptx000435 24.73 19.28 1.41 1.40 Putative ribosomal RNA methyltransferase 1 2.4E-04

2580 fmtx012879,fntx025474,fptx017906 12.14 14.78 89.30 29.02 NA 4.3E-03 2581 fmtx024059,fntx019150,fptx007840 112.42 129.39 402.63 281.16 Polyubiquitin 2.9E-02 2600 fmtx011274,fntx020018,fptx012335 4.62 0.81 36.43 8.06 Cysteine-rich receptor-like protein kinase 10 1.3E-03 2629 fmtx019303,fntx004654,fptx013078 1.72 2.78 14.12 12.32 Probable serine/threonine-protein kinase WNK4 4.3E-02 2668 fmtx024894,fntx024343,fptx013700 17.82 12.19 104.60 115.02 Secologanin synthase 2.9E-05 2674 fmtx004937,fntx011277,fptx018619 91.25 148.50 28.02 27.92 Probable carboxylesterase 5 2.2E-03 2687 fmtx005157,fntx006329,fptx018495 2.51 0.81 12.65 9.46 Nucleolar protein 6 2.2E-02 2717 fmtx010267,fntx025158,fptx000516 22.37 31.20 3.25 8.73 Pre-mRNA-splicing factor SF2 1.5E-02 2718 fmtx002793,fntx021597,fptx022516 4.59 0.00 19.26 14.46 Protein AUXIN SIGNALING F-BOX 2 9.1E-03 2743 fmtx004984,fntx017985,fptx009185 1.25 0.75 15.68 7.96 RING finger protein 160 6.8E-03 2756 fmtx017839,fntx019851,fptx010069 30.83 60.29 8.11 12.30 MFP1 attachment factor 1 5.0E-03 2760 fmtx022055,fntx022138,fptx011626 9.46 14.73 0.74 0.00 ADP-ribosylation factor GTPase-activating protein AGD12 2.0E-03 2780 fmtx019613,fntx009803,fptx020194 3.96 105.51 12.27 3.61 Enolase-phosphatase E1 2.6E-04 2781 fmtx000943,fntx006205,fptx023817 34.08 35.95 11.85 10.63 NA 4.7E-02 2801 fmtx019393,fntx027271,fptx019966 26.84 38.84 5.94 4.73 Plasma membrane ATPase 1 2.2E-03 2804 fmtx020602,fntx019572,fptx010211 11.46 11.26 2.35 1.79 Pentatricopeptide repeat-containing protein At4g16390 4.4E-02 2805 fmtx019651,fntx019473,fptx021473 14.00 13.83 57.40 38.82 Uncharacterized protein At1g47420 2.3E-02 2807 fmtx000737,fntx028545,fptx024614 267.54 220.06 83.00 73.89 NA 1.7E-02

132 2809 fmtx006706,fntx022271,fptx034517 4.52 23.98 1.58 1.53 Phosphoenolpyruvate carboxylase kinase 1 5.6E-03

2811 fmtx025125,fntx014128,fptx013227 20.04 15.91 1.28 1.01 NA 3.3E-04 2814 fmtx005722,fntx026813,fptx013415 1.27 1.05 19.50 21.90 NA 1.1E-04 2816 fmtx026354,fntx029946,fptx024302 481.11 947.84 72.91 78.81 NA 2.2E-07 2821 fmtx018527,fntx024618,fptx020826 13.10 11.56 57.34 30.30 Pto-interacting protein 1 2.4E-02 2827 fmtx004703,fntx011074,fptx024558 4.28 0.00 56.14 48.68 Serine/threonine-protein phosphatase PP2A-2 catalytic subunit 1.1E-07 2839 fmtx002709,fntx021480,fptx024069 2.00 3.84 33.87 29.00 MADS-box protein JOINTLESS 1.6E-04 2848 fmtx011672,fntx028332,fptx022901 1.20 0.81 108.45 88.26 Serine incorporator 3 2.2E-12 2853 fmtx027521,fntx010602,fptx025419 53.43 6.11 4.29 2.73 NA 5.1E-04 2861 fmtx006784,fntx016376,fptx019942 1.59 0.83 9.39 6.88 NA 4.3E-02 2867 fmtx033404,fntx017184,fptx026654 3.81 3.67 40.25 53.59 Serine carboxypeptidase-like 50 5.8E-06 2868 fmtx013172,fntx021116,fptx031196 42.02 175.66 10.32 14.63 NA 6.3E-06

2877 fmtx019029,fntx011543,fptx018640 26.13 27.27 6.15 4.07 Glutamyl-tRNA synthetase 6.5E-03 2899 fmtx000848,fntx003021,fptx018172 9.70 10.24 0.68 0.37 E3 ubiquitin-protein ligase UPL3 6.5E-03 2900 fmtx022299,fntx029039,fptx014277 39.50 14.19 3.20 1.49 Acidic endochitinase 2.8E-04 2907 fmtx011647,fntx011242,fptx008448 3.40 3.50 17.19 13.85 NA 4.8E-02 2912 fmtx020286,fntx010396,fptx004548 21.82 8.07 1.21 4.23 Vacuolar protein sorting-associated protein 2 homolog 1 1.6E-02 2922 fmtx011683,fntx019537,fptx011836 63.30 154.98 14.84 22.08 36.4 kDa proline-rich protein 1.9E-04 2927 fmtx014199,fntx003469,fptx007844 2.25 7.73 20.77 30.60 NA 8.4E-03 2931 fmtx001277,fntx012498,fptx011063 1.88 1.61 12.53 10.60 Alanine aminotransferase 2 1.7E-02 2933 fmtx026074,fntx010180,fptx005389 68.49 71.13 25.87 23.40 NA 5.0E-02 2945 fmtx020125,fntx014481,fptx001568 35.06 28.04 4.21 1.96 Receptor-like serine/threonine-protein kinase ALE2 1.4E-04 2952 fmtx020904,fntx025329,fptx009922 15.18 8.84 0.88 1.43 Leucine-rich repeat receptor-like tyrosine-protein kinase At2g41820 5.5E-03 2960 fmtx032829,fntx003796,fptx002626 49.19 6.45 5.50 2.51 NA 1.7E-03 2967 fmtx001082,fntx006141,fptx020813 9.18 6.10 40.08 28.15 Homeobox-leucine zipper protein HAT22 8.4E-03 2977 fmtx003786,fntx015370,fptx011471 0.45 3.08 20.86 16.88 Spatacsin 2.0E-03 2983 fmtx012817,fntx000362,fptx013530 9.54 7.39 1.58 0.37 Trihelix transcription factor GT-2 4.3E-02 2994 fmtx019755,fntx021620,fptx026991 3.21 7.09 39.74 34.47 Pectinesterase 1 4.7E-04 3010 fmtx018935,fntx011284,fptx026660 67.08 421.41 8.01 3.66 NA 2.9E-13 3021 fmtx017543,fntx025681,fptx023718 12.91 46.06 4.68 9.25 Heat shock protein 83 1.7E-02

133 3024 fmtx021602,fntx025184,fptx020589 12.83 5.36 31.12 44.39 Probable calcium-binding protein CML18 1.1E-02

3031 fmtx024883,fntx025287,fptx018981 36.92 17.47 10.91 5.18 Putative E3 ubiquitin-protein ligase XBAT35 4.9E-02 3035 fmtx005988,fntx031982,fptx021219 73.81 10.49 2.97 2.36 Flavonol 7-O-beta-glucosyltransferase 3.2E-06 3046 fmtx021638,fntx026821,fptx024569 140.39 242.00 616.52 677.08 NA 7.1E-03 3050 fmtx018139,fntx026423,fptx009774 48.71 102.10 3.80 3.90 20 kDa chaperonin 7.5E-08 3052 fmtx006412,fntx026006,fptx017888 38.64 70.04 185.63 162.92 Superoxide dismutase [Cu-Zn] 1.5E-02 3053 fmtx026033,fntx029291,fptx017884 585.68 510.48 143.69 111.95 Peptidyl-prolyl cis-trans isomerase 1 1.0E-03 3058 fmtx025571,fntx015108,fptx013982 25.58 23.90 1.09 6.93 Disease resistance protein RPM1 4.1E-03 3060 fmtx026766,fntx019586,fptx014028 29.15 29.22 5.46 2.99 Protein SSXT 1.1E-03 3069 fmtx023694,fntx023868,fptx021329 22.18 6.06 2.47 3.74 NA 4.2E-02 3086 fmtx008739,fntx012472,fptx004710 4.59 9.01 0.37 0.00 Chloroplastic group IIA intron splicing facilitator CRS1 9.5E-03 3105 fmtx006564,fntx021174,fptx008636 0.41 0.00 9.99 5.64 Protein MAM3 3.4E-03

3109 fmtx000550,fntx016171,fptx020687 5.65 0.62 34.95 34.22 Proteasome subunit beta type-5-B 5.8E-05 3111 fmtx010559,fntx011518,fptx015438 17.04 11.02 36.21 48.86 Uncharacterized protein At3g61260 5.0E-02 3121 fmtx014518,fntx027690,fptx020651 0.54 1.98 13.14 20.25 Uncharacterized protein KIAA1797 2.2E-03 3128 fmtx017346,fntx020711,fptx017656 15.10 14.56 4.50 1.74 Gibberellin receptor GID1B 3.5E-02 3133 fmtx022926,fntx000871,fptx015799 17.25 16.57 0.42 1.56 Transcription elongation factor B polypeptide 1 6.3E-04 3140 fmtx005734,fntx013408,fptx020407 2.40 1.11 14.52 12.12 Protein transport protein Sec24-like At3g07100 1.9E-02 3141 fmtx002907,fntx019693,fptx019369 8.05 24.82 4.99 1.98 Protein TRANSPARENT TESTA 12 3.5E-02 3142 fmtx029437,fntx030585,fptx023531 2.27 1.46 13.00 11.62 NA 2.9E-02 3146 fmtx011799,fntx002801,fptx012687 8.92 7.90 39.62 35.37 26S protease regulatory subunit 6B homolog 8.8E-03 3149 fmtx023294,fntx025605,fptx000722 15.17 9.00 1.03 2.67 tRNA dimethylallyltransferase 9 3.5E-02 3159 fmtx004757,fntx021754,fptx013204 2.44 3.91 9.48 18.41 Ectonucleoside triphosphate diphosphohydrolase 1 4.2E-02 3161 fmtx026181,fntx029597,fptx017280 23.36 14.77 1.17 2.25 Protein Jade-1 6.6E-04 3165 fmtx011822,fntx010150,fptx006392 29.68 2.56 0.54 0.37 (+)-neomenthol dehydrogenase 2.0E-04 3177 fmtx014187,fntx007647,fptx020173 14.87 3.51 1.36 0.87 Pre-mRNA cleavage complex 2 protein Pcf11 2.5E-02 3178 fmtx020542,fntx021108,fptx020273 16.99 12.17 1.39 1.66 E3 ubiquitin-protein ligase UPL4 4.4E-03 3180 fmtx014885,fntx015753,fptx026330 26.71 30.94 2.19 3.41 Snakin-1 3.4E-04 3181 fmtx008664,fntx018920,fptx007862 7.33 3.14 30.18 29.66 La protein homolog 2.6E-03 3182 fmtx024878,fntx019749,fptx012778 19.03 17.07 5.95 2.17 Sphingoid long-chain bases kinase 1 2.9E-02

134 3183 fmtx014660,fntx020895,fptx009427 1.32 19.66 42.49 31.79 Serine--glyoxylate aminotransferase 2.7E-02

3228 fmtx035357,fntx030003,fptx031429 0.90 2.46 20.94 22.58 RPM1-interacting protein 4 2.4E-04 3235 fmtx010528,fntx009770,fptx019271 99.95 62.57 3.88 2.79 NA 1.3E-08 3256 fmtx025021,fntx011958,fptx000066 39.14 66.92 15.94 14.88 of chloroplast 159 2.3E-02 3261 fmtx025765,fntx029866,fptx016567 1.68 3.76 23.10 38.70 NA 6.7E-05 3267 fmtx025819,fntx027359,fptx008185 41.94 38.57 1.58 0.69 F-box protein FBW2 1.6E-07 3271 fmtx006221,fntx025603,fptx018826 2.78 2.98 20.75 18.56 NA 6.1E-03 3276 fmtx020315,fntx022085,fptx004817 29.61 48.02 5.49 1.70 F-box protein At5g46170 4.7E-05 3308 fmtx003266,fntx018962,fptx021066 6.43 5.83 37.98 41.35 Guanine nucleotide-binding protein-like 3 homolog 7.5E-04 3320 fmtx008444,fntx031672,fptx021792 25.05 19.37 3.88 4.50 Tetratricopeptide repeat protein 13 8.5E-03 3322 fmtx011173,fntx009876,fptx016582 75.65 32.50 12.78 5.20 NA 6.2E-04 3331 fmtx000471,fntx000140,fptx009265 80.01 162.55 1.68 15.50 Pectinesterase 2.1 7.1E-08

3332 fmtx015776,fntx001399,fptx001042 18.01 13.12 0.75 0.00 Serine/threonine protein phosphatase 2A 59 kDa regulatory subunit B' eta 3.3E-04 isoform 3336 fmtx023820,fntx029821,fptx014830 27.07 27.80 2.25 1.31 Serine/arginine-rich splicing factor 7 9.4E-05 3339 fmtx022119,fntx025601,fptx022499 19.70 29.37 4.82 6.14 Quinone oxidoreductase-like protein 2 homolog 1.7E-02 3346 fmtx024593,fntx027818,fptx013183 16.32 11.90 0.85 0.37 ABC transporter G family member 5 5.4E-04 3347 fmtx001201,fntx029020,fptx013060 10.11 11.95 55.17 37.54 Probable protein phosphatase 2C 59 7.9E-03 3356 fmtx009447,fntx027312,fptx012751 0.43 0.41 23.41 15.17 Calcium-dependent protein kinase SK5 4.8E-05 3359 fmtx002766,fntx011428,fptx020612 8.47 17.84 45.94 48.12 Potassium channel AKT2/3 1.8E-02 3367 fmtx002617,fntx026198,fptx008952 1.36 0.41 18.59 3.98 Peroxidase 42 8.8E-03 3368 fmtx017354,fntx011528,fptx024591 739.23 1289.06 15.00 18.39 Probable aquaporin PIP1-5 7.2E-18 3376 fmtx017236,fntx029619,fptx009919 6.17 4.88 29.23 26.97 F-box protein SKIP19 6.8E-03 3377 fmtx002827,fntx020247,fptx025141 26.59 0.00 1.84 2.32 Receptor-like serine/threonine-protein kinase NCRK 1.9E-02 3382 fmtx005188,fntx012457,fptx009294 2.10 0.00 75.38 18.27 NA 2.9E-08 3384 fmtx006204,fntx025822,fptx016690 1.28 2.46 24.65 17.59 Pheophorbide a oxygenase 9.3E-04 3390 fmtx028879,fntx023613,fptx022015 5.25 8.40 29.25 23.26 NA 3.4E-02 3395 fmtx020217,fntx031680,fptx025809 0.65 7.29 40.61 60.94 Glycerate dehydrogenase 5.9E-06 3403 fmtx019765,fntx021402,fptx008226 2.90 5.02 19.29 18.10 Probable mitochondrial 2-oxoglutarate/malate carrier protein 2.5E-02 3422 fmtx010050,fntx017221,fptx024539 5.48 104.93 331.80 522.80 NA 2.5E-06 3427 fmtx019427,fntx011933,fptx004617 34.44 26.73 8.43 4.71 Meiosis protein mei2 8.5E-03

135 3431 fmtx002753,fntx010554,fptx010794 4.49 0.84 13.92 14.63 Serine/threonine-protein kinase OXI1 2.4E-02

3433 fmtx030787,fntx029038,fptx026999 1.06 17.37 9.59 49.93 NA 5.0E-02 3437 fmtx026210,fntx020726,fptx018422 20.48 8.74 3.25 2.16 IN2-2 protein 2.0E-02 3456 fmtx022915,fntx019725,fptx002779 17.99 92.34 25.96 7.47 Ocs element-binding factor 1 2.4E-02 3459 fmtx028841,fntx020912,fptx009770 20.65 40.98 9.72 8.55 NA 4.1E-02 3461 fmtx023670,fntx027553,fptx013268 12.44 19.35 3.48 1.43 NA 1.4E-02 3463 fmtx025191,fntx001276,fptx005398 214.69 270.69 21.35 27.98 Subtilisin-like protease 3.8E-07 3495 fmtx026063,fntx026242,fptx002637 6.73 2.08 0.37 0.00 NA 4.3E-02 3500 fmtx000549,fntx029752,fptx023279 21.35 4.99 236.42 61.59 Auxin-repressed 12.5 kDa protein 2.5E-07 3514 fmtx019467,fntx025947,fptx020755 1.51 0.00 8.61 9.83 Chromodomain-helicase-DNA-binding protein 5 3.3E-02 3527 fmtx017955,fntx019377,fptx017259 16.48 10.80 35.79 51.72 Probable ATP synthase 24 kDa subunit 3.5E-02

3528 fmtx024015,fntx028862,fptx007986 14.05 13.51 0.65 0.00 Adenylyl cyclase-associated protein 1 7.0E-04 3540 fmtx014855,fntx029645,fptx002891 0.43 3.09 8.33 21.73 Protein argonaute 1B 9.9E-03 3562 fmtx014894,fntx009997,fptx012374 8.45 3.97 27.44 24.80 WD-40 repeat-containing protein MSI4 1.7E-02 3569 fmtx019156,fntx028577,fptx003594 17.57 13.50 2.37 2.01 tRNA wybutosine-synthesizing protein 1 homolog 6.7E-03 3600 fmtx021315,fntx003005,fptx000682 30.57 16.98 1.58 3.54 Pre-mRNA-processing factor 39 7.5E-04 3604 fmtx008802,fntx026692,fptx023713 3.48 2.77 24.03 25.87 Ubiquitin-conjugating enzyme E2 5 9.8E-04 3614 fmtx004798,fntx025962,fptx006572 19.82 26.43 2.51 8.93 Mitochondrial outer membrane protein porin of 36 kDa 2.5E-02 3624 fmtx023984,fntx004526,fptx017637 8.83 21.56 132.80 68.49 NA 7.1E-05 3637 fmtx021566,fntx029580,fptx008059 84.15 103.94 13.60 27.35 Ubiquitin-conjugating enzyme E2 2 1.7E-03 3647 fmtx026022,fntx029806,fptx024448 1.75 8.56 31.97 33.89 Lactoylglutathione lyase 1.2E-03 3664 fmtx024361,fntx026804,fptx007001 52.74 24.07 7.52 7.55 Putative clathrin assembly protein At2g01600 3.7E-03 3666 fmtx004775,fntx018996,fptx018590 3.87 2.40 21.95 13.84 Sperm-associated antigen 1 9.9E-03 3671 fmtx025561,fntx028533,fptx015383 16.33 7.92 0.42 0.37 YTH domain family protein 2 1.6E-03 3676 fmtx026284,fntx004200,fptx009144 1.28 1.89 63.27 46.90 BI1-like protein 1.7E-08 3686 fmtx028624,fntx027109,fptx017095 17.30 13.18 0.90 3.94 Mitochondrial import inner membrane translocase subunit tim22 1.6E-02 3687 fmtx017470,fntx019068,fptx009860 28.21 83.49 4.72 4.44 NA 4.5E-06 3703 fmtx022493,fntx025491,fptx008024 10.08 21.03 4.48 2.67 Zinc finger CCCH domain-containing protein 31 4.1E-02 3704 fmtx028079,fntx031748,fptx004035 14.79 31.73 6.03 6.41 DNA/RNA-binding protein KIN17 3.5E-02

136 3715 fmtx013989,fntx022492,fptx020101 45.03 13.19 3.48 0.37 U-box domain-containing protein 14 4.8E-05

3729 fmtx020438,fntx003589,fptx002732 7.37 3.60 0.42 0.00 Methyltransferase-like protein 13 2.0E-02 3734 fmtx019974,fntx013270,fptx014954 27.39 18.26 9.15 2.24 Peptide methionine sulfoxide reductase 2.5E-02 3738 fmtx023172,fntx029913,fptx016506 5.13 6.49 28.15 24.81 UDP-glucuronic acid decarboxylase 1 1.7E-02 3742 fmtx010680,fntx024661,fptx010551 32.37 68.72 8.65 6.92 Patatin group J-1 5.6E-04 3744 fmtx011968,fntx028475,fptx000749 4.11 4.27 30.24 19.99 NA 3.6E-03 3757 fmtx006180,fntx029318,fptx027651 0.88 1.76 11.22 12.23 NA 1.7E-02 3796 fmtx017767,fntx021209,fptx022554 9.11 12.46 49.70 25.29 NA 3.4E-02 3799 fmtx026309,fntx021410,fptx019151 16.20 30.60 4.33 3.31 Zinc finger CCCH domain-containing protein 53 6.4E-03 3807 fmtx020935,fntx026771,fptx021970 3.28 2.31 6.35 29.56 Uncharacterized mitochondrial carrier C12B10.09 1.2E-02 3830 fmtx013995,fntx010338,fptx024111 32.31 32.44 104.58 126.26 UBX domain-containing protein 6 9.0E-03 3834 fmtx020083,fntx011648,fptx023316 9.56 10.34 43.84 34.56 Mitochondrial import receptor subunit TOM20 1.5E-02

3844 fmtx007578,fntx028002,fptx003999 1.93 6.33 19.38 13.93 Putative golgin subfamily A member 6-like protein 4 4.6E-02 3852 fmtx000574,fntx029695,fptx002977 0.43 3.49 32.45 13.99 Probable protein phosphatase 2C 60 3.8E-04 3856 fmtx019152,fntx023952,fptx002853 488.01 213.52 135.45 97.87 Mavicyanin 1.9E-02 3863 fmtx023135,fntx019352,fptx010079 9.99 65.94 3.96 12.93 Probable 6-phosphogluconolactonase 2 8.1E-03 3867 fmtx024918,fntx024534,fptx017464 38.78 33.05 6.90 10.61 NA 1.6E-02 3873 fmtx018485,fntx031757,fptx030298 2.87 6.26 21.19 16.76 NA 3.3E-02 3881 fmtx001268,fntx020888,fptx017024 3.04 1.01 11.42 14.75 DnaJ homolog subfamily B member 1 1.9E-02 3882 fmtx024941,fntx000380,fptx023192 1.20 0.00 13.67 8.46 DnaJ homolog subfamily C member 7 2.7E-03 3889 fmtx022429,fntx027083,fptx004836 27.94 20.70 0.37 0.00 Serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B beta 5.6E-07 isoform 3892 fmtx010282,fntx022754,fptx009066 44.89 27.40 8.52 6.78 Citrate synthase 5.6E-03 3896 fmtx001803,fntx016686,fptx001155 1.26 10.93 16.46 57.74 NA 1.3E-03 3902 fmtx014380,fntx025257,fptx014640 116.01 207.27 29.24 12.08 E3 ubiquitin-protein ligase RNF13 6.7E-06 3912 fmtx024483,fntx023670,fptx003902 43.64 21.44 5.09 7.24 NA 3.7E-03 3919 fmtx021175,fntx026599,fptx020231 43.58 14.73 2.16 1.45 LOB domain-containing protein 41 5.7E-05 3927 fmtx020300,fntx028166,fptx017343 32.64 44.72 2.43 1.37 RanBP2-type zinc finger protein At1g67325 2.9E-06 3930 fmtx013610,fntx005896,fptx018822 46.50 27.12 0.82 0.83 60S ribosomal export protein NMD3 4.1E-07 3937 fmtx026131,fntx025173,fptx020509 38.99 77.36 165.43 190.58 Thaumatin-like protein 1 2.0E-02 3939 fmtx017070,fntx002538,fptx014206 8.55 1.81 30.01 17.55 NEDD8-conjugating enzyme Ubc12 1.5E-02

137 3953 fmtx019137,fntx017376,fptx015202 1.21 1.93 6.68 13.67 NA 3.5E-02

3957 fmtx022604,fntx024243,fptx021445 60.59 227.44 50.36 38.46 Fructose-bisphosphate aldolase 1.5E-02 3984 fmtx017382,fntx012627,fptx010309 0.91 2.59 31.17 16.27 Prolyl 3-hydroxylase 1 1.1E-04 3988 fmtx008961,fntx028759,fptx021572 12.77 9.36 60.00 60.45 Heat shock protein 90 9.3E-04 3999 fmtx009571,fntx003075,fptx005481 120.34 119.19 48.79 23.00 Cell division cycle protein 48 homolog 1.4E-02 4008 fmtx025629,fntx019832,fptx012779 16.79 22.86 2.21 1.33 F-box/kelch-repeat protein At1g30090 1.4E-03 4032 fmtx018740,fntx020456,fptx021509 5.86 4.66 0.42 0.00 NA 2.9E-02 4038 fmtx010077,fntx025346,fptx026476 1.26 3.25 18.32 18.24 Ubiquinone biosynthesis monooxygenase COQ6 5.4E-03 4041 fmtx026051,fntx029926,fptx002940 94.81 88.13 0.42 0.71 Ketol-acid reductoisomerase 8.7E-13 4046 fmtx000793,fntx030309,fptx026054 9.25 6.65 27.43 33.43 NA 2.6E-02 4054 fmtx019578,fntx012458,fptx011965 28.38 9.85 4.73 2.66 Shugoshin-1 1.3E-02

4065 fmtx013862,fntx030993,fptx031182 7.12 2.76 17.36 21.44 NA 4.9E-02 4068 fmtx005236,fntx025892,fptx013552 66.04 13.94 4.14 9.31 Thebaine 6-O-demethylase 1.1E-03 4078 fmtx014882,fntx019504,fptx002778 16.66 35.08 0.42 0.00 Protein disulfide-isomerase 3.3E-07 4083 fmtx015324,fntx003858,fptx002741 67.43 19.54 14.06 13.41 S-adenosylmethionine synthase 2 3.5E-02 4094 fmtx009463,fntx010061,fptx008903 11.88 12.48 7.65 95.24 NA 5.8E-03 4109 fmtx008779,fntx022645,fptx003358 62.44 7.16 6.01 5.51 Transcription factor CPC 2.2E-03 4122 fmtx023176,fntx026914,fptx012753 8.18 6.59 0.42 0.51 GPI transamidase component PIG-S 2.9E-02 4137 fmtx025575,fntx011505,fptx021756 746.48 102.96 53.73 42.11 NA 5.9E-07 4145 fmtx026665,fntx030113,fptx006597 35.33 17.08 4.00 1.53 Regulator of ribonuclease-like protein 3 8.4E-04 4151 fmtx026369,fntx000052,fptx000283 5.08 3.35 7.75 28.38 Importin subunit alpha 2.9E-02 4168 fmtx017002,fntx027962,fptx021050 7.08 3.49 30.94 13.13 Calcium-dependent protein kinase 32 3.6E-02 4180 fmtx012846,fntx012018,fptx022297 6.75 2.70 0.37 0.00 Putative uncharacterized protein YDL057W 4.3E-02 4184 fmtx019446,fntx019823,fptx012302 3.23 4.87 21.15 21.27 Ras-related protein RABD2A 1.2E-02 4195 fmtx012917,fntx015341,fptx022247 21.57 25.15 0.84 0.00 ADP-ribosylation factor-like protein 5 8.1E-06 4196 fmtx001960,fntx026143,fptx024595 0.61 3.23 9.67 18.97 ABC transporter C family member 8 1.2E-02 4232 fmtx009264,fntx009290,fptx005362 32.13 87.78 3.18 7.19 Galactokinase 3.8E-06 4234 fmtx010254,fntx023436,fptx023457 4.90 0.41 20.99 7.12 Putative late blight resistance protein homolog R1A-6 2.4E-02 4238 fmtx027311,fntx019201,fptx010257 10.70 17.34 1.78 1.81 NA 1.5E-02

138 4252 fmtx025684,fntx015383,fptx003234 32.93 19.81 2.55 3.44 Nitrilase homolog 1 7.2E-04

4262 fmtx027418,fntx032465,fptx002440 12.86 15.01 2.11 0.91 beta-like protein 2 6.8E-03 4270 fmtx022318,fntx000594,fptx005720 0.88 9.51 0.37 0.00 NA 2.9E-02 4281 fmtx027145,fntx030713,fptx026114 15.09 19.06 3.69 2.89 Copper transporter 1 2.9E-02 4304 fmtx001045,fntx003685,fptx022288 10.75 8.39 0.83 0.00 External NADH-ubiquinone oxidoreductase 1 8.5E-03 4307 fmtx004693,fntx031617,fptx015551 0.43 0.83 12.68 12.02 Snurportin-1 1.6E-03 4313 fmtx018327,fntx027086,fptx018525 12.03 2.62 181.93 181.96 Protein LURP-one-related 12 1.0E-10 4314 fmtx012181,fntx012842,fptx023837 1.51 0.00 10.21 24.98 NA 5.0E-04 4316 fmtx007801,fntx010687,fptx023832 2.10 0.00 28.22 22.47 Uricase 1.8E-05 4364 fmtx009282,fntx005547,fptx013342 36.89 30.59 0.98 2.47 Putative U5 small nuclear ribonucleoprotein 200 kDa helicase 3.8E-06 4365 fmtx012123,fntx003161,fptx022305 6.61 5.05 22.51 24.65 Light-inducible protein CPRF2 3.5E-02 4366 fmtx020960,fntx015762,fptx018977 0.43 0.82 11.60 6.08 Meiosis protein mei2 1.2E-02

4380 fmtx028526,fntx013901,fptx000110 2.88 3.09 14.85 21.24 NA 9.9E-03 4385 fmtx017388,fntx011672,fptx009970 4.93 4.12 50.01 9.26 Calcium-binding allergen Ole e 8 1.7E-03 4406 fmtx018994,fntx026682,fptx002337 18.79 16.56 57.52 49.45 Ubiquilin 4.0E-02 4434 fmtx027631,fntx028125,fptx026292 40.54 13.91 5.19 1.46 NA 1.1E-03 4436 fmtx000168,fntx000311,fptx026696 3.97 2.31 15.66 14.23 NA 2.9E-02 4447 fmtx021044,fntx000220,fptx012209 8.84 2.57 25.72 28.80 Transcriptional corepressor LEUNIG 8.7E-03 4451 fmtx019871,fntx015373,fptx017348 33.73 23.33 6.51 4.18 60S ribosomal protein L18a-1 6.8E-03 4479 fmtx025625,fntx027677,fptx020396 16.55 21.34 2.75 3.77 Probable plastid-lipid-associated protein 4 1.5E-02 4482 fmtx026176,fntx027269,fptx023458 21.85 21.27 83.58 53.70 Dihydroflavonol-4-reductase 2.6E-02 4490 fmtx005047,fntx012631,fptx024590 0.41 0.00 21.76 16.19 E3 ubiquitin-protein ligase RHF2A 6.0E-06 4499 fmtx018036,fntx019495,fptx016682 100.03 189.05 38.81 59.48 Cytochrome b-c1 complex subunit 8 2.8E-02 4525 fmtx021785,fntx029589,fptx003791 16.94 19.95 2.96 5.32 Cyclin-L1-1 2.5E-02 4531 fmtx026455,fntx027378,fptx008383 11.57 2.19 29.94 41.47 Sex determination protein tasselseed-2 4.3E-03 4537 fmtx014478,fntx003871,fptx013016 1.21 0.00 14.00 12.39 Metal tolerance protein 11 9.1E-04 4538 fmtx022046,fntx020702,fptx019923 18.73 73.10 11.31 16.06 DnaJ homolog subfamily B member 13 2.5E-02 4559 fmtx020965,fntx019301,fptx010372 97.65 29.46 7.53 7.90 Zinc transporter 3 3.7E-05 4561 fmtx033053,fntx011585,fptx021168 14.20 10.69 76.38 5.49 Tropinone reductase homolog 3.7E-02 4566 fmtx031118,fntx021599,fptx026201 0.83 2.75 16.63 26.63 Transcription factor TGA2 7.8E-04

139 4573 fmtx024944,fntx027641,fptx022873 83.33 39.14 29.06 6.74 Zinc finger protein NUTCRACKER 2.0E-02

4577 fmtx005793,fntx003148,fptx000320 29.70 12.60 3.89 4.02 Aquaporin TIP2-1 1.2E-02 4582 fmtx010582,fntx012637,fptx008070 3.89 2.64 17.06 15.36 Ubiquitin-conjugating enzyme E2 27 4.1E-02 4583 fmtx002690,fntx010814,fptx017655 6.33 5.59 85.54 92.99 Homeobox-leucine zipper protein ATHB-13 1.7E-07 4594 fmtx005235,fntx020093,fptx002975 1.99 9.27 48.37 49.10 Protein SUPPRESSOR OF GENE SILENCING 3 homolog 6.6E-05 4597 fmtx024539,fntx029486,fptx000582 23.73 19.91 1.94 4.83 NA 5.8E-03 4616 fmtx018314,fntx024733,fptx026318 30.34 210.38 10.27 16.07 Small heat shock protein 2.9E-06 4642 fmtx021712,fntx026305,fptx022640 0.87 1.72 6.03 16.98 -associated KIF4A 2.2E-02 4664 fmtx018726,fntx024623,fptx002490 2.27 1.91 28.45 30.00 NA 4.8E-05 4667 fmtx015532,fntx010154,fptx031282 55.09 0.00 2.43 2.98 Universal stress protein A-like protein 2.0E-04 4687 fmtx016529,fntx025608,fptx017188 2.23 8.45 29.22 26.37 Probable polygalacturonase 7.8E-03 4688 fmtx022983,fntx027603,fptx020977 1.45 0.00 15.74 11.43 Cyclin-dependent kinase F-1 7.0E-04

4690 fmtx011486,fntx032170,fptx024840 15.00 17.98 64.78 62.24 Replication factor C subunit 2 8.6E-03

A.3 Supplementary Table 4.3- F. nigra vs F. pennsylvanica

Index Orthologs FnRep1 FnRep2 FpRep1 FpRep2 Descriptions P value 7 fmtx023156,fntx021844,fptx019479 3.66 1.55 58.75 28.21 Protein phosphatase 2C 37 0.000583 28 fmtx002537,fntx001397,fptx002530 58.48 11.35 0.37 0.00 NA 0.000012 29 fmtx013169,fntx005866,fptx013344 0.33 0.00 99.80 87.24 Isocitrate dehydrogenase [NADP] 0.000000 32 fmtx017700,fntx025685,fptx026268 156.13 1.36 4.67 1.73 Cytochrome P450 78A3 0.000044 39 fmtx005291,fntx019422,fptx002476 33.43 22.35 5.66 4.74 40S ribosomal protein S13 0.043531 42 fmtx013746,fntx006064,fptx000135 10.56 0.00 17.95 42.51 NA 0.043963 45 fmtx025716,fntx021666,fptx019476 1.30 1.43 27.34 6.74 4-coumarate--CoA ligase-like 9 0.018383 57 fmtx020993,fntx000597,fptx011722 3.36 4.23 257.84 323.93 Uncharacterized protein At5g10860 0.000000 85 fmtx012761,fntx005289,fptx009807 0.93 0.33 20.31 31.44 NA 0.000333 94 fmtx000438,fntx026173,fptx000599 102.10 17.48 9.16 8.75 Autophagy-related protein 101 0.012359 121 fmtx031181,fntx022193,fptx024451 1.72 5.46 38.26 21.94 NA 0.011063

140 128 fmtx010383,fntx011821,fptx016776 6.10 1.65 25.63 44.94 40S ribosomal protein S20-2 0.008111 134 fmtx022963,fntx016319,fptx024255 1.87 0.79 16.77 10.78 Uncharacterized membrane protein At1g06890 0.037938 135 fmtx016099,fntx019321,fptx012097 0.90 47.80 7.45 0.00 NA 0.027334 166 fmtx007080,fntx028103,fptx009252 290.71 167.37 21.99 16.11 60S acidic ribosomal protein P1 0.000313 189 fmtx012315,fntx006403,fptx023911 0.48 1.37 14.76 11.86 NA 0.022521 199 fmtx022536,fntx016381,fptx018361 1.26 1.37 20.16 14.08 Uncharacterized protein At5g41620 0.018383 203 fmtx017517,fntx020345,fptx021097 113.80 68.24 9.75 7.45 RNA polymerase II transcriptional coactivator KIWI 0.001059 214 fmtx027703,fntx030549,fptx008034 18.59 11.05 1.39 0.00 NA 0.004479 297 fmtx008470,fntx022781,fptx002976 27.89 18.20 5.00 1.67 Probable serine/threonine-protein kinase DDB_G0279405 0.037491 319 fmtx017878,fntx025645,fptx004417 7.03 11.07 0.42 0.00 ETHYLENE INSENSITIVE 3-like 3 protein 0.009502 322 fmtx022848,fntx029260,fptx024418 2.87 1.31 19.43 15.64 Regulatory-associated protein of mTOR 0.026013

328 fmtx012653,fntx013245,fptx024178 27.97 18.53 0.91 1.03 NA 0.001602 331 fmtx024470,fntx028170,fptx012731 44.60 22.15 3.68 3.26 Ribose-phosphate pyrophosphokinase 1 0.007088 342 fmtx000201,fntx020217,fptx023764 125.73 14.27 6.36 3.38 UDP-sugar pyrophospharylase 0.000531 356 fmtx017429,fntx025678,fptx025404 2.72 1.37 32.60 25.56 Protein CutA 0.002411 359 fmtx012620,fntx000212,fptx023617 2.64 52.05 86.34 151.45 Tubulin alpha-1 chain 0.047600 363 fmtx017753,fntx016201,fptx013384 0.47 1.10 29.56 27.22 E3 ubiquitin-protein ligase MARCH3 0.000617 368 fmtx026199,fntx003472,fptx006341 0.37 33.40 75.57 149.75 Nudix hydrolase 17 0.008022 376 fmtx022015,fntx029241,fptx017019 0.71 2.68 20.80 26.94 NA 0.003111 430 fmtx002604,fntx026770,fptx026794 1.36 1.81 16.43 33.18 Putative leucine-rich repeat-containing protein DDB_G0290503 0.002787 434 fmtx026114,fntx020681,fptx009086 21.44 99.45 4.87 7.41 22.0 kDa class IV heat shock protein 0.002184 438 fmtx028859,fntx020220,fptx034233 29.02 5.97 2.53 1.25 NA 0.029500 454 fmtx008865,fntx032177,fptx026178 4.48 40.17 5.15 0.78 NA 0.028013 479 fmtx006147,fntx023652,fptx017998 6.77 5.99 0.37 0.00 Bromodomain and PHD finger-containing protein 3 0.030404 495 fmtx025760,fntx021020,fptx024666 18.62 62.49 262.43 394.99 Cysteine proteinase RD21a 0.001834 496 fmtx011743,fntx015466,fptx015462 2.83 0.48 13.42 14.88 Riboflavin biosynthesis protein ribBA 0.033566 505 fmtx005415,fntx029142,fptx005274 8.25 621.82 7.91 2.20 S-adenosylmethionine synthase 3 0.000000 510 fmtx008842,fntx016687,fptx010031 70.19 121.78 14.39 7.69 Uncharacterized protein C167.05 0.002411 512 fmtx024533,fntx017534,fptx021341 2.32 1.28 25.76 33.47 DEAD-box ATP-dependent RNA helicase 20 0.002411

141 514 fmtx001535,fntx009922,fptx013582 0.37 0.00 5.68 6.06 Proteasome assembly chaperone 2 0.038575

519 fmtx012639,fntx027911,fptx023962 2.00 3.07 24.87 24.35 Receptor-like protein kinase HAIKU2 0.010608 545 fmtx001238,fntx001424,fptx003375 0.72 1.07 12.68 10.38 NA 0.039661 574 fmtx025027,fntx016243,fptx005174 8.53 14.64 0.82 0.00 Casein kinase I isoform delta-like 0.017397 578 fmtx023763,fntx025670,fptx021465 265.52 58.56 15.28 8.30 Quinone oxidoreductase-like protein At1g23740 0.000229 624 fmtx018129,fntx009984,fptx010367 39.17 19.04 7.27 2.89 Uncharacterized protein At3g61260 0.037766 638 fmtx026373,fntx028823,fptx023360 305.00 186.07 3.88 3.33 Thiazole biosynthetic enzyme 0.000000 656 fmtx011514,fntx030779,fptx000904 10.12 8.01 0.42 0.69 Histone H1 0.034378 675 fmtx023840,fntx019968,fptx024503 6.02 3.13 34.43 56.32 MLO-like protein 1 0.003439 695 fmtx009519,fntx009899,fptx002511 0.71 1.30 11.51 11.09 Serine/threonine-protein kinase HT1 0.039661 696 fmtx033422,fntx003366,fptx026439 1.56 2.16 45.87 7.39 Uncharacterized protein At1g77540 0.004375 701 fmtx026457,fntx025428,fptx014894 36.77 9.08 4.89 2.04 3-hydroxyisobutyryl-CoA hydrolase-like protein 5 0.037491

715 fmtx018993,fntx006142,fptx010791 1.98 0.00 41.68 46.65 R3H domain-containing protein 1 0.000057 719 fmtx006053,fntx009624,fptx013441 1.41 0.73 23.04 17.63 RNA polymerase II-associated protein 3 0.003255 724 fmtx000608,fntx000110,fptx020976 1.77 1.51 17.99 18.84 Putative DEAD-box ATP-dependent RNA helicase 29 0.010724 738 fmtx026043,fntx028205,fptx024342 1.23 3.34 38.87 36.78 RING finger protein B 0.001285 748 fmtx011143,fntx022838,fptx009957 0.62 13.39 49.68 28.79 Auxin-induced protein X10A 0.033223 766 fmtx002760,fntx005273,fptx003190 141.59 2.00 6.80 10.83 Homeobox-leucine zipper protein HAT5 0.004965 819 fmtx027957,fntx020647,fptx022077 8.15 12.16 68.22 28.29 Probable carboxylesterase 13 0.046854 823 fmtx007134,fntx020836,fptx024646 4.59 6.44 102.03 101.03 MADS-box protein JOINTLESS 0.000094 829 fmtx023147,fntx004676,fptx008911 7.41 37.68 367.15 150.88 Hypersensitive-induced response protein 1 0.000365 848 fmtx019661,fntx027560,fptx022360 3.03 9.20 34.32 33.26 Protein ALWAYS EARLY 3 0.037146 857 fmtx025066,fntx025805,fptx024294 6.25 9.14 46.79 74.51 Protein gar2 0.005424 864 fmtx017660,fntx018991,fptx013236 19.24 8.42 0.99 1.51 Isoflavone 2'-hydroxylase 0.017018 865 fmtx019019,fntx027371,fptx021607 419.28 62.31 6.13 9.66 Acyl-[acyl-carrier-protein] desaturase 0.000002 886 fmtx003801,fntx003699,fptx017457 1.58 10.35 48.47 30.33 Next to BRCA1 gene 1 protein 0.020150 891 fmtx030538,fntx011168,fptx010029 2.91 0.90 25.15 12.48 Glucan endo-1 0.021151 923 fmtx026190,fntx026031,fptx022463 2.66 2.32 19.17 23.34 Protein RCC2 homolog 0.021373 935 fmtx031432,fntx031485,fptx013841 3.18 2.26 22.35 19.62 3-oxo-5-alpha-steroid 4-dehydrogenase 2 0.021373 946 fmtx033252,fntx031024,fptx026678 109.04 0.45 13.96 2.23 Putative lipid-transfer protein DIR1 0.012046

142 968 fmtx024715,fntx023986,fptx020450 42.10 0.95 3.29 4.10 Aspartic proteinase nepenthesin-2 0.044585

971 fmtx018761,fntx014925,fptx027587 115.25 17.64 9.97 7.22 NA 0.005480 975 fmtx033130,fntx023397,fptx025697 152.40 5.33 1.87 12.11 Protein PHLOEM PROTEIN 2-LIKE A1 0.001046 979 fmtx026810,fntx018976,fptx010061 25.06 98.79 5.87 5.38 Umecyanin 0.001386 988 fmtx021615,fntx002820,fptx023087 1.00 1.72 12.09 18.77 Zinc finger CCCH domain-containing protein 55 0.026040 1015 fmtx023651,fntx029430,fptx021064 28.16 5.82 1.60 1.18 Protein CYPRO4 0.018383 1025 fmtx029086,fntx031611,fptx013610 174.22 4.71 5.21 12.93 GDSL esterase/lipase At3g48460 0.001490 1034 fmtx024224,fntx000102,fptx022603 15.82 0.00 55.57 85.07 40S ribosomal protein S16 0.003303 1038 fmtx004951,fntx003086,fptx020869 1.84 0.00 24.67 19.62 LRR repeats and ubiquitin-like domain-containing protein At2g30105 0.002007 1087 fmtx014958,fntx008984,fptx012721 0.65 0.00 27.37 17.84 ABC transporter I family member 6 0.000707 1108 fmtx024787,fntx014204,fptx024630 0.88 0.81 11.70 16.17 Bromodomain-containing protein GTE3 0.019422 1115 fmtx028104,fntx031370,fptx026154 30.18 5.12 1.53 2.76 NA 0.026013

1120 fmtx007111,fntx010178,fptx011371 153.47 2.44 2.59 4.10 Auxin-responsive protein IAA14 0.000078 1123 fmtx021819,fntx029289,fptx018013 60.09 5.43 8.30 3.82 NA 0.041718 1126 fmtx014488,fntx019187,fptx023123 2.36 4.43 35.17 29.65 Ubiquitin-conjugating enzyme E2 36 0.008111 1127 fmtx013293,fntx022107,fptx010112 0.88 2.04 20.12 6.82 Protein DJ-1 0.043531 1134 fmtx019869,fntx016186,fptx020939 3.80 1.32 16.93 22.21 Serine/threonine-protein phosphatase PP2A-2 catalytic subunit 0.028665 1167 fmtx024052,fntx020559,fptx023702 2.84 0.00 58.70 92.00 Inositol-3-phosphate synthase 0.000006 1227 fmtx001016,fntx004496,fptx003561 0.42 0.00 8.19 5.00 Calmodulin-binding transcription activator 3 0.030404 1228 fmtx025601,fntx009205,fptx023806 32.34 60.35 5.61 8.28 Cytokinin-O-glucosyltransferase 2 0.016811 1229 fmtx020678,fntx001174,fptx026356 1.45 0.00 9.46 8.71 DEAD-box ATP-dependent RNA helicase 13 0.034378 1236 fmtx016410,fntx011522,fptx021472 1.17 3.12 17.86 17.39 NA 0.026013 1272 fmtx023800,fntx026851,fptx021076 2.44 3.62 34.86 9.40 NA 0.028013 1278 fmtx020294,fntx012119,fptx008430 1.11 5.48 22.01 29.19 Prohibitin-1 0.025420 1294 fmtx023711,fntx024673,fptx010805 33.13 27.44 3.00 6.03 60S ribosomal protein L15 0.024730 1300 fmtx018677,fntx028889,fptx019955 187.42 73.48 15.17 21.45 Actin-7 0.005480 1313 fmtx021826,fntx022469,fptx021560 0.33 0.00 59.10 50.93 NA 0.000001 1314 fmtx002819,fntx008978,fptx014381 2.75 1.67 18.68 16.60 Acyl-CoA-binding domain-containing protein 1 0.026013 1322 fmtx018174,fntx025458,fptx013914 355.14 4.27 18.47 20.01 Probable carboxylesterase 8 0.001113 1350 fmtx019608,fntx028869,fptx019972 89.40 65.10 9.69 5.02 NA 0.001522

143 1351 fmtx025784,fntx010246,fptx013807 0.89 2.42 26.81 23.32 N-acetyltransferase 9-like protein 0.002459

1360 fmtx021793,fntx022929,fptx013820 1.83 0.96 28.83 15.98 SPX domain-containing protein 4 0.004887 1403 fmtx018542,fntx013202,fptx009024 39.41 67.65 6.54 8.65 NA 0.010090 1410 fmtx012037,fntx021316,fptx002315 17.60 20.14 1.18 1.51 Malate dehydrogenase [NADP] 0.010724 1412 fmtx016470,fntx018055,fptx014872 322.28 30.40 3.00 1.80 Phenylalanine ammonia-lyase 0.000000 1434 fmtx020227,fntx020664,fptx024653 2.88 0.74 15.71 21.12 GATA transcription factor 5 0.023541 1439 fmtx019445,fntx005524,fptx018321 1.44 3.77 30.59 19.70 Acyl-[acyl-carrier-protein] desaturase 0.009502 1450 fmtx010008,fntx013477,fptx016081 0.53 1.49 33.56 24.22 Putative two-component response regulator ARR19 0.000583 1476 fmtx022135,fntx020696,fptx011147 2.20 6.05 31.88 43.93 NA 0.005424 1484 fmtx025488,fntx025577,fptx008455 45.31 19.83 7.02 3.79 NA 0.034378 1496 fmtx021152,fntx010424,fptx019060 5.85 1.58 18.65 24.28 Protein ABIL2 0.044585 1509 fmtx013174,fntx017748,fptx019430 0.55 1.46 20.69 18.48 Bifunctional aspartokinase/homoserine dehydrogenase 0.003643

1519 fmtx015700,fntx019334,fptx035346 301.92 2.68 0.46 1.53 NA 0.000000 1530 fmtx029050,fntx008814,fptx024947 161.77 0.87 8.53 7.05 Basic blue protein 0.001522 1533 fmtx021509,fntx024008,fptx014820 1.75 5.06 49.93 33.55 Meiosis protein mei2 0.002174 1555 fmtx003125,fntx005216,fptx019027 1.78 0.73 16.53 12.63 RNA polymerase II-associated factor 1 homolog 0.033566 1558 fmtx018406,fntx016392,fptx017609 2.00 0.66 27.12 18.00 Histidine kinase 3 0.004887 1562 fmtx023573,fntx022230,fptx005695 200.48 93.38 6.03 13.81 40S ribosomal protein S26-2 0.000162 1583 fmtx033394,fntx030518,fptx020153 48.04 4.21 1.00 5.82 Uncharacterized protein At4g06744 0.021532 1585 fmtx010090,fntx022152,fptx026339 0.37 0.00 16.02 9.44 Protein ABCI12 0.002333 1599 fmtx012930,fntx031616,fptx025838 113.57 6.77 5.02 6.95 Uncharacterized protein At3g03773 0.002254 1608 fmtx026090,fntx025021,fptx017269 33.51 16.07 189.44 57.47 Transcription factor bHLH144 0.028541 1617 fmtx023032,fntx029842,fptx007585 34.32 12.39 1.11 0.53 Neutral ceramidase 0.001602 1637 fmtx017938,fntx021624,fptx024293 55.80 23.70 278.14 132.60 NA 0.021151 1678 fmtx013682,fntx028372,fptx018176 70.88 5.16 4.52 5.06 Aspartic proteinase nepenthesin-1 0.012497 1679 fmtx019639,fntx031613,fptx012662 64.73 7.87 2.50 0.00 Uncharacterized membrane protein C2G11.09 0.000160 1687 fmtx017577,fntx023415,fptx014067 13.02 8.45 57.55 59.84 NA 0.024935 1691 fmtx004813,fntx015496,fptx024040 2.29 0.00 14.07 10.73 Pre-mRNA cleavage complex 2 protein Pcf11 0.025968 1703 fmtx004326,fntx022561,fptx021012 49.21 18.17 4.07 4.52 V-type proton ATPase subunit E 0.016704 1715 fmtx021512,fntx009035,fptx018878 0.33 0.00 6.32 7.10 Probable serine/threonine-protein kinase At1g54610 0.030404

144 1733 fmtx017274,fntx029553,fptx023752 1.40 3.77 119.91 71.32 Cysteine proteinase RD21a 0.000006

1742 fmtx011536,fntx021433,fptx022661 26.73 8.55 0.84 3.66 NA 0.047321 1766 fmtx024227,fntx026999,fptx004514 89.04 71.50 2.15 0.55 Pyruvate kinase 0.000004 1768 fmtx009645,fntx003670,fptx007632 27.14 13.88 0.37 0.00 E3 ubiquitin-protein ligase UPL5 0.000246 1784 fmtx005705,fntx024111,fptx017126 3.97 12.68 75.86 11.98 NA 0.039661 1795 fmtx003244,fntx012827,fptx021198 0.62 0.62 51.02 42.57 Cation/calcium exchanger 4 0.000012 1796 fmtx022146,fntx023828,fptx021181 3.63 1.75 50.02 30.62 Auxin-responsive protein IAA26 0.000862 1806 fmtx025239,fntx010851,fptx017047 1.27 1.44 13.01 13.43 Protein AATF 0.043531 1811 fmtx017404,fntx026841,fptx008385 5.11 0.61 38.99 3.83 Myb-like protein J 0.033409 1812 fmtx029249,fntx034846,fptx030801 35.72 1.02 1.02 1.97 Cucumber peeling cupredoxin 0.012142 1813 fmtx029455,fntx031213,fptx013883 16.09 12.79 0.51 0.00 DNA-directed RNA polymerase II subunit RPB9 0.005970 1833 fmtx004313,fntx021947,fptx018215 3.01 2.46 21.18 16.54 NA 0.031136

1834 fmtx015366,fntx019359,fptx009315 517.01 2.91 19.48 2.07 PPPDE peptidase domain-containing protein 1 0.000007 1848 fmtx000982,fntx025398,fptx017130 5.30 0.00 22.46 19.15 NA 0.023541 1855 fmtx012915,fntx026238,fptx016198 0.37 0.00 5.53 7.70 Flowering time control protein FY 0.030404 1867 fmtx012110,fntx010114,fptx010130 5.18 3.05 26.90 19.65 Ubiquitin-conjugating enzyme E2 34 0.049882 1869 fmtx018002,fntx027296,fptx000960 23.81 23.73 1.35 1.16 F-box protein At4g00755 0.003439 1872 fmtx011205,fntx004002,fptx015848 32.52 18.23 1.01 0.00 Abscisic acid receptor PYL8 0.000389 1874 fmtx019865,fntx018559,fptx021205 6.09 4.00 39.99 21.05 Magnesium transporter MRS2-I 0.031050 1892 fmtx022203,fntx025960,fptx024574 0.47 0.33 33.15 28.47 Myb family transcription factor APL 0.000139 1913 fmtx019224,fntx011494,fptx009026 0.42 1.29 13.05 12.17 Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 0.030150 1936 fmtx017342,fntx021034,fptx008196 221.19 69.97 16.65 25.18 Probable fructose-bisphosphate aldolase 3 0.005480 1938 fmtx014281,fntx015025,fptx002734 11.04 11.20 0.77 1.64 Uncharacterized protein At2g37660 0.039661 1942 fmtx014865,fntx022333,fptx009918 1.40 0.71 24.89 18.18 Cryptochrome-1 0.002254 1950 fmtx018426,fntx020162,fptx007926 17.34 232.09 0.86 2.98 Alpha-1 0.000000 1956 fmtx020407,fntx010234,fptx013003 9.87 7.91 63.11 57.72 NA 0.012046 1983 fmtx013265,fntx000772,fptx025133 2.82 2.34 25.56 15.51 Heterogeneous nuclear ribonucleoprotein U-like protein 1 0.023541 1989 fmtx025278,fntx009337,fptx023546 0.70 1.42 15.10 15.37 KH domain-containing protein At4g18375 0.012184 1994 fmtx024536,fntx013856,fptx018827 0.65 0.00 10.61 10.35 Dolichyldiphosphatase 1 0.024664 2038 fmtx018936,fntx027393,fptx021515 2.05 0.00 17.30 20.53 CBL-interacting serine/threonine-protein kinase 23 0.004856

145 2039 fmtx022928,fntx026498,fptx021994 22.84 14.50 113.96 60.66 14-3-3 protein 1 0.037491

2071 fmtx028740,fntx026420,fptx025038 56.46 2.85 3.06 1.06 Omega-hydroxypalmitate O-feruloyl transferase 0.002254 2087 fmtx025092,fntx021040,fptx008597 0.86 0.49 16.30 12.17 Pumilio homolog 1 0.005970 2093 fmtx019360,fntx028251,fptx010237 6.48 12.66 0.42 0.00 Cell division cycle 5-like protein 0.007819 2098 fmtx023476,fntx011591,fptx016358 5.48 0.00 19.40 21.73 E3 ubiquitin ligase BIG BROTHER-related 0.023541 2100 fmtx017964,fntx009781,fptx017303 2.23 0.49 30.44 18.45 Amino acid permease 3 0.003111 2124 fmtx025499,fntx018634,fptx024564 0.86 1.60 11.45 11.69 60S ribosomal protein L36-2 0.034378 2130 fmtx009240,fntx005706,fptx024916 1.89 1.49 26.84 28.23 Diaminopimelate epimerase 0.001569 2140 fmtx013671,fntx006506,fptx020531 5.58 4.82 57.07 26.65 Phosphatidylinositol-3 0.007268 2142 fmtx018582,fntx013347,fptx008886 0.37 0.33 15.45 10.93 PHD finger protein At1g33420 0.008283 2154 fmtx026747,fntx030067,fptx007047 3.47 15.14 1.21 0.00 Heme-binding-like protein At3g10130 0.034378 2167 fmtx025144,fntx006878,fptx008728 2.51 1.53 11.70 21.74 Scarecrow-like protein 3 0.032544

2212 fmtx023909,fntx021812,fptx023839 8.80 11.00 63.41 103.53 40S ribosomal protein S5 0.003500 2217 fmtx006887,fntx005927,fptx008586 3.96 0.00 23.50 16.62 Ran guanine nucleotide release factor 0.015227 2219 fmtx021017,fntx019417,fptx003527 0.37 0.33 31.91 0.00 F-box protein PP2-A12 0.003782 2225 fmtx003839,fntx024986,fptx020797 2.54 1.61 37.99 23.62 Enhancer of mRNA-decapping protein 4 0.001906 2240 fmtx021883,fntx014597,fptx018556 4.06 10.67 47.43 30.04 T-complex protein 1 subunit gamma 0.043365 2244 fmtx023986,fntx019529,fptx022599 1.73 1.71 14.23 14.96 NA 0.029945 2254 fmtx001061,fntx028599,fptx002271 35.92 1.31 2.36 1.72 Homeobox-leucine zipper protein ATHB-7 0.021151 2261 fmtx004315,fntx006553,fptx008773 4.11 1.19 19.48 21.11 Aldehyde dehydrogenase family 2 member C4 0.025968 2269 fmtx024866,fntx014072,fptx012184 42.66 8.70 5.94 3.44 Cellulose synthase A catalytic subunit 3 [UDP-forming] 0.046324 2273 fmtx030920,fntx037066,fptx031039 2.69 6.26 43.72 16.31 NA 0.026116 2275 fmtx004872,fntx032453,fptx005263 19.46 8.14 0.96 0.37 Uncharacterized protein At2g41620 0.007123 2298 fmtx022594,fntx029503,fptx024316 297.43 132.25 15.46 54.89 Probable aquaporin PIP1-2 0.008643 2308 fmtx009198,fntx015831,fptx013179 1.68 0.33 9.76 15.43 Serine/threonine-protein kinase Nek6 0.025968 2313 fmtx023396,fntx028457,fptx025030 1028.40 99.20 11.59 58.34 Major allergen Pru ar 1 0.000044 2319 fmtx020283,fntx009858,fptx012986 0.37 0.33 41.19 40.43 Transcription factor BTF3 homolog 4 0.000030 2338 fmtx010769,fntx013329,fptx021667 1.83 9.94 36.06 73.11 Ubiquitin-fold modifier-conjugating enzyme 1 0.004027 2344 fmtx018480,fntx024259,fptx023554 168.94 71.63 41.85 12.06 Calmodulin-7 0.041886 2388 fmtx010121,fntx007894,fptx013908 1.43 3.52 18.47 16.20 UPF0424 protein 0.047321

146 2420 fmtx024549,fntx022023,fptx021916 0.84 54.58 5.07 3.28 Probable WRKY transcription factor 33 0.025023

2436 fmtx011022,fntx000428,fptx005762 263.58 428.94 2.27 2.49 NA 0.000000 2452 fmtx000076,fntx017607,fptx016193 0.47 2.41 12.85 15.86 NA 0.033566 2456 fmtx023349,fntx018499,fptx013787 1.58 0.00 35.84 42.00 Probable UDP-N-acetylglucosamine--peptide N- 0.000120 acetylglucosaminyltransferase SEC 2470 fmtx019862,fntx031372,fptx009023 90.30 22.96 6.21 3.91 NA 0.001542 2497 fmtx021829,fntx004682,fptx018555 1.45 5.42 23.89 18.81 NA 0.049285 2510 fmtx003498,fntx028801,fptx010684 1962.80 12.31 5.34 2.91 Probable non-specific lipid-transfer protein AKCS9 0.000000 2533 fmtx009474,fntx007464,fptx015527 0.85 2.72 18.66 18.58 NA 0.023541 2545 fmtx008421,fntx010226,fptx011860 57.39 15.45 6.25 6.36 Glutathione S-transferase 0.035777 2548 fmtx009971,fntx024113,fptx019421 64.59 30.72 9.99 8.27 Uncharacterized protein C6orf106 homolog 0.034254 2555 fmtx011304,fntx026336,fptx006915 6.64 0.69 5.04 59.38 NA 0.008111

2562 fmtx029409,fntx006561,fptx016704 1.00 1.31 23.25 12.54 Exocyst complex component SEC3A 0.005387 2566 fmtx025070,fntx012161,fptx000435 13.77 14.61 1.41 1.40 Putative ribosomal RNA methyltransferase 1 0.033566 2600 fmtx011274,fntx020018,fptx012335 2.83 1.68 36.43 8.06 Cysteine-rich receptor-like protein kinase 10 0.017944 2619 fmtx012851,fntx009532,fptx004346 2.06 0.00 16.60 17.03 Spermidine synthase 2 0.008078 2620 fmtx026310,fntx019018,fptx022615 27.21 102.88 4.55 4.61 Probable rhamnose biosynthetic enzyme 1 0.000516 2629 fmtx019303,fntx004654,fptx013078 0.64 0.77 14.12 12.32 Probable serine/threonine-protein kinase WNK4 0.008283 2687 fmtx005157,fntx006329,fptx018495 0.33 0.00 12.65 9.46 Nucleolar protein 6 0.004232 2707 fmtx010822,fntx011949,fptx004580 0.40 4.03 30.46 19.27 Serine/threonine-protein phosphatase BSL1 0.005256 2760 fmtx022055,fntx022138,fptx011626 35.39 9.78 0.74 0.00 ADP-ribosylation factor GTPase-activating protein AGD12 0.000707 2765 fmtx023888,fntx025164,fptx019996 3.60 62.93 8.07 3.04 Auxin-induced in root cultures protein 12 0.030404 2801 fmtx019393,fntx027271,fptx019966 103.88 31.27 5.94 4.73 Plasma membrane ATPase 1 0.000926 2806 fmtx010290,fntx025626,fptx004589 3.69 8.54 27.27 37.00 Zinc finger protein MAGPIE 0.044524 2809 fmtx006706,fntx022271,fptx034517 103.74 2.51 1.58 1.53 Phosphoenolpyruvate carboxylase kinase 1 0.000052 2814 fmtx005722,fntx026813,fptx013415 3.52 2.80 19.50 21.90 NA 0.036046 2819 fmtx012676,fntx005829,fptx000944 5.32 0.00 26.27 30.18 Glucose-6-phosphate 1-dehydrogenase 0.005480 2827 fmtx004703,fntx011074,fptx024558 0.37 0.81 56.14 48.68 Serine/threonine-protein phosphatase PP2A-2 catalytic subunit 0.000006 2836 fmtx010577,fntx021809,fptx025953 21.33 142.73 4.95 4.66 NA 0.000229 2853 fmtx027521,fntx010602,fptx025419 162.68 2.22 4.29 2.73 NA 0.000057

147 2867 fmtx033404,fntx017184,fptx026654 5.43 6.82 40.25 53.59 Serine carboxypeptidase-like 50 0.008111

2872 fmtx020553,fntx015878,fptx017940 1.23 1.26 14.46 13.71 RNA-binding protein 24 0.017018 2898 fmtx009311,fntx024423,fptx018544 5.71 5.44 30.18 42.60 V-type proton ATPase subunit G 1 0.021373 2900 fmtx022299,fntx029039,fptx014277 74.63 2.00 3.20 1.49 Acidic endochitinase 0.001202 2912 fmtx020286,fntx010396,fptx004548 30.93 34.85 1.21 4.23 Vacuolar protein sorting-associated protein 2 homolog 1 0.002378 2948 fmtx009502,fntx003256,fptx017333 91.38 16.42 8.45 10.12 Actin-depolymerizing factor 1 0.025450 2953 fmtx009942,fntx028031,fptx016261 14.45 26.51 82.17 112.29 Nucleosome assembly protein 1-like 1-A 0.035267 2972 fmtx013269,fntx005912,fptx015279 2.08 7.21 29.77 23.37 RUN and FYVE domain-containing protein 1 0.039661 2977 fmtx003786,fntx015370,fptx011471 2.36 2.86 20.86 16.88 Spatacsin 0.034378 3011 fmtx021143,fntx016446,fptx019643 0.37 5.89 24.35 16.88 Syntaxin-132 0.036046 3024 fmtx021602,fntx025184,fptx020589 5.44 3.56 31.12 44.39 Probable calcium-binding protein CML18 0.008643 3033 fmtx015263,fntx014052,fptx009155 5.78 0.00 32.40 11.64 Ubiquitin-conjugating enzyme E2 36 0.030404

3046 fmtx021638,fntx026821,fptx024569 102.48 19.77 616.52 677.08 NA 0.000389 3047 fmtx005762,fntx007935,fptx022637 0.60 0.00 7.75 9.87 Pre-mRNA 3'-end-processing factor FIP1 0.041389 3050 fmtx018139,fntx026423,fptx009774 62.65 53.07 3.80 3.90 20 kDa chaperonin 0.000622 3051 fmtx019630,fntx005638,fptx023442 1.07 0.33 40.37 32.03 ABC transporter G family member 3 0.000057 3052 fmtx006412,fntx026006,fptx017888 20.09 8.64 185.63 162.92 Superoxide dismutase [Cu-Zn] 0.000379 3071 fmtx020237,fntx028282,fptx022204 169.60 1.09 4.16 8.78 NA 0.000516 3081 fmtx019688,fntx026024,fptx013519 1.31 0.00 11.17 12.22 Eukaryotic initiation factor iso-4F subunit p82-34 0.014264 3087 fmtx010670,fntx011758,fptx030859 29.46 11.11 4.52 0.00 NA 0.025968 3090 fmtx022614,fntx004146,fptx020573 0.93 0.00 34.38 73.26 Peptidyl-prolyl cis-trans isomerase FKBP4 0.000005 3133 fmtx022926,fntx000871,fptx015799 34.48 13.68 0.42 1.56 Transcription elongation factor B polypeptide 1 0.001340 3141 fmtx002907,fntx019693,fptx019369 45.31 13.67 4.99 1.98 Protein TRANSPARENT TESTA 12 0.012990 3144 fmtx022874,fntx028473,fptx013810 1.63 0.77 29.62 24.51 Serine/threonine-protein phosphatase 5 0.000739 3146 fmtx011799,fntx002801,fptx012687 9.48 5.95 39.62 35.37 26S protease regulatory subunit 6B homolog 0.048078 3165 fmtx011822,fntx010150,fptx006392 31.68 10.15 0.54 0.37 (+)-neomenthol dehydrogenase 0.001030 3170 fmtx014176,fntx028766,fptx007245 6.18 14.77 1.11 1.39 Serine carboxypeptidase-like 18 0.047300 3180 fmtx014885,fntx015753,fptx026330 80.82 35.68 2.19 3.41 Snakin-1 0.000234 3213 fmtx026052,fntx029399,fptx016011 20.17 60.64 1.89 3.53 NA 0.000862 3214 fmtx023159,fntx006476,fptx021689 1.55 4.45 23.23 25.56 NA 0.019581

148 3221 fmtx012346,fntx017244,fptx029206 172.97 3.24 2.47 20.86 NA 0.004919

3228 fmtx035357,fntx030003,fptx031429 1.35 5.80 20.94 22.58 RPM1-interacting protein 4 0.044585 3235 fmtx010528,fntx009770,fptx019271 86.59 10.48 3.88 2.79 na 0.001046 3267 fmtx025819,fntx027359,fptx008185 632.25 169.54 1.58 0.69 F-box protein FBW2 0.000000 3272 fmtx028515,fntx000359,fptx022109 0.37 0.82 29.88 15.17 RING finger protein 10 0.000626 3326 fmtx014961,fntx021950,fptx020348 0.33 0.00 13.40 14.71 HAUS augmin-like complex subunit 1 0.001441 3331 fmtx000471,fntx000140,fptx009265 308.40 84.65 1.68 15.50 Pectinesterase 2.1 0.000012 3332 fmtx015776,fntx001399,fptx001042 11.23 13.47 0.75 0.00 Serine/threonine protein phosphatase 2A 59 kDa regulatory subunit B' eta 0.011926 isoform 3333 fmtx018767,fntx023653,fptx027633 0.33 0.00 6.80 5.59 NAD(P)H-quinone oxidoreductase subunit J 0.038575 3336 fmtx023820,fntx029821,fptx014830 45.21 38.86 2.25 1.31 Serine/arginine-rich splicing factor 7 0.000395 3346 fmtx024593,fntx027818,fptx013183 22.32 17.02 0.85 0.37 ABC transporter G family member 5 0.001289

3368 fmtx017354,fntx011528,fptx024591 162.85 50.18 15.00 18.39 Probable aquaporin PIP1-5 0.009217 3371 fmtx020056,fntx010892,fptx024317 654.77 136.30 54.78 123.19 NA 0.034378 3373 fmtx021548,fntx019347,fptx020399 2.47 0.00 13.14 9.23 Probable transporter MCH1 0.039661 3397 fmtx018513,fntx029294,fptx024544 2.69 0.00 18.78 13.49 NA 0.023518 3422 fmtx010050,fntx017221,fptx024539 37.69 65.78 331.80 522.80 NA 0.001542 3433 fmtx030787,fntx029038,fptx026999 735.02 9.75 9.59 49.93 NA 0.000213 3439 fmtx010536,fntx011163,fptx010066 28.53 7.95 1.71 2.58 Auxin-induced protein 10A5 0.023541 3454 fmtx017848,fntx022320,fptx022039 1.23 7.01 21.28 33.16 Protein ISD11 0.026647 3463 fmtx025191,fntx001276,fptx005398 322.45 90.38 21.35 27.98 Subtilisin-like protease 0.001772 3472 fmtx011559,fntx005029,fptx021715 0.71 2.94 18.88 20.27 E3 ubiquitin ligase BIG BROTHER-related 0.019225 3487 fmtx019141,fntx026572,fptx013494 0.37 0.00 10.09 8.27 Sphingoid long-chain bases kinase 1 0.009502 3495 fmtx026063,fntx026242,fptx002637 28.89 8.58 0.37 0.00 NA 0.000389 3500 fmtx000549,fntx029752,fptx023279 1603.49 303.13 236.42 61.59 Auxin-repressed 12.5 kDa protein 0.005480 3519 fmtx017602,fntx003902,fptx017222 92.81 42.60 11.76 11.80 40S ribosomal protein S30 0.022829 3528 fmtx024015,fntx028862,fptx007986 25.95 8.06 0.65 0.00 Adenylyl cyclase-associated protein 1 0.002787 3554 fmtx010787,fntx029211,fptx002367 28.23 11.04 1.52 2.77 Splicing factor 0.017178 3557 fmtx015000,fntx021817,fptx003437 131.77 7.41 12.09 16.97 Subtilisin-like protease 0.038375 3586 fmtx028511,fntx012607,fptx027069 96.44 32.22 3.44 1.18 Desiccation-related protein PCC27-45 0.000076

149 3598 fmtx016359,fntx011053,fptx013379 6.44 12.33 51.54 63.15 Probable phospholipid hydroperoxide glutathione peroxidase 0.019422

3624 fmtx023984,fntx004526,fptx017637 0.37 14.95 132.80 68.49 NA 0.000385 3640 fmtx013592,fntx000031,fptx017555 0.45 70.32 119.41 185.80 60S ribosomal protein L19-2 0.046256 3647 fmtx026022,fntx029806,fptx024448 238.46 69.71 31.97 33.89 Lactoylglutathione lyase 0.032902 3650 fmtx022470,fntx006322,fptx021708 1.24 0.00 15.48 16.79 NA 0.003267 3681 fmtx018065,fntx027592,fptx021519 286.32 57.06 22.31 6.24 Trans-cinnamate 4-monooxygenase 0.000389 3715 fmtx013989,fntx022492,fptx020101 16.01 15.34 3.48 0.37 U-box domain-containing protein 14 0.040270 3729 fmtx020438,fntx003589,fptx002732 9.56 2.29 0.42 0.00 Methyltransferase-like protein 13 0.038575 3738 fmtx023172,fntx029913,fptx016506 1.84 4.42 28.15 24.81 UDP-glucuronic acid decarboxylase 1 0.012337 3746 fmtx018718,fntx013177,fptx023296 74.27 21.32 7.37 3.86 24-methylenesterol C-methyltransferase 2 0.005480 3751 fmtx019390,fntx005869,fptx003216 0.37 0.79 15.62 10.39 Chaperone protein dnaJ 0.008283 3807 fmtx020935,fntx026771,fptx021970 2.24 2.59 6.35 29.56 Uncharacterized mitochondrial carrier C12B10.09 0.042329

3821 fmtx013769,fntx009541,fptx017649 2.38 0.43 19.30 17.63 Probable UDP-N-acetylglucosamine--peptide N- 0.012142 acetylglucosaminyltransferase SPINDLY 3825 fmtx009955,fntx019416,fptx008168 69.10 0.38 4.10 1.83 Superoxide-generating NADPH oxidase heavy chain subunit B 0.003399 3852 fmtx000574,fntx029695,fptx002977 1.61 5.48 32.45 13.99 Probable protein phosphatase 2C 60 0.034440 3856 fmtx019152,fntx023952,fptx002853 3497.16 345.32 135.45 97.87 Mavicyanin 0.000028 3862 fmtx014131,fntx022356,fptx012291 0.65 0.00 16.61 25.16 Histone-lysine N-methyltransferase NSD3 0.001030 3880 fmtx022527,fntx025828,fptx014639 1.23 0.91 27.76 11.15 Pumilio homolog 23 0.003643 3889 fmtx022429,fntx027083,fptx004836 17.17 19.81 0.37 0.00 Serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B beta 0.000389 isoform 3898 fmtx024820,fntx025433,fptx013002 2.01 13.62 32.89 137.02 Luminal-binding protein 5 0.001228 3909 fmtx010979,fntx011127,fptx009277 54.81 26.80 0.88 4.54 Uncharacterized protein At5g01610 0.000805 3913 fmtx009506,fntx009998,fptx017925 1.02 1.19 20.43 25.46 Probable serine/threonine-protein kinase At1g01540 0.001602 3915 fmtx002345,fntx026686,fptx022408 0.97 0.69 19.34 12.81 WW domain-containing oxidoreductase 0.010608 3919 fmtx021175,fntx026599,fptx020231 43.85 33.33 2.16 1.45 LOB domain-containing protein 41 0.000622 3937 fmtx026131,fntx025173,fptx020509 49.56 24.11 165.43 190.58 Thaumatin-like protein 1 0.028665 3949 fmtx028115,fntx032448,fptx020594 59.85 12.88 5.95 6.36 Glycosyltransferase 6 0.026414 3981 fmtx023960,fntx015068,fptx018195 0.37 0.33 8.36 9.73 NA 0.041389 3984 fmtx017382,fntx012627,fptx010309 1.71 2.01 31.17 16.27 Prolyl 3-hydroxylase 1 0.007123 3990 fmtx004144,fntx024771,fptx008609 1.62 10.35 24.91 38.64 Ferritin 0.047353 4001 fmtx012626,fntx027819,fptx018322 4.21 1.70 77.11 20.54 Glutathione S-transferase zeta class 0.000583

150 4015 fmtx020346,fntx004392,fptx024957 0.71 2.63 28.33 12.06 NA 0.007608

4029 fmtx024602,fntx003414,fptx011521 1.94 0.33 12.44 13.98 Diacylglycerol kinase iota 0.022521 4050 fmtx000281,fntx013359,fptx011508 0.37 1.56 13.71 8.20 Protein TRANSPORT INHIBITOR RESPONSE 1 0.047300 4069 fmtx024154,fntx027369,fptx016793 40.11 39.77 8.57 6.70 Myb-like protein G 0.037146 4078 fmtx014882,fntx019504,fptx002778 35.03 22.10 0.42 0.00 Protein disulfide-isomerase 0.000044 4094 fmtx009463,fntx010061,fptx008903 8.72 6.89 7.65 95.24 NA 0.017018 4145 fmtx026665,fntx030113,fptx006597 7.34 32.70 4.00 1.53 Regulator of ribonuclease-like protein 3 0.043695 4173 fmtx031856,fntx015316,fptx008718 140.90 1.21 3.35 10.08 Probable calcium-binding protein CML29 0.001306 4180 fmtx012846,fntx012018,fptx022297 7.72 7.13 0.37 0.00 Putative uncharacterized protein YDL057W 0.019422 4232 fmtx009264,fntx009290,fptx005362 119.74 17.27 3.18 7.19 Galactokinase 0.000583 4242 fmtx013698,fntx007213,fptx013872 0.74 2.45 28.55 30.67 40S ribosomal protein S28 0.001115

4262 fmtx027418,fntx032465,fptx002440 20.88 14.79 2.11 0.91 Transducin beta-like protein 2 0.013964 4296 fmtx021069,fntx009672,fptx008526 16.01 2.60 78.60 43.61 NA 0.014507 4311 fmtx014707,fntx015507,fptx006230 1.17 2.32 16.17 16.88 NA 0.018383 4313 fmtx018327,fntx027086,fptx018525 13.52 31.43 181.93 181.96 Protein LURP-one-related 12 0.002333 4337 fmtx011999,fntx015902,fptx020290 1.38 0.68 22.76 0.00 Probable beta-D-xylosidase 2 0.039661 4364 fmtx009282,fntx005547,fptx013342 13.98 20.16 0.98 2.47 Putative U5 small nuclear ribonucleoprotein 200 kDa helicase 0.016237 4369 fmtx020919,fntx015763,fptx019848 4.35 1.94 27.89 33.18 Splicing factor 3B subunit 1 0.006241 4371 fmtx004320,fntx000496,fptx012350 1.06 3.05 87.71 25.41 Ocs element-binding factor 1 0.000078 4374 fmtx011702,fntx014910,fptx018940 2.55 5.40 10.14 49.76 Actin-depolymerizing factor 0.018935 4400 fmtx024874,fntx016156,fptx003513 17.38 20.51 1.00 0.00 NA 0.001602 4413 fmtx014890,fntx019396,fptx016648 145.89 16.51 10.31 21.40 Patellin-6 0.029945 4434 fmtx027631,fntx028125,fptx026292 55.19 5.30 5.19 1.46 NA 0.011063 4436 fmtx000168,fntx000311,fptx026696 1.87 1.17 15.66 14.23 NA 0.029945 4461 fmtx003429,fntx029757,fptx004588 53.92 18.86 4.31 0.97 NA 0.001466 4473 fmtx021981,fntx029013,fptx000609 11.93 21.69 1.89 2.37 Threonine dehydratase biosynthetic 0.032544 4479 fmtx025625,fntx027677,fptx020396 24.89 20.59 2.75 3.77 Probable plastid-lipid-associated protein 4 0.037491 4489 fmtx011979,fntx005189,fptx010017 0.33 0.00 4.20 9.42 Peptidyl-prolyl cis-trans isomerase CWC27 homolog 0.030404 4490 fmtx005047,fntx012631,fptx024590 0.74 3.01 21.76 16.19 E3 ubiquitin-protein ligase RHF2A 0.021151

151 4502 fmtx016101,fntx004110,fptx023440 3.18 0.00 10.24 19.31 Heat stress transcription factor A-2 0.029945

4529 fmtx018368,fntx025360,fptx023452 0.37 1.12 11.07 15.97 U-box domain-containing protein 3 0.007123 4531 fmtx026455,fntx027378,fptx008383 6.72 0.00 29.94 41.47 Sex determination protein tasselseed-2 0.004937 4551 fmtx009923,fntx003458,fptx008560 6.94 2.69 21.09 38.99 Probable phosphatidylinositol 4-kinase type 2-beta At1g26270 0.035378 4559 fmtx020965,fntx019301,fptx010372 77.44 17.99 7.53 7.90 Zinc transporter 3 0.018598 4561 fmtx033053,fntx011585,fptx021168 4.16 10.91 76.38 5.49 Tropinone reductase homolog 0.035267 4562 fmtx001351,fntx028076,fptx010903 102.94 47.37 2.69 10.80 Cytochrome b-c1 complex subunit 6 0.001000 4583 fmtx002690,fntx010814,fptx017655 13.42 19.64 85.54 92.99 Homeobox-leucine zipper protein ATHB-13 0.022521 4588 fmtx007150,fntx022785,fptx000504 8.20 38.51 91.83 127.58 Protein translation factor SUI1 homolog 0.035914 4645 fmtx022840,fntx006260,fptx008132 1.64 2.22 15.52 16.64 H/ACA ribonucleoprotein complex subunit 4 0.036046 4646 fmtx014229,fntx002219,fptx021930 1.96 36.04 3.43 0.97 Ethylene-responsive transcription factor 5 0.019225 4667 fmtx015532,fntx010154,fptx031282 53.43 15.66 2.43 2.98 Universal stress protein A-like protein 0.001906

4682 fmtx013686,fntx022336,fptx016218 1.70 1.33 31.55 31.15 V-type proton ATPase subunit B2 0.000873 4687 fmtx016529,fntx025608,fptx017188 1.32 0.71 29.22 26.37 Probable polygalacturonase 0.000671

152

Appendix B: Reactive Oxygen Species (ROS) in Fraxinus spp.

B.1 Ascorbate Peroxidase

CGGCCGGGGTTTCACTTGTGCTCACCACACTCTATTTCATCCTAGGGTTTATACATTTTCTCTAAGAA AAGCTGAAAATGGTGAAGAACTACCCAACTGTGAGCGAGGAGTACCTGAAGGCCGTTGAGAAATGCAA GAAGAAGCTCAGAGGCCTCATCGCCGAGAAGAACTGTGCTCCTATCATGCTCCGTCTCGCATGGCACT CTGCTGGTACATTTGATGTATGCAGCAGGACTGGAGGTCCTTTTGGGACCATGAGATTTCCTGCTGAG CTCGCACACGGAGCCAACAATGGCCTTGACATTGCTCTTAGGCTCTTGCAGCCCATCAGGGAGCAATT CCCTATCCTTTCTCATGCTGATTTCTATCAGTTGGCTGGCGTTGTTGCTGTTGAAGTTACTGGAGGAC CTGAAGTTCCATTCCATCCTGGAAGGCCGGACAAGGCAGAGCCTCCTGTTGAAGGTCGTTTGCCTAAT GCTACCAAGGGATCTGATCACTTGAGGGATGTTTTCATCAAGCAAATGGGTTTGAGTGACCAGGATAT TGTTGCACTCTCTGGTGGCCACACCCTGGGACGTTGCCACAAGGAACGATCTGGATTTGAGGGACCCT GGACCACAAATCCCCTCATCTTTGATAATTCTTATTTCAAGGAGCTTCTCAGTGGAGACAAAGAAGGC CTCCTGCAGTTGCCATCTGACAAGGCTCTACTCTCTGATCCTGCCTTCCGCCCACTCGTGGAGAAATA TGCTGCCGACGAGGATGCATTCTTTGCTGATTACACAGAGGCTCACCTGAAGCTTTCTGAATTGGGAT TTGCTGATGCCTAAGCTGTTGGGAATATGATAACAAAGTAGGAGTGATGGCCTATTTGTCTAGTATTA TGTTCTAATATGGGAAAATTCGACAGGTCCTTTTAAATCCCCTTTTGCTCGTTTTTATGGATGTTTTG GATTTTGAAAACGGTGCTTTCGATTGATGTATGGTCATTATTTCCCTCAAAAATAAAACAGTGCAGAA TTATTTTCCACTGTGCTTGTTTCTGTGCTGATATTGGATTGAGGAATGTTATTTAGATGTTGCAAC

Amino acid sequence M V K N Y P T V S E E Y L K A V E K C K K K L R G L I A E K N C A P I M L R L A W H S A G T F D V C S R T G G P F G T M R F P A E L A H G A N N G L D I A L R L L Q P I R E Q F P I L S H A D F Y Q L A G V V A V E V T G G P E V P F H P G R P D K A E P P V E G R L P N A T K G S D H L R D V F I K Q M G L S D Q D I V A L S G G H T L G R C H K E R S G F E G P W T T N P L I F D N S Y F K E L L S G D K E G L L Q L P S D K A L L S D P A F R P L V E K Y A A D E D A F F A D Y T E A H L K L S E L G F A D A Stop

5

4.5

4

3.5 Manch Green White

3

2.5 REV 2

1.5

1

0.5

0 Phloem Leaves

153

B.2 Monodehydroascorbate reductase

AGACGACCGATTGTCGAATAGATTCAATGGCAGAGAAGTCGTTCAAGTATTTGATCGTTGGGGGTGGC GTCGCTGCCGGATATGCTGCCAGGGAATTTGCCAAGCAGGGAGTTAAGCCAGGTGAACTGGCCATCAT TTCCAAAGAGGCGGTGGCTCCTTATGAACGTCCAGCACTTAGCAAGGCATACTTGTTTCCCGAGGGAA CTGCAAGACTTCCAGGTTTCCATGTGTGCGTTGGAAGTGGAGGAGAGCGGCTCCTTCCTGAGTGGTAC ACCGAGAAAGGGATATCTTTGATCCTTAGTACGGAAATAGTCAAGGCAGATCTTTCTTCAAAGACACT TACCAGTGCAACGGCCGAAACATTTAAATACCAGATTCTGCTCATAGCAACTGGTTCTACTGTTATCA GATTGTCCGACTTTGGAGTACAAGGGGCTGATGCCAAAAACATATTTTATTTGAGAGAAATTGATGAT GCTGATAAACTTGTAGAATCAATCAAATCAAAGAAAAAGGGAAAGGCTGTGGTTGTTGGTGGAGGATA CATTGGTCTTGAGCTCAGCGCAGCTCTCAGAGTCAATAACATTGATTCCACTATGGTGTACCCTGAAC CTTGGTGCATGCCTAGGCTATTCACAGCTGGCATAGCTGCCTTCTATGAAGGTTACTATGCAAATAAG GGAATCGAAATCATCAAAGGAACAGTAGCTGTTGGGTTTGGCACTAATGAAAATGGAGAAGTTACAGA CGTAAAACTTAAGGATGGCAGGGTGCTGGAAGCAGACATTGTTGTTGTTGGTGTAGGTGGAAAGCCTC TTACAACCCTATTTAAGGGTCAGGTGAAGAGGAAAAGGGGTGGAATCAAGACGGACGGTTTCTTCAAA ACAAGTGTTCCTGATGTATATGCTGTGGGTGATGTTGCTACTTTCCCTATGAAATTGTACAATGAAAT GAGAAGAGTTGAACATGTTGATCATGCTCGCAAATCTGCTGAACAGGCTGTAAAGGCAATTTTCGCAA GTGAACAAGGAAACTCTATTGATGAATACGACTACCTTCCGTACTTCTATTCCCGTGCATTTGATCTG TCATGGCAGTTTTATGGTGACAATGTAGGTGAAACTGTGTTTTTTGGAGACGGCAGCCCCACATCTCC GACTCACAAGTTCGGATCATACTGGATCAAAGACGGGAAGGTTGTAGGTGCATTTTTGGAAAGTGGTA CTCCAGAAGAAAACAAGGCGATTGCAAAAGTTGCTAGGGTTCAGCCCCTTGCACAGAACTTGGATCAA CTAGCTACAGAAGGTCTCGCTTTTGCCTCTAAAATTTAAGCATCTTTTTTGATCATGGTACAAGGTCA GTTCACTGGAGGTTGAACAATTCTGGAATTGGTTTCCAGTATTTACCCTGAACTGGTGGCCTGGGTAA ATTAACCGATTCTTCGGTGTATTATACTGTTCATGTCTGACTTTCGTGTTTTATTATATTTTCTTGGG AAATTAAAGTATTACTTTTAGATGATATCTTATGAGTTTTGTTGTAAGAAGTCAAATGATTTGTTATT GAGCATCAAAAGTCTGCTCCCACTTTGTAACA

M A E K S F K Y L I V G G G V A A G Y A A R E F A K Q G V K P G E L A I I S K E A V A P Y E R P A L S K A Y L F P E G T A R L P G F H V C V G S G G E R L L P E W Y T E K G I S L I L S T E I V K A D L S S K T L T S A T A E T F K Y Q I L L I A T G S T V I R L S D F G V Q G A D A K N I F Y L R E I D D A D K L V E S I K S K K K G K A V V V G G G Y I G L E L S A A L R V N N I D S T M V Y P E P W C M P R L F T A G I A A F Y E G Y Y A N K G I E I I K G T V A V G F G T N E N G E V T D V K L K D G R V L E A D I V V V G V G G K P L T T L F K G Q V K R K R G G I K T D G F F K T S V P D V Y A V G D V A T F P M K L Y N E M R R V E H V D H A R K S A E Q A V K A I F A S E Q G N S I D E Y D Y L P Y F Y S R A F D L S W Q F Y G D N V G E T V F F G D G S P T S P T H K F G S Y W I K D G K V V G A F L E S G T P E E N K A I A K V A R V Q P L A Q N L D Q L A T E G L A F A S K I Stop

2 Manch 1.5 Green

White

1 REV

0.5

0 Phloem Leaves

154

B.3 Ferritin

CGGCCGGGGACGCATATTCCCTCTCATACTTTCCAGAAAATTTTCTCTACATTGGTCGCTCTGAAAAT GCTTCTGAAACTTGCACCGGCTTTTGGGTTATTGAATTCCCGTGGCGATAATCTGAGTTCTCTGTATA CCTCTGCCACTTCTTCGAATTTTGTGGGGAAGAGGGGAAATGGGTTTGTGCTGTGTGCGACGAAGCAC ACGAACAACAAGCCTTTAACCGGCGTCGTTTTTGAGCCCTTTGAAGAGGTGAAGAAGGAGCTTATGCT TGTGCCGACTCTTCCCCAAGATTCACTCGCTCGCCAGAAGTACGCCGATGAGTGTGAAGCCGCTATTA ATGAACAAATCAACGTGGAGTACAATGTTTCCTATGTCTACCATGCCATGTTTGCCTATTTTGATAGG GACAACGTTGCCCTCAAGGGTCTCGCCAAGTTTTTCAAGGAGTCGAGCGAAGAGGAAAGAGACCACGC TGAGAAATTAATGGAATATCAGAACAAGCGTGGTGGAAAAGTGAAGCTGCAGTCAATTTTGATGCCAC TTTCTGAGTTCGACCATGTCGAAAAGGGTGATGCATTATATGCTATGGAGCTTGCGCTGTCTTTGGAG AAATTGACAAATGAGAAGCTTCTAAACTTGCATGCTGTAGCCTCCCGAAAGAATGATGTGCAGTTGAC TGATTTTGTTGAAAGCGAGTTCTTGGCTGAGCAGGTGGAATCCATTAAGAAGATATCAGAATATGTCG CCCAGCTGAGAAGAGTGGGCAAAGGACATGGCGTTTGGCACTTCGATCAGATGCTGCTCCACGAAGAG GAAGTTGTTGCATAAATGCGAGCTCGATTTTTCTCCTTCTCCCTTCCTACAGAGTGTTCTTTGTGGTA TGATTTTCAGATTTTGCCAAGACATTTTTAGTGTGTTAGTCGCTACAATTTGTGTATGCAGTAGATAT TGACTAGTTTAGTTGATGGCTTATATGAATGCTAGTAGCTAAAGATCAAAATATTTCAGTAGGTGCTG CTATAAAATTTTCTAAGATAGAACGTGAATAAACGTGATTTGCCATATTGAATTGACA

M L L K L A P A F G L L N S R G D N L S S L Y T S A T S S N F V G K R G N G F V L C A T K H T N N K P L T G V V F E P F E E V K K E L M L V P T L P Q D S L A R Q K Y A D E C E A A I N E Q I N V E Y N V S Y V Y H A M F A Y F D R D N V A L K G L A K F F K E S S E E E R D H A E K L M E Y Q N K R G G K V K L Q S I L M P L S E F D H V E K G D A L Y A M E L A L S L E K L T N E K L L N L H A V A S R K N D V Q L T D F V E S E F L A E Q V E S I K K I S E Y V A Q L R R V G K G H G V W H F D Q M L L H E E E V V A Stop

3

Manch Green White 2.5

2

REV 1.5

1

0.5

0 Phloem Leaves

155

B.4 Dehydroascorbate Reductase (DHAR)

AGCTCTCACACACAGGCCACAATCCAATTCCTCCCCAAATGTCGACCGCCAAAATAACACCATCTGCT GCCGGCCTTTCCGCCACAATCAAACATCTTAGCTGCCTTTCTTCATCCCGGACCTTCTTCACTACCTC CGTTAGGTTAACCCGACCCGGAATTGGAAATGGAGCGAGAAGCCTGACCGTGACAATGAGTTCAAAAC CGTCCGACCCGCTTGAAGTTTGTGCTAAGGCTTCCCTCACCAAGCCCAATGCGCTCGGCGACTGTCCC TTCACGCAGCGGGTTTTGCTAACTTTGGAGGAAAAGAACCTCCCATATGACCTGAAGCTCGTTGATTT TGCTAACAAACCGGAATGGTTCTTAAAAGTAAGTCCAGAAGGTAAAGTTCCTCTGCTAAAGCTTGATG AGAAGTGGATTCCAGATTCAGATGTTATCACTCAGGCACTGGAAGAGAAGTTCCCTGATTGCCCCCCA TTGGCACACCCCCTGGAGGCTTCAGTTGGCTCAAAGATTTTCTCCGCGTTTATTGGTTTTCTGAAGAG CAAAGACCCCAGCGATGGAACAGAGCAGGCCTTGCTTGATGAGCTGATAGCTTTCAATGATTATCTTA AAGAAAATGGTCCGTTCATCAACGGGGACAAGGTATCTGCTGCTGACTTTTCGCTTGGGCCGAAGCTA TACCATTTAGAGATCGCTTTGGGGCACTATAAGAAGTGGTCAATCCCAGATTCACTTCCCCATCTAAA GACATATATGAAGACTATATTTTCAATGGATTCCTTCATCAAAACACGGGCTCAAACAGAGGATGTAA TTGAGGGTTGGCGACCAAAAGTCATGGGTTGATTCATCTACTGTATTCATCATCACTTGGATCATCTT CAGTTTCAGTTTTTGTCCGAGTACAGTCATGTGATGGTATGCACATATGTATATCAAATGGTAATTCA TTACATACTGATTTTACAAAATAAAAGATGCTTAACTATCACATACCTTACAAAAATTGTGATGTTCT AAGCTCAATGGAACAATTCTTATTCAAGTAAAATTATACGTTGAAATACCATGTTATATTATCGGTCT AACAAAATAAATAAAGTAATCGTTTTTTTCTTGGCGCGCCCCCGCCCCAAAAAAAAAAAGAACTTGTG GGCCCCCCGCGTCA

M S T A K I T P S A A G L S A T I K H L S C L S S S R T F F T T S V R L T R P G I G N G A R S L T V T M S S K P S D P L E V C A K A S L T K P N A L G D C P F T Q R V L L T L E E K N L P Y D L K L V D F A N K P E W F L K V S P E G K V P L L K L D E K W I P D S D V I T Q A L E E K F P D C P P L A H P L E A S V G S K I F S A F I G F L K S K D P S D G T E Q A L L D E L I A F N D Y L K E N G P F I N G D K V S A A D F S L G P K L Y H L E I A L G H Y K K W S I P D S L P H L K T Y M K T I F S M D S F I K T R A Q T E D V I E G W R P K V M G Stop

Manch Green White

1.4

1.2

1

0.8 REV 0.6

0.4

0.2

0 Phloem Leaves

156

B.5 Peroxiredoxin

CGGCCGGGGGAGGAGAAATAACTGAAATCAAGAAAATTGAGAGGAAAAGCCATGGCGTCATCTGTATTACT GAAACGAACGGGGTTGATGAAGTCAATGGTCAACAGCTTCCGGGCATCAAGGGCCTACGCATCGGTTGCAG TGGGCACGGACTTGATATCGGCTGCACCAGATGTCTCTCTCCAGAAGGCTCGCTCCTGGGATGAGGGGGGT CTCTTCCAAGTTCGCCACTACTCCTCTCAAGGACATTTTCAAGGAGATAAAAAAGTTGTCATCTTTGGCCT CCCTGGTTCCTACACTGGAGTTTGTTCGGCTCAGCACGTGCCTAGCTACAAGAACAACATTGATAAGTTCA AGGCAAAAGGAATTGACTCGGTGATATGCGTCGCCGTTAATGATCCTTATGTAATGAATGGCTGGGCCGAG AAACTTCAGGCTAAAGAAGCTATTGAATTTTACGGAGATTTTGACGGGAGCTTGCACAAAAGTATGGATTT GATGATAGATCTATCCTCTGCTTTACTGGGACCTCGATCTCATAGGTGGTCAGCTTACGTGGTTGATGGGA AAATCAAAGTCCTCAACTTGGAAAAAGCTCCATCGGAATTTGAGGTTTCAGGCGGAGAAGTTATTTTGGGA CAGATCTAGACCAATATTTCCTTTGCAGTTGATAGGCTAGTGTTTCCAGTTTTTGTATATTTCCACTTGCT ATACCGGATGAGCACAAATGGTATTCGCAATATTAGAAAATAACTATCTAAAATACATTATGATCAATAAA TATGTACATGTATAATGCTTGATGACGTTCTTCCCTTCTTCATTGAATATTGAATATAAGCTAGTCGATCT TCAA

M A S S V L L K R T G L M K S M V N S F R A S R A Y A S V A V G T D L I S A A P D V S L Q K A R S W D E G G L F Q V R H Y S S Q G H F Q G D K K V V I F G L P G S Y T G V C S A Q H V P S Y K N N I D K F K A K G I D S V I C V A V N D P Y V M N G W A E K L Q A K E A I E F Y G D F D G S L H K S M D L M I D L S S A L L G P R S H R W S A Y V V D G K I K V L N L E K A P S E F E V S G G E V I L G Q I Stop

8 Manch Green 7 White 6

5

4 REV

3

2

1

0 Phloem Leaves

157

B.6 Thioredoxin

ATTATTAAGGAAAATGATCTATCTTCTTCCTTCTTCAAAGAAACTCAATAGTTTTCCAAGAAAATAGG CTTAAGAATCTTGAATTTTGGATCTAATGTCTTCAGAAGAGGGACAGGTTATTGGTTGCCACTCTGTT GAGCAATGGACGGAGCAGTTTCAGAAGGGCGTTGGGCTCAAGAAATTGGTGGTGGTCGATTTCACAGC TTCGTGGTGTGGGCCCTGCCGATTTATTGCCCCAATTTTGGCTGAGATTGCCAAGAAGACTCCACATG TTATATTCTTGAAGGTGGATGTGGATGAACTAAAGGATGTTGCTAAAGAGTACAATGTCGAGGCCATG CCCACATTCGTGTTTCTCAAGGATGGGAAAGAAGTGGATAGGCTTGTGGGTGCGAGGAAGGAAGATTT GCAGGCTACAATCACCAAGCACGCTACTGTTACTGCTTGAGGTTGCTTTGTTATGAAGTTCTATGTTT TTAAACATTTGGGCTTGTAATAATCTACAGTTTGTTAAGATTTTTATTATGACTCTGTAA

M S S E E G Q V I G C H S V E Q W T E Q F Q K G V G L K K L V V V D F T A S W C G P C R F I A P I L A E I A K K T P H V I F L K V D V D E L K D V A K E Y N V E A M P T F V F L K D G K E V D R L V G A R K E D L Q A T I T K H A T V T A Stop

7 Manch

6 Green White 5

4

REV 3

2

1

0 Phloem Leaves

158

B.7 Manganese SuperOxide Dismutase

CCAATTTGTGGAGATAGGACAGGTCTCCTCTCCTCTCTCCACCTGTCGTTTAGCAAGTTTTCTTCTTCACA AACGTTACAGAAACACTTGGAACCTTCGGCTATGGCTCTCAGAACCCTACTAACCAGAAAAATCCTAGCAA ATTCACCGTTGGGGACACTAGGGTTTCGCGGCCTGCAGACTTTCTCGCTGCCCGATCTACCTTATGACTAC GGGGCCCTAGAGCCGGCCATTAGCGGCGACATAATGCAGCTGCACCACCAGAAGCATCATCAGACTTACAT TACTAATTACAATAAGGCTCTTGAGCAGCTCGATGACGCTGTGGCCAAGGGCGACGCTCCCGCCGTAGTCA AGTTGCAGAGTGCAATCAAGTTCAATGGCGGAGGTCATGTCAATCACTCAATTTTCTGGAAGAATCTTGCC CCTGTTCGTGAAGGTGGTGGTGAACCTCCCAAGGGTTCTTTAGGTTGGGCTATTGACAATAACTTTGGTTC CTTGGAAGCTTTAATACAGGAGATGAATGCAGAAGGTGCTGCTTTACAGGGCTCCGGATGGGTGTGGCTTG GTCTGGACAAAGAGTTGAAGCATCTGTTGGTTGAAACTACTGCAAATCAGGATCCACTGGTTACTAAAGGA CCAAATCTGGTTCCTCTGCTTGGTATTGATGTCTGGGAGCATGCATACTACTTGCAGTACAAAAATGTGCG ACCTGATTACCTGAAGAACATATGGAAAGTCATGAACTGGAAATATGCAAGCGATGTGTTTGAACAAAGAA TGCCCTTGATGTGGGAAACATTGCAATTCTGAGTACTGTTTTTCGAGCAAATTGGGGATTGGAATCTATAC ATGTGCCCAGAAATAAAATTGCACGACACTTTGGCTGCCTATTTTCAGTAGGCTGATAGATGTTATTGTAT GTGCAATAACTAAATGAAACTATTTTAGGTTTCTGACTGCTATTGTAAAGCCCTCAGAGAGTGCTCAAGCA TGATCAAACA

M A L R T L L T R K I L A N S P L G T L G F R G L Q T F S L P D L P Y D Y G A L E P A I S G D I M Q L H H Q K H H Q T Y I T N Y N K A L E Q L D D A V A K G D A P A V V K L Q S A I K F N G G G H V N H S I F W K N L A P V R E G G G E P P K G S L G W A I D N N F G S L E A L I Q E M N A E G A A L Q G S G W V W L G L D K E L K H L L V E T T A N Q D P L V T K G P N L V P L L G I D V W E H A Y Y L Q Y K N V R P D Y L K N I W K V M N W K Y A S D V F E Q R M P L M W E T L Q F Stop

4.5

4 Manch

3.5 Green White 3

2.5

REV 2

1.5

1

0.5

0 Phloem Leaves

159