Perhaps the Current Plant Two-Sex Model Should Be Replaced with Three
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Reproduction Angiosperm Specific Adaptations Angiosperms
4/15/2013 Gymnosperms Angiosperms Pterophytes Seeds Plant Reproduction Lycophytes Bryophytes Vascular tissue Green algae: BI 103 Plant-Animal A&P Chlorophytes Turn in Homework #1 Land plants Angiosperm specific adaptations • Unlike other plants they have: Why do plants have flowers? In – Flowers other words, what are the – Double fertilization advantages of flowering? – Fruit Discuss this question in groups Alternating Generations In more advanced plants, the sporophyte generation is Angiosperms: the Flowering plants dominant. Why do plants have flowers? Enlists partnerships with insects and other animals Less inbreeding Higher probability the pollen will reach the right plant They don’t have to produce as much pollen 1 4/15/2013 How is pollen an adaptation to land? Alternation of generations modified Allows fertilization to occur even in the absence • Pollen= Male gametophyte of available water. Contains sperm • Ovule= Female gametophyte water Contains egg Moss fertilization Pollen grains Anthers with microspores Microspore to pollen 1. The microspores divides by mitosis to produce two cells Generative cell (1n) Tube cell== vegetative nucleus (1n) 2. A two layered wall develops around the microspore to become the pollen 3. The generative cell undergoes division once more 3n total (3 nuclei) in pollen Double fertilization Fruit development 1. Two pollen nuclei enter ovule 2. One fuses with the egg to form the zygote 3. The other fuses with 2 central cell nuclei to become the endosperm (3n), food for the zygote Becomes the seed! Becomes -
Human Reproductive Systems Males Vs. Females Learning Goals • Students Will Describe the Basic Anatomy and Physiology of the Male and Female Reproductive Systems
Human Reproductive Systems Males vs. Females Learning Goals • Students will describe the basic anatomy and physiology of the male and female reproductive systems. Gonads are sex organs that create gametes? & excrete sex hormones Gonads are sex organs that create gametes & excrete sex hormones Male gonads are called testes Female gonads are called ovaries -Are the site of sperm production -Are the site of egg production & maturation Gametes are also called sex ?cells, and are used to create offspring with a mixture of genetic information. Gametes are also called sex cells, and are used to create offspring with a mixture of genetic information. Male gametes are called sperm Female gametes are called -produce 300-500 million per 5ml eggs/ova of semen -70,000-100,000 at birth -release 1-2 per month from puberty to menopause. Sex Hormones are chemical? signals that tell the sex organs how to function. Sex Hormones are chemical signals that tell the sex organs how to function. Male hormone is called Female hormones are estrogen testosterone and progesterone -released from the testes -released from the ovary -controls sperm production -controls egg production & release Duct systems help deliver gametes from gonads and are the site of fertilization in females and delivers sperm out of the body in males. Male duct systems include: Epididymis -site of sperm maturation (about 20 days for sperm to mature) Male duct systems include: Vas deferens -Tube for sperm to travel through as they leave the testes Male duct systems include: Urethra -shared tube for release of semen from reproductive tract and urine from the bladder. -
Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho
Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho To cite this version: James Umen, Susana Coelho. Algal Sex Determination and the Evolution of Anisogamy. Annual Review of Microbiology, Annual Reviews, 2019, 73 (1), 10.1146/annurev-micro-020518-120011. hal- 02187088 HAL Id: hal-02187088 https://hal.sorbonne-universite.fr/hal-02187088 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Microbiol. 2019. 73:X–X https://doi.org/10.1146/annurev-micro-020518-120011 Copyright © 2019 by Annual Reviews. All rights reserved Umen • Coelho www.annualreviews.org • Algal Sexes and Mating Systems Algal Sex Determination and the Evolution of Anisogamy James Umen1 and Susana Coelho2 1Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; email: [email protected] 2Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France [**AU: Please write the entire affiliation in French or write it all in English, rather than a combination of English and French**] ; email: [email protected] Abstract Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. -
Meiosis & Sexual Reproduction Heyer 1
Meiosis & Sexual Reproduction Meiosis & Sex Cells Arise From Preexisting Cells I. Asexual (Mitotic) Reproduction a. Mitosis: production of two identical nuclei b. Cytokinesis: physical division of the cell into two II. Sexual (Meiotic) Reproduction a. Meiosis: production of four non-identical nuclei b. Cytokinesis: physical division of the cell c. Fertilization: fusion of two Sexual reproduction creates sex cells d. Syngamy: fusion of new combinations of alleles. two nuclei Diploid cells have Homologous chromosomes [Homologs]: homologous pairs of chromosomes: same loci, maybe different alleles. 1 set from mom, 1 set from dad. Meiosis: Reductive Division Sex = Meiosis + Syngamy — Reduces Chromosome Number in Half Meiosis has 2 consecutive divisions – Meiosis I: Homologous pairs separate – Meiosis II: Sister chromatids separate Each division has a prophase, metaphase, anaphase and a telophase Meiosis: Syngamy: 2n 1n 1n 2n Diploid haploid Haploid diploid Heyer 1 Meiosis & Sexual Reproduction Chromosomes Matched in Sexual Life Cycles Homologous Pairs (Homologs) Human somatic (body) cells – 23 pairs = 46 chromosomes – Homolog = same size, shape, centromere, and genes Pairs #1 - 22 = Autosomes – Both male and female Pair #23 = Sex Chromosomes – Determine gender – XX = female, XY = male Diploid life history Alternation of Generations Haploid life history (animals) (plants) (fungi) Human karyotype Somatic (body) cells are Diploid Meiosis I Gametes (sex cells) are Haploid Diploid (2n) Prophase I – Two of each kind of chromosome Chromosomes -
The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins. -
Section 6: Sex Cells and Fertilisation
S ection 6: S ex Cells and Fertilisation U se the w ords in the w ord bank below to com plete the sentences below : S maller, vagina, anther, halved, fertilisation, nucleus, male, half, gametes, D N A , stigma, female, ovules, pollen, pollen tube, four, zygote, threadlike, one, identical, genes, amino acids, protein, function, meiosis, sex chromosomes, male S ome plants reproduce sexually. T he sexual parts are inside the flow ers. M ost flow ering plants have flow ers w ith both __ ___ __ and _ ___ __ parts. T hese sexual parts produce special sex cells called _ ____ ___ _. Label the diagram above. T he male part of a flow ering plant is called the ___ ___ ___ _ and produces __ ______. T he female part is called the _ ___ ___ _ and produces ovules. Pollen grains are __ ___ ____ and more numerous than ovules, w hich are larger. Fertilisation in flow ering plants occurs by pollen trains being transferred to the _ ___ ___ _. A _____ ___ __ _____then grow s dow n into the ovary and into an ovule. A male gamete then passes dow n the tube and fuses w ith egg cell. T his process is called 1 __ __________. T he fertilised egg is now called a ___ ___ __. Fertilisation produces variety in the offspring because genetically identical gametes form in different w ays, producing different combinations. S exual Reproduction In H umans Label the follow ing diagrams: 2 In humans, fertilisation takes place in the oviduct. -
Plant Reproduction | Topic Notes
Plant Reproduction | Topic Notes Sexual reproduction is the fusion of male and female gametes to produce a diploid zygote. (The new individual is genetically different from both parents). Advantages include genetic variation, reduced competition (between parent & offspring) and good chance of surviving harsh winter. A disadvantage is that there’s a long period of growth required. Structure of flowering plant: Megaspore (egg) formation & microspore (pollen) formation: The carpel (female part of the flower) is composed of the stigma (sticky to trap pollen grains), style (supports stigma in best position to trap pollen grains) and ovary (contains 1 or more ovules which following fertilisation will develop into seeds). The stamen (male part of the flower) is composed of the anther (produces pollen grains) and filament (supports anther in best position to transport pollen grains). Sepals support the developing flower before it blooms. Petals may be bright coloured in insect pollinated plants (to attract them). The receptacle is the organ from which the flower develops and functions in supporting it. Pollination is the transfer of pollen from the anther to the stigma of a flower of the same species. It may be: 1. Self-pollination: the transfer of pollen from the anther to the stigma in the same plant. 2. Cross-pollination: the transfer of pollen from the anther to the stigma of a different plant but of the same species. 1 Plant Reproduction | Topic Notes Fertilisation is the union of a haploid male gamete with a haploid female gamete, to produce a diploid zygote. Once a pollen grain has landed on the stigma, the tube nucleus moves down through the stigma and style forming a pollen tube and enters the ovule at the micropyle, guided towards the egg by chemotropism, the tube nucleus then degenerates. -
Plant Diversity Unique Plant Adaptations Alternation Of
8/9/2010 Land plants Origins Shared ancestor with green algae. Plant Diversity Researchers have identified green algae called charophyceans as the closest The Evolution of the relatives of land plants Photosynthetic Terrestrial Plants Unique Plant Adaptations First true land plants were short Adaptations for a terrestrial existence and required water for reproduction 1) Roots --anchoranchor the plant and absorb water & nutrients from the soil. 2) Cuticle ––aa waxy coating to prevent drying out 3) Stomata ––porespores in the leaves and stems that allow for gas exchange. 4) Conducting vessels ––forfor transport of water , minerals, and sugars through the plant body. 5) Lignin --StiffeningStiffening and support of stems. 6) Unique reproductive structures e.g. pollen –– for transporting gametes. Alternating Generations Alternation of Generations In more advanced plants sporophyte generation dominant. The alternating life cycle of plants that involves changes between a: 1)Sporophyte generation AND………. 2) G ametophyte generation 1 8/9/2010 Mosses & nonvascular plants have life Contrasting the Generations cycles dominated by gametophytes Hairy-cap moss Sporophyte Gametophyte Diploid state (double set Haploid state (half the Brown Capsule of chromosomes in cells –– amount of chromosomes full set) in cells) Sporophyte Produces seeds in seed Produces the gametes bearing plants i.e. (sperm & egg). Makes spores Predominant form in Gametophyte Predominant form in mosses & ferns (lower higher plants e.g. trees. plants). (Green & leafy) Characteristics of Mosses Life Cycle of Mosses Division Bryophytes The sporophyte forms on, and is nourished by, the dominant gametophyte Nonvascular (don’t have special methods of conducting water & minerals) ––tendtend to be very small. -
Lesson 6: Plant Reproduction
LESSON 6: PLANT REPRODUCTION LEVEL ONE Like every living thing on earth, plants need to make more of themselves. Biological structures wear out over time and need to be replaced with new ones. We’ve already looked at how non-vascular plants reproduce (mosses and liverworts) so now it’s time to look at vascular plants. If you look back at the chart on page 17, you will see that vascular plants are divided into two main categories: plants that produce seeds and plants that don’t produce seeds. The vascular plants that do not make seeds are basically the ferns. There are a few other smaller categories such as “horse tails” and club mosses, but if you just remember the ferns, that’s fine. So let’s take a look at how ferns make more ferns. The leaves of ferns are called fronds, and brand new leaves that have not yet totally uncoiled are called fiddleheads because they look like the scroll-shaped end of a violin. Technically, the entire frond is a leaf. What looks like a stem is actually the fern’s equivalent of a petiole. (Botanists call it a stipe.) The stem of a fern plant runs under the ground and is called a rhizome. Ferns also have roots, like all other vascular plants. The roots grow out from the bottom of the rhizome. Ferns produce spores, just like mosses do. At certain times of the year, the backside of some fern fronds will be covered with little dots called sori. Sori is the plural form, meaning more than one of them. -
Foxl3, a Sexual Switch in Germ Cells, Initiates Two Independent Molecular Pathways for Commitment to Oogenesis in Medaka
foxl3, a sexual switch in germ cells, initiates two independent molecular pathways for commitment to oogenesis in medaka Mariko Kikuchia, Toshiya Nishimuraa,1, Satoshi Ishishitab, Yoichi Matsudab,c, and Minoru Tanakaa,2 aDivision of Biological Science, Graduate School of Science, Nagoya University, 464-8602 Nagoya, Japan; bAvian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601 Nagoya, Japan; and cDepartment of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601 Nagoya, Japan Edited by John J. Eppig, The Jackson Laboratory, Bar Harbor, ME, and approved April 8, 2020 (received for review October 23, 2019) Germ cells have the ability to differentiate into eggs and sperm and elegans (8–10). To date, however, neither protein has been im- must determine their sexual fate. In vertebrates, the mechanism of plicated in germline feminization. commitment to oogenesis following the sexual fate decision in During oogenesis in mice, several transcription factors facili- germ cells remains unknown. Forkhead-box protein L3 (foxl3)isa tate folliculogenesis: lhx8 (LIM homeobox 8) and figla (factor in switch gene involved in the germline sexual fate decision in the the germline alpha) regulate differentiation of primordial follicles teleost fish medaka (Oryzias latipes). Here, we show that foxl3 or- (11–14), and nobox (newborn ovary homeobox), which acts ganizes two independent pathways of oogenesis regulated by REC8 downstream of Lhx8, is indispensable for the formation of sec- meiotic recombination protein a (rec8a), a cohesin component, and ondary follicles (12, 15). It remains unknown how these tran- F-box protein (FBP)47(fbxo47), a subunit of E3 ubiquitin ligase. -
History of Sex Education Table of Contents
History of Sex Education Table of contents Introduction 5 The social hygiene movement 9 Schools and character-building organizations 13 The influence of WWI 17 Moving beyond disease prevention 19 Family life education 21 The sexual revolution and culture wars 25 Controversies erupt 29 The culture wars 33 AIDS changes the debate 37 The fight between abstinence-only and comprehensive sexuality education 39 The rise of the abstinence-only movement 43 Abstinence-only programs face criticism 49 Evidence-based programs and beyond 51 The fight continues 55 Looking forward: Sex ed as a vehicle for social change 59 2 3 Introduction Sex education in the United States has great potential to educate both individuals and society. It can give us knowledge about our bodies; debunk harmful stereotypes about sex, race, and gender; provide opportunities for us to think critically about our own values and relationships; and empower us to stand up for our rights and the rights of others to pleasure, bodily autonomy, and consent. This was not, however, what sex education was initially designed to do. Too often, over the past 100 years of American history, it has been used to do just the opposite. 4 5 Those who originally pushed the importance of SIECUS believes, however, that sex education— educating the public about sexuality did so out if done properly—has the power to serve as a of a fear that their comfortable, white, middle vehicle for social change. Understanding the class way of living was being threatened by the history of sex education in this country, the loosening of sexual morals. -
Same-Sex Sexual Behavior in Xenogryllus Marmoratus (Haan, 1844) (Grylloidea: Gryllidae: Eneopterinae): Observation in the Wild from Youtube
Short Communication P. OLIVERO AND T. ROBILLARDJournal of Orthoptera Research 2017, 26(1): 1-51 Same-sex sexual behavior in Xenogryllus marmoratus (Haan, 1844) (Grylloidea: Gryllidae: Eneopterinae): Observation in the wild from YouTube PAOLA OLIVERO1, TONY ROBILLARD2 1 Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba. Av. Vélez Sarsfield 299 CP X5000JJC. Córdoba, Argentina. 2 Institut de Systématique, Évolution et Biodiversité, ISYEB – UMR 7205 CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, case postale 50, 57 rue Cuvier, F-75231 Paris cedex 05, France. Corresponding author: T. Robillard ([email protected]) Academic editor: Corinna Bazelet | Received 20 April 2017 | Accepted 30 May 2017 | Published 28 June 2017 http://zoobank.org/9864E869-7928-44CB-A93F-903D0DDB3F45 Citation: Olivero P, Robillard T (2017) Same-sex sexual behavior in Xenogryllus marmoratus (Haan, 1844) (Grylloidea: Gryllidae: Eneopterinae): Observation in the wild from YouTube. Journal of Orthoptera Research 26(1): 1–5. https://doi.org/10.3897/jor.26.14569 Abstract media, it is common to get information about the location where the video was made, along with sounds and images that Searching on the internet for supplementary information about spe- facilitate identification. Online videos can be particularly helpful cies of interest can be helpful when trying to document a quite common when trying to document a species that is relatively common, but but under studied species. While revising the genus Xenogryllus Bolívar, under studied. Recently, the study of such under studied species 1890, we used this method to find additional references about the species of eneopterine crickets has revealed the existence of a system of Xenogryllus marmoratus (Haan, 1844).