Modern Creatinine (Bio)Sensing Challenges of Point-Of-Care Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Modern Creatinine (Bio)Sensing Challenges of Point-Of-Care Platforms Biosensors and Bioelectronics 130 (2019) 110–124 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Modern creatinine (Bio)sensing: Challenges of point-of-care platforms T ⁎ ⁎ Rocío Cánovas, María Cuartero , Gastón A. Crespo Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden ARTICLE INFO ABSTRACT Keywords: The importance of knowing creatinine levels in the human body is related to the possible association with renal, Creatinine muscular and thyroid dysfunction. Thus, the accurate detection of creatinine may indirectly provide information Early diagnosis surrounding those functional processes, therefore contributing to the management of the health status of the Healthcare individual and early diagnosis of acute diseases. The questions at this point are: to what extent is creatinine POC devices information clinically relevant?; and do modern creatinine (bio)sensing strategies fulfil the real needs of Enzymatic biosensors healthcare applications? The present review addresses these questions by means of a deep analysis of the Blood analysis creatinine sensors reported in the literature over the last five years. There is a wide range of techniques for detecting creatinine, most of them based on optical readouts (20 of the 33 papers collected in this review). However, the use of electrochemical techniques (13 of the 33 papers) is recently emerging in alignment with the search for a definitive and trustworthy creatinine detection at the point-of-care level. In this sense, biosensors (7 of the 33 papers) are being established as the most promising alternative over the years. While creatinine levels in the blood seem to provide better information about patient status, none of the reported sensors display adequate selectivity in such a complex matrix. In contrast, the analysis of other types of biological samples (e.g., saliva and urine) seems to be more viable in terms of simplicity, cross-selectivity and (bio)fouling, besides the fact that its extraction does not disturb individual's well-being. Consequently, simple tests may likely be used for the initial check of the individual in routine analysis, and then, more accurate blood detection of creatinine could be necessary to provide a more genuine diagnosis and/or support the corresponding decision-making by the physician. Herein, we provide a critical discussion of the advantages of current methods of (bio)sensing of creatinine, as well as an overview of the drawbacks that impede their definitive point-of-care establishment. 1. Introduction the muscles and other parts of the body, CRE is transported through the bloodstream by the kidneys and excreted in the urine. Accordingly, Creatine is mainly synthesized in the kidneys, liver and pancreas both fluids (blood and urine) deserve clinical attention with respect to (Fig. 1a) before being transported to the tissues and organs, where it is CRE levels (Killard and Smyth, 2000). metabolized to creatinine (Fig. 1b), termed CRE. When adenosine tri- CRE is the second most analysed biomolecule for clinical purposes phosphate is involved in this conversion, creatine per se is a source of after glucose (Joffe et al., 2010). Thus, CRE values outside of typical energy for many biological processes, such as muscle activity ranges is evidence of any health issue associated with renal, muscular (Narayanan and Appleton, 1980). In this context, the creatine to CRE and thyroidal functioning; and levels fairly beyond healthy ones en- cyclization rate is not fully understood despite this knowledge poten- compass very serious diseases, such as chronic kidney disease (CKD), tially assisting in the control of degenerative diseases of the muscles as different types of muscular disorders, cardiovascular problems oreven well as improvement of sport performance (Diamond, 2005). In con- Parkinson's disease, among others. As an example, when CRE levels in trast, it is well-known that CRE levels are fairly constant in the human the serum (i.e., blood) are below 40 µM (Table 1), this indicates an body, mainly depending on the muscle mass of the individual abnormal reduction in muscle mass (Killard and Smyth, 2000). How- (Narayanan and Appleton, 1980; Pundir et al., 2013). For example, the ever, for concentrations greater than 150 µM (Table 1), additional typical reference ranges for serum levels of CRE in healthy patients are analytical tests are required to exclude any risk of CKD. In extreme on the order of 45–90 μM for women and 60–110 μM for men (see cases, values above 500 µM inform of a clear renal impairment that will Table 1; Randviir and Banks, 2013). After subsequent CRE generation in likely involve dialysis treatment or kidney transplantation (Killard and ⁎ Corresponding authors. E-mail addresses: [email protected] (M. Cuartero), [email protected] (G.A. Crespo). https://doi.org/10.1016/j.bios.2019.01.048 Received 18 November 2018; Received in revised form 11 January 2019; Accepted 20 January 2019 Available online 30 January 2019 0956-5663/ © 2019 Elsevier B.V. All rights reserved. R. Cánovas et al. Biosensors and Bioelectronics 130 (2019) 110–124 Fig. 1. General scheme of the metabo- lism of Creatine to CRE. Creatine ori- ginated in different organs is metabo- lized into CRE in muscles and brain. a) Illustration of the synthetic route of Creatine by the organism together with the main organs in which these pro- cesses take place (kidneys, liver and pancreas). AGAT: L-arginine: glycine amidinotransferase and GAMT: S-ade- nosyl-L-methionine: N-guanidinoace- tate methyltransferase. Black arrows show where Creatine is required as a source of energy (producing CRE), mainly brain and muscles. b) Creatine metabolization to CRE through hydro- lysis reactions or involving phospho- creatine as an intermediate. CK: Creatine kinase; biosynthesis of creati- nine occurs during the reaction. Table 1 serum measurements, as well as the albumin-to-CRE ratio in urine to Ranges of CRE levels found in different matrices from healthy and unhealthy evaluate the state of kidney activity (Cockcroft and Gault, 1976; Junge individuals. et al., 2004; Levey et al., 2015; Omoruyi et al., 2012; Tziakas et al., Sample pH rangea Healthy levels Harmful levels [CRE]a 2015). The early diagnosis of any sort of dysfunction is extremely im- [CRE] portant in the prevention and/or control of CKD because this illness is asymptomatic during the first stages (mild and moderate CKD). Hence, b c c Urine 4.5 – 8 4.4 −18 mM < 3 and > 20 mM when the individual notices any symptom, the disease is likely very Serum / Blood 7.35–7.45 45 – 90 µM (♂) < 40 µM and > 150 µM 60 – 110 µM (♀)d (up to 1 mM)d advanced, and the kidneys are commonly quite damaged. Altogether, Saliva 6.2–7.4 4.4–17.7 µMe 17.7 up to 591 µMe the patient experiences a radical change in their life because CKD Sweat 4–6.8 9.4–18 µMf 60 – 200 µMf treatment involves visiting the hospital every two days for dialysis or, if Tears 6.5–7.5 – – the damage is too severe, that person would need a kidney transplant. ISF 7.2–7.4 g g Importantly, over one million people worldwide are undergoing dia- a (Corrie et al., 2015). lysis treatment. Moreover, the incidence of renal failure has doubled b The range of pH can vary also depending on the different laboratories and, over the last 15 years (Bagalad et al., 2017). Therefore, there is a so- in the case of urine, it can be even wider in case of infection. cietal need for trustable detection of CRE at the point-of-care (POC) c (Li et al., 2015; Ruedas-Rama and Hall, 2010). level not only to allow one to preserve individual well-being and con- d (Killard and Smyth, 2000; Tseng et al., 2018). tribute to a more affordable healthcare system, but also to monitor e (Lloyd et al., 1996; Venkatapathy et al., 2014). patients at advanced stages of CKD, which necessitates more than one f (Al-Tamer et al., 1997; Bass and Dobalian, 1953). The symbol ♂ indicates analysis per day during dialysis treatment (Hannan et al., 2014; males and ♀ in females. Michalec et al., 2016). g Similar levels of CRE can be found in ISF and serum (Ebah, 2012; CRE detection is also crucial in the premature diagnosis of various Kayashima et al., 1992). muscular diseases, such as Duchenne muscular dystrophy (Fitch and Sinton, 1964), myasthenia gravis, acute myocardial infarction Smyth, 2000). Furthermore, persistently elevated levels of CRE may (Radomska et al., 2004b) or guanidinoacetate methyltransferase reveal a high risk of mortality (Levey et al., 2015). Notably, the inter- (GAMT) deficiency (Diamond, 2005), as well as verifying patient status pretation of CRE observations must be always carried out considering before and after surgical interventions (Ho et al., 2012; Prowle et al., the muscle mass of the patient as the same value may be considered 2014; Spahillari et al., 2012; Vart, 2015) or when suffering an accident, normal in a young male with a relatively high muscle mass or may as muscular lesions are somewhat related to higher concentrations of indicate CKD in elderly females (Tseng et al., 2018). CRE in the bloodstream. Besides this, CRE detection is valuable for There are a number of organizations, such as the American verifying dehydration status in individuals, e.g., as a consequence of a Association of Kidney Patients, American Kidney Foundation, National decrease of renal blood flow during or after engaging in strong physical Kidney Foundation in New York and the Nephron Information Center, activity (Baxmann et al., 2008; Mohamadzadeh et al., 2016). In addi- among others1 that define five different stages for kidney function tion, the administration of certain drugs and/or treatments, such as based on the estimated glomerular filtration rate (eGFR), which in turn acetylcholine inhibitors, cyclosporin or chemotherapy, may present is calculated from CRE levels in serum together with other factors, such side-effect damage in the kidneys, and therefore, high levels ofCREare as gender and age.
Recommended publications
  • Increase of Urinary Putrescine In3,4-Benzopyrene Carcinogenesis
    [CANCER RESEARCH 38, 3509-3511, October 1978] 0008-5472/78/0038-0000$02.00 Increase of Urinary Putrescine in 3,4-Benzopyrene Carcinogenesis and Its Inhibition by Putrescine Keisuke Fujita,1 Toshiharu Nagatsu, Kan Shinpo, Kazuhiro Maruta, Hisahide Takahashi, and Atsushi Sekiya Institute for Comprehensive Medical Science ¡K.F., K. S., K. M.], Research Center for Laboratory Animals ¡H.T.¡,and Department of Pharmacology ¡A.S.¡, Fujita-Gakuen University School of Medicine, Toyoake, Aichi 470-11, Japan, and Laboratory of Cell Physiology, Department of Life Chemistry, Graduate School at Nagatsuta, Tokyo Institute of Technology, Yokohama 227, Japan ¡T.N.¡ ABSTRACT were included. Thirty female BALB/c mice, 19 to 20 weeks old and 25 to 30 g body weight, were given s.c. injections of A significant increase in putrescine was noted in the 2.52 mg of 3,4-benzopyrene in 0.5 ml of tricaprylin (Group urine of mice with experimental s.c. tumors induced by a B) or of 2.52 mg of 3,4-benzopyrene plus 10 mg of putres single injection of 3,4-benzopyrene solution (2.52 mg of cine dissolved in 0.5 ml of tricaprylin (Group B + P). As 3,4-benzopyrene in 0.5 ml of tricaprylin). When 10 mg of controls, 30 mice were given injections of 0.5 ml of tricapry putrescine were added to the 3,4-benzopyrene solution, lin (Group C), and 15 mice received 10 mg of putrescine in the development of tumors was completely inhibited and 0.5 ml of tricaprylin (Group P).
    [Show full text]
  • Laboratory Testing for Chronic Kidney Disease Diagnosis and Management
    Test Guide Laboratory Testing for Chronic Kidney Disease Diagnosis and Management Chronic kidney disease is defined as abnormalities of kidney prone to error due to inaccurate timing of blood sampling, structure or function, present for greater than 3 months, incomplete urine collection over 24-hours, or over collection with implications for health.1 Diagnostic criteria include of urine beyond 24-hours.2,3 a decreased glomerular filtration rate (GFR) or presence Given that direct measurement of GFR may be problematic, of 1 or more other markers of kidney damage.1 Markers of eGFR, using either creatinine- or cystatin C-based kidney damage include a histologic abnormality, structural measurements, is most commonly used to diagnose CKD in abnormality, history of kidney transplantation, abnormal urine clinical practice. sediment, tubular disorder-caused electrolyte abnormality, or an increased urinary albumin level (albuminuria). Creatinine-Based eGFR This Test Guide discusses the use of laboratory tests that GFR is typically estimated using the Chronic Kidney Disease 4 may aid in identifying chronic kidney disease and monitoring Epidemiology Collaboration (CKD-EPI) equation. The CKD-EPI and managing disease progression, comorbidities, and equation uses serum-creatinine measurements and the complications. The tests discussed include measurement patient’s age (≥18 years old), sex, and race (African American and estimation of GFR as well as markers of kidney damage. vs non−African American). Creatinine-based eGFR is A list of applicable tests is provided in the Appendix. The recommended by the Kidney Disease Improving Global information is provided for informational purposes only and Outcomes (KDIGO) 2012 international guideline for initial is not intended as medical advice.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug
    USOO9422609B2 (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug. 23, 2016 (54) METHODS, COMPOSITIONS AND DEVICES (58) Field of Classification Search FOR MANTAINING CHEMICAL BALANCE CPC ........................ C02F 1/725; C12Y 305/01005 OF CHLORINATED WATER USPC ........................... 210/754; 435/195, 227 231 See application file for complete search history. (75) Inventor: Vivian I. Teichberg, Savyon (IL) (56) References Cited (73) Assignees: Mia Levite, Savyon (IL); Yaar Teichberg, Savyon (IL); Nof Lyle U.S. PATENT DOCUMENTS Teichberg, Savyon (IL) 4,793,935 A * 12/1988 Stillman ............... CO2F 1.5236 21Of727 (*) Notice: Subject to any disclaimer, the term of this 6,673,582 B2 * 1/2004 McTavish ..................... 435/122 patent is extended or adjusted under 35 U.S.C. 154(b) by 1044 days. (Continued) (21) Appl. No.: 12/225.18O FOREIGN PATENT DOCUMENTS y x- - - 9 AU 41971 5, 1979 (22) PCT Filed: Mar. 14, 2007 GB 2025919 1, 1980 (86). PCT No.: PCT/L2007/OOO336 (Continued) S 371 (c)(1) OTHER PUBLICATIONS (2), (4) Date: Sep. 16, 2008 Examiner's Report Dated Oct. 6, 2010 From the Australian Govern (87) PCT Pub. No.: WO2007/107.981 ment, IP Australia Re. Application No. 2007228391. (Continued) PCT Pub. Date: Sep. 27, 2007 (65) Prior Publication Data Primary Examiner — Peter Keyworth (74) Attorney, Agent, or Firm — Browdy and Neimark, US 201OfO270228A1 Oct. 28, 2010 PLLC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 60/783,028, filed on Mar. A composition-of-matter for use in water treatment, com 17, 2006.
    [Show full text]
  • Renal Cortical Mitochondrial Transport of Calcium in Chronic Uremia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 34 (1988), pp. 32 7—332 Renal cortical mitochondrial transport of calcium in chronic uremia AvIvA CONFORTY, RUTH SHAINKIN-KESTENBAUM, VARDA SHOSHAN, RINA KOL, JAYSON RAPOPORT, and CIDI0 CHAIM0vITz Departments of Nephrology, Pathology and Biology, Ben-Gurion University of the Negev and Soroka Medical Center, Beer Sheva, Israel Renal cortical mitochondrial transport of calcium in chronic uremia. reduce histologic damage in experimental chronic renal failure Calcium overload of tubular cells may occur in uremia, and may be the in rats [4, 5]. underlying functional abnormality in the continued deterioration of The pathogenic role of cellular overload of calcium as a renal function in chronic renal failure. In order to study this question further, the effect of chronic uremia on the calcium transport properties mediator of cell injury in the kidney has long been recognized and respiratory rates was examined in mitochondria (Mi) isolated from [6—8]. Therefore, it is important to determine if calcium over- the cortex of the remnant kidneys of subtotally nephrectomized rats load of renal cells accompanies the phenomenon of uremic renal (SNX) and sham operated controls (C). Plasma calcium concentration calcification. If, indeed, calcium accumulates in renal cells, it was similar in both groups of rats, but a significant hyperphosphatemia was seen in SNX, 8.60.6 mg%, as compared to 7.20.2 mg% in C could be a contributory factor to the continuing loss of func- (P < 0.001). Mi calcium and phosphate concentrations (nmol/mgtioning nephrons in chronic renal failure.
    [Show full text]
  • The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2017 The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats Justin P. Canakis College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Animal Sciences Commons, Exercise Science Commons, Laboratory and Basic Science Research Commons, and the Other Nutrition Commons Recommended Citation Canakis, Justin P., "The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats" (2017). Undergraduate Honors Theses. Paper 1128. https://scholarworks.wm.edu/honorstheses/1128 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 1 2 Title Page……………………………………………………………………………………...…..1 Abstract…………………………………………………………………………………………....5 Acknowledgement……………………………………………………………………….………..6 Background.………………………………………………………………………..……………...7 DSEHA and its Effect on the VMS Industry………………...……………………………7 History of Adverse Side Effects from Pre-Workout Supplements ………….……………8 Ingredient Analysis ………………………………………..……………….……………..……....9 2.5g Beta-Alanine…………………………..……………………………………………..9 1g Creatine Nitrate……………………………...……………………………………..…12 500mg L-Leucine……………………………………………………………………...…16 500mg Agmatine Sulfate……………………….………………………………..………18
    [Show full text]
  • Profiling of Amino Acids in Urine Samples of Patients Suffering from Inflammatory Bowel Disease by Capillary Electrophoresis-Mass Spectrometry
    Article Profiling of Amino Acids in Urine Samples of Patients Suffering from Inflammatory Bowel Disease by Capillary Electrophoresis-Mass Spectrometry Juraj Piestansky 1,2, Dominika Olesova 3, Jaroslav Galba 1, Katarina Marakova 1,2, Vojtech Parrak 3, Peter Secnik 4, Peter Secnik jr. 4, Branislav Kovacech 3, Andrej Kovac 3, Zuzana Zelinkova 5, Peter Mikus 1,2,* 1 Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic; [email protected] (J.P.); [email protected] (J.G.); [email protected] (K.M.); [email protected] (P.M.) 2 Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic 3 Institute of Neuroimmunology, Slovak Academy of Science, Dubravska cesta 9, SK-845 10, Bratislava, Slovak Republic; [email protected] (D.O.); [email protected] (B.K.); [email protected] (A.K.); [email protected] (V.P.) 4 SK-Lab s.r.o., Partizanska 15, SK-984 01, Lucenec, Slovak Republic; [email protected] (P.S.); [email protected] (P.S. jr.) 5 Department of Gastroenterology, St Michael’s Hospital, Satinskeho 1, SK-811 08 Bratislava, Slovak Republic; [email protected] (Z.Z.) * Correspondence: [email protected]; Tel.: +421-2-50 117 243 (Supplementary Material) Table of content Table S1 Normalized concentrations of amino acids in urine samples from healthy volunteers measured by the CE-MS/MS method. Table S2 Normalized concentrations of amino acids in urine samples from IBD patients undergoing thiopurine treatment measured by the CE-MS/MS method.
    [Show full text]
  • The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2017 The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats Justin P. Canakis College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Animal Sciences Commons, Exercise Science Commons, Laboratory and Basic Science Research Commons, and the Other Nutrition Commons Recommended Citation Canakis, Justin P., "The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats" (2017). Undergraduate Honors Theses. Paper 1128. https://scholarworks.wm.edu/honorstheses/1128 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 1 2 Title Page……………………………………………………………………………………...…..1 Abstract…………………………………………………………………………………………....5 Acknowledgement……………………………………………………………………….………..6 Background.………………………………………………………………………..……………...7 DSEHA and its Effect on the VMS Industry………………...……………………………7 History of Adverse Side Effects from Pre-Workout Supplements ………….……………8 Ingredient Analysis ………………………………………..……………….……………..……....9 2.5g Beta-Alanine…………………………..……………………………………………..9
    [Show full text]
  • Effects of the Acute Arginine Aspartate Supplement on the Muscular Fatigue
    ARTIGO ORIGINAL Efeitos da suplementação aguda de aspartato de arginina na fadiga muscular em voluntários treinados Ricardo Pombo Sales1, Carlos Eduardo César Miné1, Andréia Dellú Franco1, Érika Lima Rodrigues1, Naira Correia Cusma Pelógia2, Renato de Souza e Silva3, José Carlos Cogo1, Rodrigo A.B. Lopes-Martins1, Rodrigo Lazo Osorio1 e Wellington Ribeiro1 RESUMO Palavras-chave: Lactato. Aminoácido. Exaustão. A atividade física influi em mecanismos específicos responsá- Keywords: Lactate. Aminoacid. Exhaustion. veis pela redução da produção de força e conseqüentemente à Palabras-clave: Lactato. Aminoácido. Agotamiento. fadiga. A preocupação em melhorar o desempenho físico tem sido propostos; observamos que estudos dão atenção para reduzir acú- mulos dos metabólitos que diminuem a fadiga durante o exercício cal performance, and we observed that some studies have been físico intenso, usando aminoácidos conhecidos por induzir mudan- focused on the reduction of the metabolites that decrease the ças metabólicas, entre eles a arginina. O presente estudo teve fatigue on intense physical exercising, using aminoacids known como objetivo estudar o efeito da suplementação aguda de aspar- for their properties to induce to metabolic changes, and among tato de arginina em indivíduos sadios treinados submetidos a um these, it is the arginine. The present study had the purpose to protocolo de exaustão em um cicloergômetro. Foram utilizados study the effects of the acute arginine aspartate supplement in 12 indivíduos treinados do sexo masculino, idade de 22,6 ± 3,5 trained healthy individuals submitted to an exhaustion protocol on anos. Realizaram três testes 90 minutos após a administração em ergonomic bicycle. Twelve 22.6 ± 3.5 years old trained individuals dose única do aspartato de arginina ou solução placebo, em um were used in the research.
    [Show full text]
  • Renal Effects of the Serine Protease Inhibitor Aprotinin in Healthy Conscious Mice
    www.nature.com/aps ARTICLE OPEN Renal effects of the serine protease inhibitor aprotinin in healthy conscious mice Stefan Wörner1, Bernhard N. Bohnert1,2,3, Matthias Wörn1, Mengyun Xiao1, Andrea Janessa1, Andreas L. Birkenfeld1,2,3, Kerstin Amann4, Christoph Daniel4 and Ferruh Artunc 1,2,3 Treatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild- type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular 1234567890();,: function and counterregulatory stimulation of ENaC-mediated sodium transport.
    [Show full text]
  • Interpretive Guide
    INTERPRETIVE GUIDE Contents INTRODUCTION .........................................................................1 NUTREVAL BIOMARKERS ...........................................................5 Metabolic Analysis Markers ....................................................5 Malabsorption and Dysbiosis Markers .....................................5 Cellular Energy & Mitochondrial Metabolites ..........................6 Neurotransmitter Metabolites ...............................................8 Vitamin Markers ....................................................................9 Toxin & Detoxification Markers ..............................................9 Amino Acids ..........................................................................10 Essential and Metabolic Fatty Acids .........................................13 Cardiovascular Risk ................................................................15 Oxidative Stress Markers ........................................................16 Elemental Markers ................................................................17 Toxic Elements .......................................................................18 INTERPRETATION-AT-A-GLANCE .................................................19 REFERENCES .............................................................................23 INTRODUCTION A shortage of any nutrient can lead to biochemical NutrEval profile evaluates several important biochemical disturbances that affect healthy cellular and tissue pathways to help determine nutrient
    [Show full text]
  • Creatinine Clearance 118 Ml/Min 75- 120
    LAB #: U000000-0000-0 CLIENT #: 12345 PATIENT: Sample Patient DOCTOR: ID: PATIENT -S-00716 Doctor's Data, Inc. SEX: Female 3755 Illinois Ave. AGE: 42 St. Charles, IL 60174 !!"#$%&'&'#(!)#$"$'*# RESULTS REFERENCE RESULT / UNIT INTERVAL -2SD -1SD MEAN +1SD +2SD Creatinine Clearance 118 mL/min 75- 120 Urine Creatinine 1300 mg/time 600- 1900 Serum Creatinine 0.77 mg/dL 0.6- 1.3 INFORMATION Creatinine Clearance is the most widely used test for estimating glomerular filtration rate (GFR). Creatinine, a breakdown product of muscle creatine, is present in relatively stable levels in serum. It is filtered by the glomeruli and not reabsorbed by the tubules. Changes in renal function are reflected in levels of serum urea and creatinine. It is not uncommon for elderly patients, and those with heavy metal toxicity to have mild to moderate impairment of renal function. Renal disease is asymptomatic in most cases until late in its clinical course. Safe chelation therapy is highly dependent upon the adequacy of renal function. Excessive mobilization of toxic metals to poorly functioning kidneys may result in renal complications. It is advised that creatinine clearance be monitored prior to and throughout chelation therapy. Interpretive guidelines: 100 mL/min or higher usually indicates normal renal function. 50 mL/min or below is indicative of impaired kidney function. 30 mL/min or below is indicative of symptomatic renal failure. Exercise may cause increased clearance. Inaccurate results may be caused by failure to accurately follow the specimen collection instructions. The calculation for corrected creatinine clearance in mL/min: = Urine volume per minute x urine creatinine ÷ Serum creatinine x 1.73/body surface area References: 1.
    [Show full text]
  • Rhodococcus Erythropolis and Gordonia Alkanivorans: Interesting Desulfurizing
    IN SILICO MODELING AND ANALYSIS FOR IMPROVING DESULFURIZING BACTERIAL STRAINS SHILPI AGGARWAL (M.Tech., Indian Institute of Technology, Roorkee, India) A THESIS SUBMITTED FOR THE DEGREE OF PHD OF ENGINEERING DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 Declaration DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Shilpi Aggarwal 10 April 2013 i Acknowledgments ACKNOWLEDGMENTS I take this chance to express my sincere gratitude and love for my parents (Mr Subash and Mrs Renu) for their undying faith, encouragement, and unconditional love throughout my life. This PhD thesis is dedicated to them as I could have never come so far without their support. It is with immense pleasure and respect I take this opportunity to express my thankfulness to all those who have helped me in shaping my research career and making my stay in Singapore a truly memorable one. With the term ‘PhD’, the first person who comes to my mind is my supervisor, Prof I. A. Karimi. I take this chance to thank him for giving me an opportunity to pursue my research career under his able guidance. As a mentor he has made me acquire skills for critical and logical thinking. His directions and guidance has helped me get deeper insights into the subject and made my learning a great experience.
    [Show full text]