<<

Polish Classification, 6th edition – principles, classification scheme and correlationsSOIL SCIENCE ANNUAL71 Vol. 70 No. 2/2019: 71–97 DOI: 10.2478/ssa-2019-0009

CEZARY KABA£A1*, PRZEMYS£AW CHARZYÑSKI2, JACEK CHODOROWSKI3, MAREK DREWNIK4, BART£OMIEJ GLINA5, ANDRZEJ GREINERT6, PIOTR HULISZ2, MICHA£ JANKOWSKI2, JERZY JONCZAK7, BEATA £ABAZ1, ANDRZEJ £ACHACZ8, MARIAN MARZEC9, £UKASZ MENDYK5, PRZEMYS£AW MUSIA£10, £UKASZ MUSIELOK4, BO¯ENA SMRECZAK11, PAWE£ SOWIÑSKI8, MARCIN ŒWITONIAK2, £UKASZ UZAROWICZ7, JAROS£AW WAROSZEWSKI1

1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection ul. Grunwaldzka 53, 50-375 Wroc³aw, Poland 2 Nicolai Copernicus University in Toruñ, Faculty of Earth Sciences, Department of Soil Science and Landscape Management ul. Lwowska 1, 87-100 Toruñ, Poland 3 Maria Curie-Sk³odowska University in Lublin, Department of Geology and Soil Science, ul. Kraœnicka 2cd, 20-718 Lublin, Poland 4 Jagiellonian University, Institute of Geography and Spatial Management, Department of and Soil Geography ul. Gronostajowa 7, 30-387 Kraków, Poland 5 Poznañ University of Life Sciences, Department of Soil Science and Land Protection ul. Szyd³owska 50, 60-656 Poznañ, Poland 6 University of Zielona Góra, Institute of Environmental Engineering ul. Szafrana 15, 65-516 Zielona Góra, Poland 7 Warsaw University of Life Sciences – SGGW, Department of Soil Environment Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland 8 University of Warmia and Mazury in Olsztyn, Department of Soil Science and Land Reclamation Plac £ódzki 3, 10-727 Olsztyn, Poland 9 Bureau for Forest Management and Geodesy ul. Piastowska 9, 49-300 Brzeg, Poland 10 Bureau for Forest Management and Geodesy ul. Leœników 21, Sêkocin Stary, 05-090 Raszyn, Poland 11 Institute of Soil Science and Plant Cultivation ul. Czartoryskich 8, 24-100 Pu³awy, Poland

Polish , 6th edition – principles, classification scheme and correlations

Abstract: The sixth edition of the Polish Soil Classification (SGP6) aims to maintain soil classification in Poland as a modern scientific system that reflects current scientific knowledge, understanding of soil functions and the practical requirements of society. SGP6 continues the tradition of previous editions elaborated upon by the Soil Science Society of Poland in consistent application of quantitatively characterized diagnostic horizons, properties and materials; however, clearly referring to soil genesis. The present need to involve and name the created or naturally developed under increasing human impact has led to moderni- zation of the soil definition. Thus, in SGP6, soil is defined as the surface part of the lithosphere or the accumulation of mineral and organic materials permanently connected to the lithosphere (through buildings or permanent constructions), coming from weathe- ring or accumulation processes, originated naturally or anthropogenically, subject to transformation under the influence of soil- forming factors, and able to supply living organisms with water and nutrients. SGP6 distinguishes three hierarchical categories: soil order (nine in total), soil type (basic classification unit; 30 in total) and soil subtype (183 units derived from 62 unique definitions; listed hierarchically, separately in each soil type), supplemented by three non-hierarchical categories: soil variety (additional pedogenic or lithogenic features), soil genus (lithology/) and soil species (soil texture). Non-hierarchi- cal units have universal definitions that allow their application in various orders/types, if all defined requirements are met. The paper explains the principles, classification scheme and rules of SGP6, including the key to soil orders and types, explaining the relationships between diagnostic horizons, materials and properties distinguished in SGP6 and in the recent edition of WRB system as well as discussing the correlation of classification units between SGP6, WRB and Soil Taxonomy. Keywords: soil classification, soil order, soil type, soil origin, World Reference Base, Soil Taxonomy

* prof. dr hab. Cezary Kaba³a, e-mail: [email protected] http://ssa.ptg.sggw.pl/issues/2019/702 phone No: +48 71 3201943 72 CEZARY KABA£A et al.

INTRODUCTION tion are made (Ibanez and Boixadera 2002). For many experts, the concept of soil was defined through the Transformation of soils, progress in soil science needs of agricultural and forest productivity (i.e. the and changing socio-economic conditions are major usefulness for growing plants). Another perspective driving forces for the changes in soil classification, if comes from an ecological approach, where soil can be the classification is to be understood as a modern a basis for every ecosystem, both naturally developed reflection of current knowledge about soils and their and human made, including those ecosystems consi- functions in the natural environment and for human dered unproductive or degraded (Jankowski and life (Arnold 2002). Therefore, every classification of Bednarek 2000, Krupski et al. 2017, Musielok et al. soils, including the Polish Soil Classification, must be 2018). Based on an ecological approach, it is very regularly verified and improved (Brevik et al. 2016). difficult, if at all possible, to determine the minimum At the same time, it should not be forgotten that the soil contour area (or soil volume), if only cubic classification system, and in particular the terminolo- centimeters or decimeters of regolith accumulated in gy used, reflects local scientific traditions, which sho- a rock crevice may create the basis for unique natural uld not be abandoned hastily (Krasilnikov et al. 2009). ecosystems (Miechówka and Drewnik 2018; Skiba and The sixth edition of the Polish Soil Classification Komornicki 1983). In this context, questions are (Systematyka gleb Polski 2019, later cited in an increasingly asked about the soils of ecosystems abbreviated form as SGP6), developed by the Com- artificially created by humans or created by natural mission for Soil Genesis, Classification and forces in an environment that has been substantially Cartography of the Soil Science Society of Poland, altered or created by man; for example, soils of road attempts to fulfill the abovementioned mission and or railway embankments, earth covers on bunkers and expectations of different groups of professional users. other constructions, on green roofs, in niches on SGP6 continues the tradition of previous editions of buildings and ruins filled with "anthropogenic rego- soil classification, in particular its fifth edition lith" etc. (Charzyñski et al. 2013a, 2013b, 2015; Uza- (Systematyka gleb Polski 2011), in the aspect of rowicz et al. 2017, 2018). In all these ecosystems, consistent application of precisely and quantitatively there are similar minerals that build natural soils, characterized diagnostic horizons, properties and similar microorganisms enabling the circulation of materials. Quantitative clarification and digitization matter and energy flow typical for soils, as well as of classification criteria do not mean giving up the enabling plant growth and soil fauna occurrence. traditions of genetically oriented soil science. All Therefore, these are soils that build self-functioning classification units in SGP6 were determined in ecosystems and which are relatively stable in time and accordance with their genesis; some were even space. However, not each accumulation of soil intentionally separated to emphasize the impact of material lasts and functions as described above; for various pathways of soil development (soil-forming example, an earthy material accidentally accumulated processes) on their present morphology, properties and on tractor wheels and on agricultural machinery or functions, even if it is not explicitly stated in the growing substrate on greenhouse benches (tables) classification criteria. or in pots on the windowsill. Therefore, in the Polish The aim of this paper is to explain the principles Soil Classification (SGP6), soil is defined as the and classification scheme of the Polish Soil Classifi- surface part of the lithosphere or the accumulation cation, 6th edition (Systematyka gleb Polski 2019). The of mineral and organic materials permanently connected correlations of diagnostic horizons, materials and to the lithosphere by buildings or permanent construc- properties as well as classification units at various tions, coming from weathering or accumulation levels with WRB (IUSS Working Group WRB 2015, processes, originated naturally or anthropogenically, later cited in an abbreviated form as WRB2015) and subject to transformation under the influence of Soil Taxonomy (Soil Survey Staff 2014, cited in an soil-forming factors, and able to supply the living abbreviated form as ST2014) is also given and organisms with water and nutrients. briefly explained to indicate the close relationships between modern Polish soil classification and major DIAGNOSTIC HORIZONS, international systems. MATERIALS AND PROPERTIES

THE OBJECT OF CLASSIFICATION The Polish Soil Classification, since its fourth edition (1989), is based on soil features, being the The soil definition often depends on the require- combined results of soil-forming factors and processes, ments for which this definition and related classifica- defined in terms of diagnostic horizons, diagnostic Polish Soil Classification, 6th edition – principles, classification scheme and correlations 73 materials and diagnostic properties, all of which to The criteria for diagnostic horizons/materials/pro- the highest possible extent should be observable and perties generally are not fully disjunctive; however, measurable in the field. General concepts and horizons that have similar characteristics differ in at detailed criteria for many diagnostic horizons/mate- least one disjunctive, restrictive or exclusive criterion, rials/properties are taken from WRB2015. However, which refers to the specific impacts of pedogenic factors original Polish concepts, not reflected in an interna- or processes, creating a unique theoretical basis for a tional soil classification, or local specific features of given diagnostic horizon. A separate key to diagnostic soil cover have led to adding a number of unique horizons has not been prepared, but the general key to diagnostic horizons/materials and changing detailed soil orders and soil types (table 4) clearly indicates criteria in the original definitions of many others. To the order of analysis/elimination of diagnostic avoid misunderstanding and incorrect classification horizons, i.e. suggests which criteria should be taken (correlation), the names of all diagnostic horizons, ma- into account first. In a case of humus-rich dark-colo- terials and properties have changed spelling, mainly ured horizon this means for example, that first by replacing the standard ending "-ic" with "ik". to be checked are the criteria for histik/murszik/folik All diagnostic horizons, materials and properties horizons (the order of organic soils is placed first defined in Polish Soil Classification, along with brief in the key), then for hortik/antrik (anthropogenic soils explanation of their relationships with WRB2015, are are placed on the second position in the key) and listed in tables 1–3. finally for arenimurszik/mollik/umbrik. Similarly, in

TABLE 1. The relationships between diagnostic horizons in Polish Soil Classification (SGP6) and WRB2015

6PGS 5102BRWotnoitaleR kibla rofekilairetirc;tnelaviuqeon lairetamcibla fer; :)noitazilozdopfotluser(noitelpedsumuhdnalA,eFotsre 5≥ fo%0 ssenkciht;sgnitaocsumuh)-eF(foeerfsniargdnas ≥1 mc kirtna rofekilairetirc;tnelaviuqeon seitreporpcirhtna ohpsohp; tea³abaK(stset3hcilheMdnadicacirticotreferstimilsur ssenkciht;)8102.la ≥ mc03 kizsruminera rofekilairetirc;tnelaviuqeon cirbmu/cillom ,ssenkciht( kaewdnaerutxetydnastub,)ruoloc,tnetnocnobraccinagro rettamcinagrofoselcitrapdnanoitcarflarenimfognidnib ≥( cinagro;sgnitaocsumuhonsahselcitrapdnasfo%01 m dnignidnirgliostasniargdnasmorfsetarapesylisaeretta )gnihguolp(gniximdnaeganiardybdevirednetfo;)etatsyr fo kizsrum/kitsih roh )6102a³abaKdnazaba£(liosbusydnasgniylrednuhtiwsnozi kigra erutxet(b2noiretircgnidulcxe,cigraekil deriuqer;)sgnitaocyalcelbisivtuohtiwnoitaitnereffid ≥ yalc%02 sgnitaoc/gnigdirb kiwule rofekilairetirc;tnelaviuqeon lairetamcibla telpedyalcotsrefer; eerfselcitrapdnas:)egavissel/noitaivulefotluser(noi eggelarutcurtsnosgnitaocon,segdirbdnasgnitaocyalcfo ;nozirohgniylrednuotderapmoctnetnocyalcrewol,setagr ssenkciht ≥ mc1 kilof ekil cilof kitsih ekil citsih tub, cinagro lairetam seriuqer ≥ nobraccinagrofo%21

kitroh ekil citroh ssenkcihtderiuqertub, ≥ Hpderiuqerdnamc03 w ≥ noitarutasesabfodaetsni(5.5 ≥ surohpsohp;)%05 l )8102,.latea³abaK(stset3hcilheMdnaneslOotreferstimi

kiclak ekil ciclac OCaCfoecnereffidevitaler(b2airetircgnidulcxe, 3 dna)reyalgniylrednuotnosirapmocnitnetnoc )ciclacortep(3 kibmak ekil cibmac cxeerasessalcerutxetydnastub, dewollasisgnitaoc/segdirbyalcfoecneserpregral;dedul )kigraotyratnemelpmoc,%02<(

killom ekil cillom ssenkcihtderiuqertub, ≥ Hpderiuqerdnamc03 w ≥ noitarutasesabfodaetsni(5.5 ≥ )%05 kizsrum rofekilairetirc;tnelaviuqeon citsih rofekilstnemeriuqerlanoitiddahtiwnoziroh cihsrum taepotsrefer;reifilauq d mrofsnartcinegodeprehtrufdnaeganiardoteudnoitadarge )tnempolevederutcurtsdnanoitacifimuhgnidulcni(noita kibur n anoitatipicerpecafrusbus)nM+(eFotsrefer;tnelaviuqeo airetirc;nigirotnereffidfosretawdnuorgfotcatnocehtt otralimis cibur ereuhtub,reifilauq amorhcdna)lairetamtnerapnahtredderdna(RY5.7nahtredd ≥ ssenkciht;5 ≥ mc51 kiredis oteugolananaderedisnoc;tnelaviuqeon cibmac oziroh rofekilairetirc(sessalcerutxetydnasnidepolevedtub,n cinurb lauq amorhcdna6–4eulav,RY01roRY5.7sruolocllesnuMa;)reifi ≥ lairetamtnerapfi(deriuqereratsiom3 ,sruolocdenoitnemevobasah kiredis uhreddersah tnerapnahteulavruolocrewolro/dnaamorhcrehgihro/dnae ssenkciht;)lairetam 51≥ mc kidops ekil cidops

kirbmu ekil cirbmu ssenkcihtderiuqertub, ≥ Hpdnamc03 w )%05

TABLE 2. The relationships between diagnostic properties in SGP6 and WRB 2015

6PGS hsilgnE 5102BRWotnoitaleR noitalsnart napigarf napigarf rofekil cigarf stnemeriuqerssenkcihtontub,noziroh anarbmemoeg enarbmemoeg ocenarbmemcitehtnys;tnelaviuqeon roelbaemrepmi,sreyalliosgnidividroecafrusliosgnirev sagdnaretawotelbaemrepyldrah eikobê³g gniximpeed (peed;tnelaviuqeon ≥ ixim)mc05 fostnemgarf,noitanozirohliosfonoitcurtsed(sliosfogn einazseimyw pliosnihtiwdetacolsnartsnoziroh ,)gnihguolp(noitavitlucpeedyrev)1(oteud,).cteelifor skrownoitcurtsnoc)2(ro detaveletonyllacipytecafruslios;yradnuobrewolprahs; ellemal eallemal rofekil cillemal lauq tnemeriuqerepytbusotdevomairetircssenkcihttub,reifi a³aksatil suounitnoc ekil kcorsuounitnoc noitcesssorcehtfo%5mrofseludon otsnoitaler(2dna cihtnilp deredisnoctonera) icœowicœa³w ciyelg ekil iyelg seitreporpc ewojelg-owotnurg seitreporp icœowicœa³w cingats ekil cingats seitreporp ewojelg-owodapo seitreporp 1– einelosaz ytinilas rofekil;tnelaviuqeon cilas CEderiuqertub,noziroh e ≥ mSd4 Hpdna, e RASdna,5.8< e < 31 %51

TABLE 3. The relationships between diagnostic materials in SGP6 and WRB 2015

6PGS hsilgnE 5102BRWotnoitaleR noitalsnart ³airetam cinagro ekil lairetamcinagro rofretawhtiwdetarutasslairetamnitub, ≥ tsomnisyadevitucesnoc03 ynzcinagro lairetam ,deniardro,sraey ≥ C%21 gro ersi syad03

Table 3 continued

awonalgêwaityg suoeraclac rofairetirclarenegehtsteem;tnelaviuqeon slairetamcinmil sniatnoc, ≥ nobraccinagrofo%21

ajttyg dna ≥ OCaCfo%02 3 eiliserkaew; retfasenalplatnozirohgnolagnikcarc;etatstsiomaniecn eganiard ywok¹³ñeipaw wodaem rofairetirclarenegehtsteem;tnelaviuqeon slairetamcinmil nobraccinagrofo%21

enotsemil dna ≥ OCaCfo%02 3 )lram( ynzcytenmil³um enirtsucal retamcinmilotralimis;tnelaviuqeon sekalwollahs,sdnopnidetnemides–)taepyratnemides(lai dum sniatnoc;.cte ≥ accinagrofo%21 niatnocyamtubreifilauqcirpasfoairetircehtsteem,nobr pmocednufosreyal/sesnel roflacipytecneiliserfosecnediveon,seudisertnalpdeso ajttyg ynzcytamlet³um dumcitamlet airetamcinmilotralimis;tnelaviuqeon tewdedoolfyllanosaesnidetnemides–)taepyratnemides(l ellav foairetircehtsteem,nobraccinagrofo%52–21sniatnoc;sy cirpas ehtgnidulcxereifilauq eulavruoloc,stnemgarfdoowdnastoor ≥ amorhcdna2 ≥ ylisaesniatnocyllacipyt,tsiom2 ctesesnel,sreyal(erutximdaelbazingocer lacipytecneiliserfosecnediveon,snoitcarflarenimfo). rof ajttyg )slairetamcinegohportna(enzcinegoportnay³airetam ytkafetra stcafetra ekil stcafetra neewtebedamsinoitcnitsidlanoitidda; stcafetralamron dna stcafetraevitcaer rfgalsdnahsa,emilnoitcurtsnoc( setsawgninim,sgniliat,gninrublaocdnagnitlemslatemmo ,ruflusevitandnasediflusgniniatnoc yrtsudnilacimehc,setsawyrtsimehcortep,muspygohpsohp ).ctesenob,setsaw ³airetamikobê³g paehkciht itropsnartotralimistub,tnelaviuqeon lateleksniatnocyam(lairetamnehtrae,esool;reifilauqc ynapysan lairetam fo%02sniatnoc;tnelaviuqeon %53>sahdna)retemaidnimm2>(stnemgarflateleksfo).lov( ywoteleikzsoburg lairetam stnemgarfkcorresraocrosenotsfo).lov( ³airetam cidiflus nosaestub,lairetamcidiflusrepyhekil cinagroniehtdna,deriuqersigniggolretawtnenamreprola ywokzcrais lairetam tnocrufluscidiflus rufluslatototnobraccinagrofooitarahtiwdecalpersitne ≥ 02 case of subsurface diagnostic B horizons, the order of ences the definition of the histik horizon (table 1) and analysis/elimination, related to the key to soil orders soil allocation to order and type in the key, in parti- and types, is as follows: spodik, rubik, siderik, kambik. cular the distinction between and Histic One of crucial differences between SGP6 and (table 4). The other differences in diagnostic WRB2015 is the required organic carbon content in horizons are as follows: the organic materials. In soils saturated with water – the mollik and umbrik (and also antrik and areni- for >30 consecutive days in most years (or drained) murszik) horizons must be ≥30 cm thick (com- ≥12% of organic carbon was established at a suffi- pared to ≥20 cm in WRB2015) that prevents an ciently high to enable ecosystem services typical for involvement of many normally ploughed soils into organic soils (Piaœcik and £achacz 1990). In soils chernozemic soils, saturated for less than 30 consecutive days per year, – the argik horizon requires higher content of the required organic carbon content is ≥20%, similar coatings/bridgings (≥20% instead of ≥5% in to that for WRB2015 (table 3). This difference influ- WRB2015) that also influences the wider reco- 76 CEZARY KABA£A et al.

gnition of kambik horizon and enables a transitio- – thick heap material (g³êboki materia³ nasypany) nal form of kambik with more prominent clay illuvia- is a soil layer ≥50 cm thick, poor in artefacts, tion (Bwt horizon), intentionally displaced/transported to create the – the albik and eluwik horizons are distinguished convex relief form (e.g. dam, road/railway embank- instead of albic materials (WRB2015) to reflect ment etc.), or to fulfil the concave form, or to level pedogenic depletion of Fe/Al/humus and clay the ground surface (Charzyñski et al. 2013b), fraction in these horizons, respectively, – artefacts have been distinguished into "normal" – the murszik horizon is (traditionally in Poland) (for example concrete and stones) and "reactive" separately distinguished from histik to reflect (e.g. ash, slag, tailings), to reflect their different pedogenic transformation after , including reactivity and toxicity in soil environments the development of pedogenic structure in organic (Charzyñski et al. 2013a, Uzarowicz et al. 2017), horizons (Marcinek and Spychalski 1998; Piaœcik – coarse skeletic material reflects the specific and Gotkiewicz 2004; Piaœcik and £achacz 1990; composition of many mountain soils, influenced by Rz¹sa 1963), weathering, denudation and slope processes (Drew- – the arenimurszik horizon is a kind of mineral, - nik 2008, Kacprzak et al. 2006, 2013; Skiba and textured mollik or umbrik horizons, separately Komornicki 1983), distinguished to reflect very weak binding of – colluvial material (materia³ deluwialny) has organic matter particles to mineral (sand) grains in a definition related to the results of surface wash topsoil layers developed mostly by advanced (sheet erosion) accelerated mainly by humans (due degradation of murszik horizons (£abaz and Kabala to removal of native vegetation and ploughing) and 2016), not to the landslides, creep and other slope mass – rubik horizon is a kind of subsurface horizon of movement/wasting (Œwitoniak 2014, 2015). Fe (and Mn) accumulation at the contact of vario- us kinds of ground waters, featured by red colours CLASSIFICATION SCHEME (Jankowski 2013), – siderik is considered the sandy equivalent for the The SGP6 is a scientific system of soil units' kambik horizon; it may be easily correlated with allocation, hierarchical at the higher level of classifi- a Brunic qualifier in WRB2015 (Bednarek 1991). cation, and non-hierarchical (optional) at a lower Many diagnostic properties distinguished in SGP6 level. There are three hierarchical categories in SGP6: (table 2) have the same or very similar definitions to soil order, soil type and soil subtype, supplemented by their equivalents in WRB2015, in particular stagnic three non-hierarchical categories: soil variety, soil and gleyic properties. A number of properties in SGP6 genus and soil species. Hierarchical units have a strict have in WRB2015 close equivalents in diagnostic affiliation (allocation) to higher-order units and indi- materials (e.g. lita ska³a/continuous rock, lita vidual (unique) definitions, i.e. sets of requirements/ warstwa technogeniczna/technic hard material), criteria. Non-hierarchical units, on the other hand, are or in diagnostic horizons (e.g. ruda darniowa/ferric in the majority not assigned to particular higher- (Czerwiñski and Kaczorek 1996), fragipan/fragic order units, but due to their universal definitions, they (Szymañski et al. 2011), zasolenie/salic, zakwasze- can be added to any order, type or subtype, if all the nie siarczanowe/thionic (Hulisz 2007, Hulisz et al. criteria listed in their definitions are met. Soil subtypes 2017)), or in qualifiers (lamellic, ortsteinic, placic). have an intermediate position, because on one hand SGP6 provides unique definitions for geomembrane they are listed in a hierarchical sequence, exclusive and deep mixing (in situ), both applied to classify the for each soil type, but many subtypes have universal techno-genic soils (table 2). Also, numerous specific definitions, identical through the classification (that diagnostic materials, besides the materials similar make them similar to the principal qualifiers in WRB to those present in WRB2015 (table 4), are distingu- 2015, which also are hierarchically listed within each ished in SGP6: Reference Soil Group, but have universal definitions/ – the terms fibrik, hemik and saprik are applied to criteria). only as for primary organic materials, Soil type is the basic classification unit of SGP6. – gyttja (£achacz et al. 2009), lacustrine and It is distinguished based on a specific sequence of telmatic organic (Kalisz and £achacz 2008; genetic horizons, developed from a specific parent Mendyk et al. 2015, Okruszko 1969, Roj-Rojew- material and under specific environmental conditions. ski and Walasek 2013), and meadow limestone/marl Thus, the soil type is featured not only by the presence (Jarnuszewski and Meller 2018) are distinguished of certain genetic or diagnostic horizons, but also the among limnic matterials, presence of associated properties or materials of Polish Soil Classification, 6th edition – principles, classification scheme and correlations 77 primary importance for the soil origin and the uniqu- horizon or various diagnostic properties and materials eness of its physicochemical and biological are simultaneously present in the soil profile. The properties. For distinguishing soil types, the traditions Polish Soil Classification (SGP6) distinguishes 30 soil of Polish pedology have high importance. types grouped in nine orders (fig., tables 4–5). The The highest classification category is the soil sequence of soil orders is retained after earlier order. It is distinguished based on the presence (or versions of Polish Soil Classfications, i.e. starts with absence) of diagnostic horizons that reflect the weakly developed soils, followed by better developed action of particular soil-forming processes that mineral soils with diagnostic horizons, then hydro- transform the original parent material under specific morphic soils, organic soils, and antrhropogenic soils environmental conditions, with a smaller or larger as the last order (table 6). This sequence reflects the human contribution; taking into account the time advancement of (mineral) soil development and is perspective, i.e. the duration of pedogenic processes regarded the formal construction of SGP6.However, from the exposure, deposition or redeposition of the the arrangement of soil orders in the key (table 4) is parent material. Soil orders are sets of soil types different, that was technically necessary to highlight the (basic classification units) and are distinguished priotrities of diagnostic features and to simplify the mainly for systematic ordering of soil units and classification process. higher clarity of classification, as well as for a The soil subtype is distinguished to emphasize the comprehensive review of the impact of main soil- diversity of morphological or physicochemical forming factors and processes on the soil cover features within the soil type, having high importance structure in Poland. Technically, the soil orders for the interpretation of the soil origin and its expected support rapid allocation of soils under classification future evolution, as well as to stress the specific envi- to appropriate classification units. The limited ronmental soil functions. Among the subtypes, the number of nine orders makes it easy to remember the following categories are distinguished: structure of classification and to understand the 1. "typical" subtypes – represent the most characte- fundamental differences between the major classi- ristic for the type expression of soil features, fication units. First of all, however, the soil orders, as including the sequence of genetic horizons or com- a collective and the highest classification categories, binations of diagnostic horizons and properties; in indicate the priorities of classification system, the list of subtypes they are logically always particularly useful where more than one diagnostic placed as last;

FIGURE. Architecture of the SGP6 78 CEZARY KABA£A et al.

TABLE 4. Key to soil orders and soil types

SREDROLIOS SEPYTLIOS gnivahslioS lairetamcinagro , gnivahslioscinagrO kizsrum noziroh 3≥ kcihtmc0 :rehtie ewozsrumybelG gnitrats.1 ≥ dnaecafrusliosehtmorfmc03 ,hcihwslioscinagrorehtO kizsrumwoleb evah,)tneserpfi(kcihtmc03etutitsnoctaht lairetamcinagro nihtiw ≥ llafo%05>romc001 fossenkcihtdenibmoc ≥ ro;mc03 airetamcinagro mc001fohtpedehthcaertonseodtifil agnivahdnaecafrusliosehttagnitrats.2 ewofrotybelG fossenkciht 1≥ gniylrevoyltcerid,mc0 kcorsuonitnoc ehtstnemgarfesraocro gnivahslioscinagrorehtO lairetamcinmil lairetamcinagrohtiwdelliferahciwfosecitsretni ewonmilybelG fohtpedehtot ≥ ecafrusliosehtmorfmc03 slioscinagrorehtO ENZCINAGROYBELG ewok³óicœybelG :sliosrehtO :htobteemtahtslioS nagnivah.1 kirtna ro kitroh noziroh ≥ mc05 naevah)a( kirtna ro kitroh noziroh ≤ rofairetircehtlliflufro,kcihtmc05 peed ro;kciht gnixim lucirgaybdesuac %02

HpdnanozirohkillomagnivahsliosrehtO w ≥ mc001fohtpedaotgniliaverp5.5 f :gniwollofehtfohtobroenognivahdna,ecafrusliosehtmor )a( seitreporpciyelg ro, )b( seitreporpcingats gnivahdnanoitces-ssorcreyalliosehtfo%08>gnirevoc fossenkciht ≥ ob,mc52 ehtwolebyltceridro(ecafrusliosehtmorfmc08gnitratsht )kcihtmc08>fi,nozirohsumuh eimeizenrazC Polish Soil Classification, 6th edition – principles, classification scheme and correlations 79

Table 4 continued SREDROLIOS SEPYTLIOS )a(gnivahsliosrehtO killom gniniatnocreyalehtronozirohkiclak)b(dna,noziroh gnitratshtobsetanobrac)cinegodep(yradnoces ≥ ecafrusliosehtmorfmc051 ymeizonrazC agnivahsliosrehtO killom ro kirbmu noziroh erazsybelG nagnivahsliosrehtO kigra gnitratsnoziroh ≤ 001 redroliosehtrofairetircehtteemtahtsliosllA ecafrusliosehtmorf ewo³pybelG ENMEIZOWO£PYBELG agnivahsliosrehtO kidops gnitratsnoziroh redroliosehtrofairetircehtteemtahtsliosllA ≤ gnitratsro,ecafrusliosehtmorfmc001 7≤ 5 wocileibybelG e fiecafrusliosehtmorfmc citeleks-esraoc lairetam liosehtmorfstratsdnatneserpsi ecafrus ENMEIZOCILEIBYBELG :rehtie,gnivahsliosrehtO htiwslioS seitreporpciyelg gnitrats ≥ ecafrusliosehtmorfmc03 .1 seitreporpciyelg gnitrats ≤ ehtmorfmc03 wojelg-owotnurgybelG e ro;ecafruslios gnirevocseitreporpcingats.2 ≥ liosehtfo%05 stratstahtreyal ≤ dnaecafrusliosehtmorfmc52 sliosrehtO htiwreyalybnialrednuyltceridsi ciyelg wojelg-owodapoybelG e seitreporp ro, .3 seitreporpcingats gnirevoc ≥ liosehtfo%05 morfgnitrats)nozirohbusyreveni(reyal ≤ mc52 ssenkcihtgnivahdna ≥ romc05 ≤ fi,mc52 ybnialrednuyltcerid kcorsuounitnoc ro reyallios)elbaemrepyldrah(elbaemrepmi ENMEIZOJELGYBELG agnivahsliosrehtO kiredis,kibmak ro kibur agnivahslioS kibur noziroh noziroh steemtahtnozirohBagnivahsliosro, eworhcoybelG ,erutxetfotpecxe,nozirohkibmakrofairetirceht nozirohehtfotrapaniydnasebyamhcihw ENMEIZONTANURBYBELG loHehtnodetacolsliosrehtO serohsekal/aesnialpro,sredlop,secarretlaivullaeneco gnivah lairetamcivulf gnitrats ≤ ecafrusliosehtmorfmc051 entanurbydaM :hcihw,sliosrehtO evah)a( gnitratskcormuspygrosuoeraclacderehtaew/suounitnoca ≤ ehtmorfmc04 ro,ecafruslios otnwodro(mc06otnwodmc03morfreyalehtni)b( kcorsuounitnoc fi, llahs dnashtraeenifehtni)muspygro(setanobracsniatnoc)rewo ≥ .hgiew(%01 aclacfo)egareva .e.i(noitcarfnoteleksehtnistnemgarfkcormuspyg/suoer ≥ nimm2 )retemaid entanurbynizdêR agnivahsliosrehtO kibmak noziroh ntanurbybelG e sliosrehtO ewazdrybelG O sliosreht :gnivahslioS ENAWOT£ATZSKUOBA£SYBELG a( ehtotsreyallarenimdnacinagrollafossenkcihtdenibmoc) kcorsuounitnoc ≤ 01 ro,mc nkcihtdenibmoc)b( ,lairetamesoolani)tneserpfi(snozirohCB+B+E+A+Ofosse gnidulcni lairetamciteleks-esraoc , ≤ mc01 enlajciniybelG loHehtnodetacolsliosrehtO serohsekal/aesnialpro,sredlop,secarretlaivullaeneco gnivah lairetamcivulf gnitrats ≤ ecafrusliosehtmorfmc05 ewicœa³wydaM 80 CEZARY KABA£A et al.

Table 4 continued

:hcihw,liosrehtO evah)a( gnitratskcormuspygrosuoeraclacderehtaew/suounitnoca ≥ liosehtmorfmc03 ro,ecafrus otnwodro(mc06otnwodmc03morfreyalehtni)b( kcorsuounitnoc sniatnoc)rewollahsfi, dnashtraeenifehtni)muspygro(setanobrac ≥ kcormuspyg/suoeraclacfo)egareva.hgiew(%01 .e.i(noitcarfnoteleksehtnistnemgarf ≥ ro,)retemaidnimm2 reyalaevah)c( ≥ gnitrats,kcihtmc03 ≥ deniardfo,ecafrusliosehtmorfmc03 lairetamcinmil OCaC%04>gniniatnoc 3 ewicœa³wynizdêR agnivahsliosrehtO kcorsuounitnoc gnitrats ≥ ecafrusliosehtmorfmc05 yreknaR lairetamlaivullocforeyalecafrusehtgnivahsliosrehtO ≥ ro,kcihtmc05 ≥ laivullocfikcihtmc03 lairetamcinagroehtseilrevolairetam ewicœa³wenlaiwuledybelG :gnivahsliosrehtO htpedaot)sessalcdnasymaolrodnas(erutxetydnasa)a( ≥ dnaecafrusliosehtmorfmc001 dna,)latotni(kcihtmc01

2. "concurrent" subtypes – substitute the "typical" A new, non-hierarchical classification category is subtype in soil types, if at least two subtypes have the soil variety. Its concept is derived from the Classi- the features equally typical for the soil type (e.g. fication of Forest Soils of Poland (Klasyfikacja gleb fibric, hemic and sapric subtypes in soils, or leœnych Polski 2000) and is close to the concept of ordinary, leached and acid subtypes in brown soils); supplementary qualifiers of WRB 2015. Soil variety they are listed at the beginning of the list of subtypes; is optionally added to indicate (a) lithogenic or pedo- 3. "principal" subtypes – refer to additional genic (secondary) features accompanying the main features of primary importance for the interpre- soil-forming process, (b) particularly strong, or tation of soil genesis, land use or environmental adversely, relatively poor expression of features functions of the soil; their names are used instead potentially important for soil classification, (c) restric- of (replace) the name of soil type, also in combina- tions for soil use, including anthropogenic transfor- tions with other subtypes; however, the priority mation, salinity and soil pollution, (d) soil trophic subtype does not combine with any other priority potential for forest habitats (Bro¿ek et al. 2000), etc. subtype; unique names of the priority subtypes aims Soil varieties have the same (universal) definitions thro- to preserve the traditional soil nomenclature, i.e. ughout the classification that allows an identification soil names that have become established in Polish of a given soil feature regardless of the soil order or pedology, and to simplify (shorten) the soil names; type. Moreover, the third and subsequent subtypes, if the primary subtypes are marked with the symbol * their diagnostic features were identified in the soil under (asterisk) in the hierarchical lists; classification, may be listed as soil variety (taking into 4. "transitional" subtypes – refer to the presence of account that only two subtypes may be applied in this the horizons and properties that are diagnostic for rank). Also, the subtype not included in the hierarchi- other soil types, but in a given soil type are consi- cal list of subtypes within the particular soil type of dered less important (e.g. the kambik horizon in a SGP6 may be indicated as an additional soil chernozemic soil) or are weakly developed (e.g. variety, if its diagnostic features were identified in a have Fe-illuvial horizon that does not meet the soil profile under consideration (table 6). criteria for spodik), or occur too deep (e.g. strong gleyic The non-hierarchical category of soil genus properties at a depth of 50–70 cm); determines the kind of parent material from which the 5. "supplementary" subtypes – indicate a special soil was developed, taking into account its variability expression of pedogenic features or the presence of (lithological discontinuity) within the profile. And the specific soil properties or materials. last, non-hierarchical category of soil species deter- Polish Soil Classification, 6th edition – principles, classification scheme and correlations 81 mines the soil texture (particle-size distribution) (thicker than 50 cm, or 30 cm if settled directly on throughout the soil profile, also taking into account peat) eroded from the above-located arable hill-slopes possible variability (that may be both of pedogenic or (Colluvic or Colluvic Arenosols). Arenosols lithogenic origin). The names of texture classes in SGP6 in SGP6 are weakly developed sandy soils correlated are used after the Soil Texture Classification of Soil with Arenosols in WRB2015, but the soil type in SGP6 Science Society of Poland (2009). is much "narrower" than its equivalent in WRB and does not include the initially developed and colluvial BRIEF DESCRIPTION AND CORRELATION arenosols. Also, the Brunic Arenosols (WRB 2015), OF MAJOR SOIL UNITS termed rusty soils in Poland, are moved from areno- sols to rusty soils due to a thick subsurface Bv The correlation table (table 5) includes the closest horizon, considered a diagnostic horizon (siderik) English translations for the Polish names of soil in SGP6. And the last soil type, regosols, may be easily orders, types and subtypes (SGP6), as well as their correlated with Regosols in WRB2015. most common and typical equivalents in WRB2015 The 2nd order, brown earths (gleby brunatnoziem- and ST2014 classifications. The correlation table was ne), brings together soils that have kambik, rubik or developed taking into account previous statements of siderik diagnostic horizons (comments regarding Kaba³a et al. (2016) and Œwitoniak et al. (2016). these horizons are summarized in table 1). Therefore, The first order, weakly developed soils (gleby particular types of brown earths of SGP6 can be s³abo ukszta³towane), brings together soils (a) at the correlated with different RSGs of WRB2015. Brown early (initial) stage of development, where the thick- soils (a type) typically refer to Eutric and Dystric ness of soil profile (regolith) to the continuous rock is ; brown rendzinas are correlated with ≥10 cm or the combined thickness of all genetic Calcaric/Dolomitic Cambisols (Kowalska et al. 2017, horizons (O+A+E+B, if present) in an unconsolidated Zagórski 2003) and brown alluvial soils are correlated material is ≥10 cm, and (b) soils at early stage of with Fluvic Cambisols (Ligêza 2016). The main development, thicker than initial (raw) soils, but reason to separate the brown rendzinas and brown without any diagnostic horizon except for folik. alluvial soils from "ordinary" brown soils is the WRB2015 allocates such soils among different RSGs different parent material, different landscape position characterized by little or no profile differentiation. The and different ecosystem/habitat functions of these first type of raw mineral soils (table 5) consists of soils. The other two soil types, ochrous and rusty six subtypes of raw siliceous rocky and raw rendzina soils are primarily sandy soils (developed from rocky soils correlated with (Calcaric) Lithic Lepto- glaciofluvial, eolian and older alluvial ), thus sols, raw siliceous debris and raw rendzina debris belonging to Arenosols in WRB2015. However, they soils correlated with (Calcaric) Hyperskeletic Lepto- have well-developed rubik or siderik subsurface sols (Lasota et al. 2018), raw alluvial soils (Fluvi- diagnostic horizons, not recognized in WRB 2015, but sols) and raw unconsolidated soils (Protic Regosols). easily correlated with Rubic/Chromic or Brunic The other five soil types include weakly developed qualifiers, respectively (Jankowski 2013). soils, but thicker than raw (initial) soils. Rankers, The 3rd order, podzolic soils (gleby bielicoziemne), siliceous soils with continuous rock at ≥50 cm belong covers the soils with a spodik horizon, merged in one to ; however, they may have a sequence of soil type – gleby bielicowe, closely related to clearly developed (but not diagnostic) horizons. of WRB2015. The soil type includes several subtypes Ordinary rendzinas are in the majority shallow and related in the majority to redoximorphic features and skeletal soils rich in primary (lithogenic) carbonates various organic horizons developed at the soil surface (Calcaric Leptosols), but may have a folik horizon (Chodorowski 2009, Kaba³a et al. 2012, Waroszew- (Miechówka and Drewnik 2018). Ordinary rendzinas ski et al. 2013). In Polish tradition, podzolic soils do not have diagnostic horizons in terms of SGP6; having and lacking topsoil A horizon are distinguished whereas they may have mollic in line with WRB2015 into separate units, a fact which also influences the requirements (if A is ≥20 cm thick). In this case, the number of subtypes and their combinations in SGP6. humic ordinary rendzinas are correlated with Moreover, only the podzols with clearly preserved Calcaric Leptic (Kaba³a 2018, Kowalska eluvial horizon (albik) are considered the "typical", et al. 2019). The type of ordinary alluvial soils whereas podzolic soils laking albik are classified as involves young soils on Holocene terraces, developed latent podzolic soils ("krypto-podzols"). The place- from fluvic material, lacking diagnostic horizons ment of podzolic soils after, not before, the chernozemic (). Ordinary colluvial soils are featured by soils in the key to soil orders excludes the soils with evidence of successive accumulation of soil material mollik/umbrik horizons from podzolic soils in SGP6. 82 CEZARY KABA£A et al. stnehtrodUcipyT;stnemmaspidUcipyT stpedurtuEcipyT,stnehtrodUcipyT stpedurtsyDcihtiLcimuH stneuqavulFcilloM/cipyT sllodnerlpaHcitnE/cipyT stpedurtuEcihtiLcimuH stnevulfidUciuqA/cipyT stnehtrodUcihtiL/cipyT stnevulfidUciuqayxO tnelaviuqe4102TS stpedurtsyDcimuH 2 stnevulfidUcilloM stnevulfidUciuqA stnevulfidUcipyT stnehtrodUcipyT stnehtrodUcihtiL stnehtrodUcipyT stnehtrodUcipyT stnehtrodUcihtiL stnehtrodUcihtiL stnehtrodUcihtiL stnehtrodUcihtiL slositnE:4102TS–slosivulF,slosonerA,slosogeR,slosot )cirhcO(slosotpeLcitelekScirtuE/cirtsyD )cimuH(slosotpeLcitelekScirtuE/cirtsyD ;)cimuH(slosotpeLcitimoloD/ciraclaC )cidopsotorP/ciblA(slosotpeLcirtsyD )cirhcO(slosotpeLcitimoloD/ciraclaC slosogeRciraclaC;slosiclaCcitelekS slosogeRcitorP;slosonerAcitorP slosotpeLciteleksrepyHciraclaC slosotpeLciteleksrepyHciraclaC ;)cimuH(slosivulFcirtuE/cirtsyD )cirhcO(slosivulFcirtuE/cirtsyD smezoeahPcitpeLciraclaC slosotpeLcihtiliduN/cihtiL slosotpeLcihtiLciraclaC slosotpeLciloFciraclaC slosotpeLciteleksrepyH slosotpeLcirtuE/cirtsyD )citorP(slosivulFciyelG tnelaviuqe;5102BRW slosotpeLciloFcirtsyD smezoeahPcivulF slosivulFciraclaC slosivulFcingatS slosivulFciyelG sanizdneryranidrosumuh-war laivullayranidrociyelgongats slioslaivullayranidrolacipyt peL:5102BRW slioslaivullayranidrocimuh slioslaivullayrandirociyelg sanizdneryranidrolacipyt sanizdneryranidrocinmil sanizdneryranidrocimuh sanizdneryranidrosirbed sliossirbedsuoeciliswar sliosdetadilosnocnuwar sliosykcorsuoeciliswar sanizdnerarapyranidro sanizdnersirbedwar sanizdnerykcorwar sreknarsumuh-war slioslaivullawar sreknarcilozdop noitalsnarthsilgnE sreknarlacipyt sreknarnworb sreknarcimuh –sliosdepolevedylkaew:.gnE )slosohtil( slios ewozsomurenlajciniynizdêr ewozsomurenlajciniybelg etsilaksenlajciniynizdêr *ewicœa³wynizdêrarap enŸulenlajciniybelg emanhsiloPlanigirO ewojelg-owodapo ewojelg-owotnurg enlajciniydam enawocileibz epytbuslioS e³aintanurbz enzcinhcórp enzcinhcórp enzcinhcórp ewozsomur ewoniwtub ewoniwtub enroizejop –enawot³atzskuoba³sybelG–1redrO 1 *elosotil ewopyt ewopyt ewopyt nistnelaviuqE ;5102BRW stpedurtuE ;slosonerA ;slosotpeL ;slosotpeL ,slosotpeL ,slosogeR ,stnehtrO ,stnehtrO ,stnehtrO ;slosivulF stnevulF stnevulF ciraclaC 4102TS stpedU enlajciniybelG larenimwaR emanlanigirO slioslaivulla noitalsnart sanizdner ewicœa³w ewicœa³w 5. English translations and the closest typical international equivalents for soil orders, types subtypes distinguished in Polish Soil Classification (2019) yranidrO yranidrO sreknaR epytlioS yreknaR ynizdêR hsilgnE ydaM slios Asterisk * indicates a principal soil subtype (its name replaces the type name, when used; cannot be combined with any other subtype). Some raw mineral soils, rankers and rendzinas located in the highest parts of Carpatian Sudeten Mountains may have cryic soil temperature regime, thus belong to repective subgroups o f

2 Cryorthents, Dystrocryepts and Haplocryepts. 1 TABLE Polish Soil Classification, 6th edition – principles, classification scheme and correlations 83 stsimeholpaH/stsirpasolpaHcirreT stpedurtsyD/stpedurtuEciuqayxO stpedurtsyD/stpedurtuEcimuH stpedurtsyD/stpedurtuEciuqA stpedurtsyD/stpedurtuEcipyT stnemmaspiztrauQcidopS stnemmaspiztrauQciuqA ciuqA;stnehtrodUciuqA stnemmaspiztrauQcipyT stnemmaspiztrauQcipyT stnemmaspiztrauQcipyT stnemmaspiztrauQcipyT cipyT;stnehtrodUcipyT cipyT;stnehtrodUcipyT stnehtrodUciuqayxO stpedurtsyDcidopS ;stnemmaspiztrauQ stpedurtuEcirtsyD stpedurtsyDcipyT stnemmaspiztrauQ stnemmaspiztrauQ stnehtrodUcipyT stnehtrodUcipyT stnehtrodUcipyT stnehtrodUcipyT stnehtrodUcipyT stpedurtuEcipyT )cihceN,cimuH(slosonerAcirtuE/cirtsyD slosonerA;)cirhcO(slosogeRcivulloC )cidopsotorP,ciblA(slosogeRcirtsyD slosonerA;)cimuH(slosogeRcivulloC slosonerAcirtuE/cirtsyDro(slosogeR smezoeahPcilpaH;)cimuH,civulloC( civulloC;)civulloC(slosotsiHcivoN ,civulloC(slosonerAcirtuE/tcartsiD ;)cimuH(slosibmaCcirtsyD/cirtuE )cirhcO(slosonerAcirtuE/cirtsyD )cimuH(slosonerAcirtuE/cirtsyD )cidopsotorP(slosibmaCcirtsyD )cirhcO(slosogeRcirtuE/cirtsyD )cimuH(slosogeRcirtuE/cirtsyD )cidopsotorP(slosonerAciblA slosibmaCciraclacodnE/cirtuE )civulloC(slosonerAciyelG slosibmaCcirtsydipE/cirtuE ;slosogeRciyelGcivulloC slosogeRcingatScivulloC slosotsiHrevo)civulloC( slosonerAcirtuE/cirtsyD slosogeRcirtuE/cirtsyD slositpecnI:4102TS–slosonerA,slosibmaC:5102BRW– smezoeahPcibmaC slosibmaCcitelekS slosibmaCcingatS slosibmaCcirtsyD slosogeRcitelekS slosibmaCciyelG slosonerAciyelG )civulloC( )cirhcO taepnoslioslaivullocyranidro laivullocyranidrociyelgongats lioslaivullocyranidrolacipyt slioslaivullocyranidrocimuh slioslaivullocyranidrociyelg sliosnworbciyelgongats slosoneracihsrumimes sliosnworbcilozdop sliosnworbyranidro sliosnworbdehcael slosoneracilozdop sliosnworbcimuh sliosnworbsirbed sliosnworbciyelg slosogercilozdop slosoneralacipyt sliosnworbdica slosoneracimuh slosoneraciyelg slosogerlacipyt slosoneraytsur slosogernworb slosogercimuh slosogersirbed slios shtraenworb:.gnE ewojelg-owodapo ewojelg-owodapo ewojelg-owotnurg ewojelg-owotnurg ewojelg-owotnurg enawocileibz enawocileibz enawocileibz enawogu³yw e³aintanurbz enzcinhcórp enzcinhcórp enzcinhcórp enzcinhcórp etawozsrum ewozsomur ewozsomur ewofrotan ewicœa³w enœawk ewopyt ewopyt ewopyt ewazdr –enmeizontanurbybelG–2redrO ;slosibmaC ,slosonerA ;slosonerA ;)civulloC( ;slosogeR slosogeR stnehtrO stnehtrO stnehtrO civulloC -iztrauQ -iztrauQ ms stne mmasp p stmemmas entanurbybelG sliosnworB elosonerA slosonerA enlaiwuled laivulloC ewicœa³w elosogeR slosogeR yranidrO ybelG slios able 5 continued T 84 CEZARY KABA£A et al. sdouqaipE/sdouqaodnEcirbmU sdouqaipE/sdouqaodnEcitsiH sdouqaipE/sdouqaodnEcitsiH stpedurtuEcillodneR/cipyT stpedurtuEcitneqavulF sdohtrolpaHciuqayxO sdohtrolpaHciuqayxO stnemmaspidUcidopS stnemmaspidUciuqA stnemmaspidUciuqA stnemmaspidUcipyT stpedurtuEciuqayxO stnemmaspidUcipyT stnemmaspidUcipyT stnemmaspidUcipyT stnemmaspidUcipyT stnemmaspidUcipyT stpedurtuEcillodneR stpedurtuEcillodneR stpedurtuEcillodneR stpedurtuEcitnevulF stpedurtuEcitnevulF sdohtrolpaHciuqA sdohtrolpaHciuqA sdohtrolpaHcipyT sdohtrolpaHcipyT slosogeRcinurB;slosonerAcinurBcirtsyD slosogeRcinurB;slosonerAcinurBcivulF civulFcibmaC;)cimuH(slosibmaCcivulF ciraclaC;)cimuH(slosibmaCciraclaC slosibmaCcitpeLciraclaC/citimoloD )cirhcO(slosonerAcimorhC/cibuR )cimuH(slosonerAcimorhC/cibuR slosonerAciyelGcimorhC/cibuR )cihsruM(slozdoPcitsiHciyelG )cirhcO(slozdoPciblAcingatS slosonerAcinurBciblAcirtsyD )cirhcO(slozdoPciblAciyelG slosibmaCcitelekSciraclaC )cirhcO(slosonerAcinurB )cirhcO(slosibmaCcivulF )cimuH(slosonerAcinurB slosibmaCcingatScivulF slosonerAciyelGcinurB slosibmaCciyelGcivulF )cimuH(slozdoPciyelG )cirhcO(slozdoPciblA slozdoPciblAcingatS slozdoPcitsiHciyelG slozdoPciblAciyelG smezoeahPcibmaC slosibmaCciraclaC slozdoPciblA )cidopsotorP( smezoeahP )cirhcO( )cinerA( )civulF( slosodopS:4102TS–slozdoP:5102BRW– slioslaivullanworbciyelgongats slioslaivullanworblacipyt slioslaivullanworbsumuh slioslaivullanworbciyelg sanizdnernworblacipyt sanizdnernworbcimuh sanizdnernworbsirbed sanizdnerarapnworb slioscilozdoplacipyt slozdopcihsrumimes sliossuorhcolacipyt slioscilozdopongats sliossuorhcocimuh sliosytsurcilozdop sliossuorhcociyelg slioslaivullaytsur slioscilozdop-yelg sliosytsurlacipyt sliosytsur-nworb sliosytsurcimuh sliosytsurciyelg slozdopcihsrum slozdopongats slozdopytaep slozdop-yelg slozdop slioscilozdop:.gnE *entanurb-owazdrybelg *ewocileibongatsybelg *entanurbynizdêrarap *ewocileibojelgybelg ewojelg-owodapo ewojelg-owotnurg ewojelg-owotnurg ewojelg-owotnurg *ewazdrydam *ecileibongats enawocileibz *ecileibojelg enzcinhcórp enzcinhcórp enzcinhcórp enzcinhcórp etawozsrum ewozsomur ewozsrum ewofrot *ecileib ewopyt ewopyt ewopyt ewopyt ewopyt –enmeizocileibybelG–3redrO cimorhC/cibuR ;stpedurtuE stnemmasP stnemmasP stpedurtuE ;slosonerA ;slosonerA ;slosibmaC slosibmaC citnevulF cillodneR ,sdohtrO ;slozdoP sdouqA ciraclaC cinurB civulF eworhcoybelG entanurbydaM slioscilozdoP sliossuorhcO ewazdrybelG sliosytsuR sanizdner ewocileib slaivulla entanurb ynizdêR nworB nworB ybelG able 5 continued T Polish Soil Classification, 6th edition – principles, classification scheme and correlations 85 slloblaigrAcipyT;sflaulpaHcilloM slloduiclaC/sllodulpaHciuqayxO sdouqaipE/sdouqaodnEcipyT sllouqaipE/sllouqaodnEcipyT sllouqaipE/sllouqaodnEcipyT slloduiclaC/sllodulpaHcipyT sdohtrolpaHcihtiL/cipyT sfladulpaHciuqayxO sllouqaodnEcitreV sdohtrolpaHcipyT sdohtrolpaHcipyT sllouqaodnEcipyT sllouqaodnEcipyT sllouqaodnEcipyT sflauqaodnEcipyT sllouqaiclaCcipyT sllouqaiclaCcipyT sflaulpaHcillemaL sfladulpaHcinerA sfladussolGcipyT sllouqaigrAcipyT sfladulpaHciuqA slloduiclaCcipyT sllodulpaHcipyT sfladulpaHcipyT sfladulpaHcipyT sfladulpaHcipyT sflaulpaHcinerA sflaulpaHcinerA slloduigrAcipyT slositpecnI,slosilloM:1102TS–slosirbmU,smezoeahP,sm slosiflA:4102TS–slosongatS,slositeR,slosonalP,slosi )cimaolodnE,cineraipE(slosonalPcivuL slosongatScitreVcivuL;slosivuLcitreV smezonrehccilpaHsmezonrehCciyelG )cibmaC(smezonrehCciclaC/cilpaH )cingatS(smezonrehCciclaC/cilpaH smezoeahPcingatS/ciyelGcibmaC slosivuLcingatS;slosongatScivuL )ciclacyhtaB(smezoeahPcilpaH smezoeahPcingatS/ciyelGcivuL slozodoPcitelekS/citeleksrepyH ;)cidopsotorP(slosonalPciblA ;)cimuH(slosivuLciblA/cilpaH ;)cingatS(smezonrehCciclaC )cingatS(smezonrehCcitreV )cibmacoeN(slosivuLciblA )cihceN(smezoeahPciyelG )cidopsotorP(slosilAciblA smezonrehCciclaC/cilpaH smezonrehCciclaCciyelG )cinerA(slosivuLcillemaL ;smezoeahPcingatS/ciyelG smezoeahPcingatS/ciyelG )cimuH(slozdoPciyelG )cirhcO(slosivuLciblA )cinurB(slosivuLciblA )civuL(slosyelGcirtuE smezonrehCcivuL slozdoPcinietstrO smezoeahPcivuL slosyelGcilloM slosivuLcilpaH slosivuLciyelG slositeRciblA slozdoPcitnE )cingatS( laivulli-yalcdetsartnocyllarutxet slioslaivulli-yalcciyelgongats slioslaivulli-yalcdeggolretaw slioslaivulli-yalcgniugnot slioslaivulli-yalccilozdop shtraekcalbcihsrumimes shtraekcalbdeggolretaw slioslaivulli-yalccillemal smezonrehcciyelgongats shtraekcalblaivulli-yalc slioslaivulli-yalclacipyt slioslaivulli-yalcdedore smezonrehclaivulli-yalc slioslaivulli-yalcnworb slioslaivulli-yalccimuh slioslaivulli-yalccitrev slioslaivulli-yalcciyelg slioslaivulli-yalcytsur slozdopytaep-larenim slioscilozdopnietsro shtraekcalbdehcael shtraekcalbcibmac slioscilozdopsirbed smezonrehcdehcael shtraekcalblacipyt slioscilozdoptnetal smezonrehccibmac smezonrehclacipyt shtraekcalbciclac shtraekcalbcitrev vuL:5102BRW– ezonrehC:5102BRW– slios slioslaivulli-yalc:.gnE *ewocileibotyrksybelg slioskcalb:.gnE ewojelg-owodapo ewojelg-owodapo ewojelg-owotnurg enawocileibz enawogu³yw enawogu³yw enawodorez e³aintanurbz e³aintanurbz e³aintanurbz enzcinhcórp etawozsrum ewozsomur ewonytzsro enleizduwd ewokeicaz ewokitrew ewokitrew e³komdop e³komdop ewokiclak ewollemal enlaiwuli enlaiwuli etsaifrot ewopyt ewopyt ewopyt ewazdr –enmeizonrazcybelG–5redrO –enmeizowo³pybelG–4redrO cingatS/ciyelG cingatS/ciyelG ;smezonrehC ;smezonrehC ,smezoeahP ;slosongatS ,slosonalP ,slosivuL ,slositeR sllouqA slosiflA sllodU eimeizenrazC shtraekcalB laivulli-yalC smezonrehC ewo³pybelG ymeizonrazC slios able 5 continued T 86 CEZARY KABA£A et al. sllodulpaHcihcaP,sllodnerpaHcipyT stsimeholpaH/stsirpasolpaHcirreT ,sllouqaodnEcitneuqavulF/cipyT citneuqavulF,sllodnerpaHcipyT ,sllouqaipEcitneuqavulF/cipyT sllodulpaHcitnevulF/cipyT sllouqaodnEcitneuqavulF stpedumuHcirtuE/cipyT sllodulpaHcitneuqavulF sllodulpaHcitneuqavulF sllouqaipEcitneuqavulF stpedumuHcitnE/cipyT stpedumuHciuqayxO stredulpaHciuqayxO sllodnerpaHcitpecnI sllodulpaHcitnevulF sllodulpaHcitnevulF sllodulpaHcitnevulF stpeuqamuHcireA streuqaodnEcipyT stpeuqamuHcipyT stpeuqamuHcipyT stpeuqamuHcipyT stpeuqamuHcipyT stpeuqamuHcipyT stpedumuHciuqA stpedumuHcirtuE sfladulpaHcilloM stredulpaHcipyT stpedumuHcitnE sllouqaodnE slosotsiHrevo)civulloC(smezoeahPcilpaH )cihceN,cinerA(slosirbmUciyelGcinurB )cimuH,cirreF,cinerA(slosyelGcirbmU )cimuH,cinerA(slosyelGcirbmU/cilloM slosirbmUcilA/civuL,smezoeahPcivuL cilloM,)civulloC(smezoeahPciyelG ;)cihceN,cinerA(slosyelGcirbmU )cinurB,cinerA(smezoeahPcivulF )cihceN,cinerA(slosirbmUciyelG )cihceN,cimuH(slosyelGcirbmU )cihceN,cinerA(lozdoPcirbmU slosirbmU/smezoeahPcibmaC slosirbmU/smezoeahPcingatS )civulloC(smezoeahPcingatS )civulloC(smezoeahPcilpaH )cinmiL(smezoeahPcizdneR slosirbmU/smezoeahPciyelG smezoeahPcizdneRcibmaC smezoeahPcivulFcibmaC smezoeahPcingatScivulF )ciyelG(slositreVcilpaH )cingatS(slositreVcilpaH smezoeahPciyelGcivulF )cilloM(slositreVcilleP smezoeahPcizdneR )civulloC(slosyelG smezoeahPcilpaH smezoeahPcivulF slosirbmUcilpaH slozdoPcirbmU slositreV:4102TS–slositreV:5102BRW– slioslaivulloccimezonrehclacipyt laivullacimezonrehcciyelgongats slioslaivulloccimezonrehcciyelg slios-laivullacimezonrehclacipyt slioslaivullacimezonrehcnworb slioslaivullacimezonrehcciyelg slioslaivullacimezonrehcytsur slioscihsrumimesdeggolretaw sanizdnercimezonrehclacipyt noslioslaivulloccimezonrehc sanizdnercimezonrehcnworb sanizdnercimezonrehccinmil slioscihsrumimescilozdop slioscihsrumimesgob-nori cimezonrehcciyelgongats slioscihsrumimeslacipyt slioscihsrumimesytsur sliosyerglaivulli-yalc sliosyergciyelgongats slioscihsrumtsop sliosyergcilozdop sliosyergcibmac sliosyerglacipyt slositrevlacipyt sliosyergciyelg slositrevkcalb slositrevciyelg slioslaivulloc slosirbmu taep slios sliosgnillews:.gnE ewojelg-owodapo ewojelg-owodapo ewojelg-owodapo ewojelg-owotnurg ewojelg-owotnurg ewojelg-owotnurg ewojelg-owotnurg *etsazsrumybelg enmeizonrazc e³aintanurbz e³aintanurbz e³aintanurbz ewocwadur *elosirbmu enroizejop e³komdop ewofrotan ewocileib ewocileib enlaiwuli ewopyt ewopyt ewopyt ewopyt ewopyt ewopyt ewazdr ewazdr –ec¹jeinzcêpybelG–6redrO stpeuqamuH sllouqaodnE sllouquodnE ,sllodulpaH ,sllodulpaH ;smezoeahP ,smezoeahP ;smezoeahP stpedumuH smezoeahP ;slosirbmU slosirbmU citnevulF )civulloC( ;)cihceN( ;slositreV ,)cimuH( sllodneR streuqA slosyelG ,stredU cizdneR cirbmU ciyelG civulF laivullakcalb/ slioslaivulloc cimezonrehC cimezonrehC cimezonrehC cihsrumimeS enmeizonrazc enmeizonrazc enmeizonrazc etawozsrum erazsybelG sliosyerG enlaiwuled sanizdner sanizdner elositreW slositreV ynizdêR ydaM ybelG ybelG slios able 5 continued T Polish Soil Classification, 6th edition – principles, classification scheme and correlations 87 stpeuqamuHcipyT,stneuqaodnEcilloM stsimeholpaH/stsirpasolpaHcinmiL stsimeholpaH/stsirpasolpaHcinmiL stsimeholpaH/stsirpasolpaHcinmiL stsimeholpaH/stsirpasolpaHcinmiL stneuqaodnEcilloM/citpeuqamuH stsirbifolpaH,stsirbifongahpS stsissawolpaHcimeH/cirpaS /stsirpasolpaHcitneuqavulF stneuqaodnEcitpeuqamuH stsirbifolpaH/stsimeholpaH stnessawolpaHcipyT /stsirpasolpaHcirreT stsirpasolpaHcinmiL stneuqaodnEcireA stneuqaodnEcipyT stneuqaodnEcipyT stneuqaodnEcipyT stpeuqamuHcitsiH stpeuqamuHcitsiH stpeuqamuHcitsiH stpeuqamuHcitsiH stpeuqamuHcipyT stpeuqamuHcipyT stneuqaipEcipyT stneuqaipEcipyT stneuqaipEcipyT stsirpasolpaH stsirpasolpaH stsimeholpaH stsimeholpaH )cihceN,cimuH(slosyelGcirtuE/cirtsyD )cidopsotorP(slosongatSciblA/cirtsyD )civoN(slosotsiHcirpaS/cimeH/cirbiF )cidopsotorP(slosyelGciblAcirtsyD )cimuH(slosongatScirtuE/cirtsyD )cinmiL/civulF(slosotsiHcihsruM )cinmiL/civulF(slosotsiHcirpaS )cinmiL(slosyelGcirtuE/cirtsyD )cimuH(slosyelGcirtuE/cirtsyD )cimuH(slosyelGcirtuE/cirtsyD )cirreF(slosyelGcirtuE/cirtsyD )cinmiL(slosyelGcitsiHcivulF )cinmiL(slosotsiHcitauqabuS slositpecnI,slositnE:4102TS–slosongatS,slosyelG:510 )cinmiL(slosotsiHcihsruM )cinmiL(slosotsiHcihsruM )ciniarD(slosongatScitsiH )cihsruM(slosyelGcitsiH )cinmiL(slosotsiHcirpaS slosongatScirtuE/cirtsyD slosongatScirtuE/cirtsyD slosyelGcirtuE/cirtsyD slosotsiH:4102TS–slosyelGcitsiH,slosotsiH:5102BRW slosyelGcitauqabuS )cinmiL(slosotsiH slosotsiHcihsruM slosongatSciyelG slosotsiHcimeH slosotsiHcirpaS slosotsiHcirbiF slosyelGcitsiH slosongatsytaep-larenim sliostaepderevoc-htrae slioscinmilcitauqabus slosyelgytaep-larenim slosyelgcihsrumimes slioscinmilcihsrum slosongatscilozdop slosyelgcitauqabus slosongatscihsrum sliostaepcihsrum slosongatslacipyt slioscinmilytaep slosyelgcilozdop slosyelggob-nori sliostaepyddum slosongatsihpma slosyelgcihsrum sliostaepcirpas sliostaepcimeh sliostaepajttyg sliostaepcirbif slosyelglacipyt slosyelgyddum slosyelgcimuh slosyelgajttyg slosyelgytaep slosongatsipe sliosyddum sliosajttyg 2BRW– –slioscinagro:.gnE slioscimezyelg:.gnE *ewojelgifmaybelg *ewojelgipeybelg *ewofrotanybelg *ewo³umybelg *ewoitygybelg enawocileibz enawocileibz enzcinhcórp etawozsrum ewocwadur endowdop endowdop ewozsrum ewozsrum ewozsrum ewozsrum ewomeh eworpas ewo³um ewo³um etsaifrot etsaifrot ewoityg ewofrot ewoityg ewofrot eworbif ewopyt ewopyt –enmeizojelgybelG–7redrO /stsirpasolpaH –enzcinagroybelG–8redrO ,stneuqaodnE stsimeholpaH stpeuqamuH stneuqaipE ;slosongatS ;slosotsiH ,stsirpaS ,stsimeH ;slosyelG slosotsiH ;)cinmiL( stsirbiF cinmiL ewonmilybelG ewofrotybelG slioscinmiL -owodapo -owotnurg sliostaeP slongatS slosyelG ewojelg ewojelg ybelG ybelG able 5 continued T 88 CEZARY KABA£A et al. stnehtrodUcitroporhtnA/cisnedorhtnA sllodumreVcilpaH,sllodulpaHcihcaP )sllodulpaH(tnelaviuqeon stnehtrodUcisnedorhtnA stnehtrodUcitroporhtnA stnehtrodUcitroporhtnA stnehtrodUcitroporhtnA )slositnE(tnelaviuqeon stsilofidUcihtiL/cipyT stsilofidUcihtiL/cipyT stsirpasolpaHcinmiL stsirpasolpaHcinmiL stsimeholpaHcirpaS stsirpasolpaHcirreT stsirpasolpaHcipyT stsirbifolpaHcimeH stsirpasolpaHcipyT sllodulpaHcihcaP stsilofidUcipyT stsilofidUcihtiL tnelaviuqeon tnelaviuqeon levelredrotastnelaviuqeon:4102TS–slosonhceT,slosorh – – – ;)cihcaP,cirhtnA(smezoeahPciyelG )citropsnarT(slosogeRcirtuE/cirtsyD slosonhceTciniL;slosonhceTcitalosI ;)cihcaP,cirhtnA(slosirbmUciyelG )cihcaP,cirhtnA(smezoeahPcilpaH )citacoleR(slosogeRcirtuE/cirtsyD )citacoleR(slosogeRcirtuE/cirtsyD )cirbmU/cilloM/cimuH(slosonhceT slosonhceTcitalosIciteleksonhceT slosyelGcitsiH,slosotsiHcihsruM )cinmiL/civulF(slosotsiHcihsruM ;)cilofotorP(slosonhceTcitalosI )citacoleR(slosogeRciyelG )cinmiL(slosotsiHcihsruM )civoN(slosotsiHcihsruM )ciraclaC(slosotsiHciloF slosotsiHcirpaScihsruM slosotsiHcirbiFcihsruM slosotsiHcimeHcihsruM slosotsiHcikcoRciloF slosotsiHciwaMciloF )cingatS(slosonhceT )ciyelG(slosonhceT slosonhceTcinarkE slosonhceTcilopS slosorhtnAcitroH slosonhceTcibrU slosotsiHciloF slioscihsrumderevoc-htrae slosonhcetciyelgongats tnA:5102BRW– slioscihsrumyddum slioscihsrumcirpas slioscihsrumcimeh slioscihsrumajttyg slioscihsrumcirbif smezorutlucciyelg slosilofsuoeraclac slioscihsrumniht slosonhcetcimuh slosonhcetciyelg slosiloflacipyt slosotcurtsnoc slosilofsirbed slosilofykcor slosirtsudni slosonarke slosoregga slosorhtna slosibrut slositroh slosifide slosibru slosogir slioscinegoporhtna:.gnE *ewozsrumanybelg ewojelg-owodapo ewojelg-owotnurg ewojelg-owotnurg *elosotkurtsnok *elosirtsudni enzcinhcórp *elosonarke *elosoregga ewozsomur ewonizdêr *elosortna *elosibrut *elositroh *elosifide *elosibru *elosogir eworpas ewomeh ewo³um ewoityg eworbif ewopyt etsilaks eikty³p –enzcinegoportnaybelG–9redrO slosotsiHciloF /citroporhtnA cisnedorhtnA ;slosonhceT ;slosorhtnA stnehtrodU ;slosotsiH slosilloM ,stsimeH stsirpaS stsirbiF cihsruM stsiloF enzcinegonhcet slioscihsruM enmeizorutluk smezorutluC cinegonhceT ewok³óicœ ewozsrum ybelG ybelG ybelG ybelG slios able 5 continued T Polish Soil Classification, 6th edition – principles, classification scheme and correlations 89

The 4th order of clay-illuvial soils (gleby p³owo- fication of many ordinary arable Luvisols as cherno- ziemne) consists of one soil type (gleby p³owe) that zemic soils, SGP6 requires significantly higher thick- brings together various soils with an argik horizon. ness for the mollik (and umbrik) horizon, i.e. 30 cm, The placement of this order (in the key to soil orders, instead of the 20 cm required in WRB2015. However, table 4) after the chernozemic soils excludes soils with SGP6 allows simple correlation with WRB2015 by mollik/umbrik horizons, whereas its placement before introducing the subtype of humic clay-illuvial soils podzolic soils and gleyzemic soils gives a higher (table 5), which have a mollic horizon in terms of WRB priority for the argik horizon compared to the spodik 2015. horizon and stagnic/gleyic properties. Only the soils The 5th order of black soils (gleby czarnoziemne) with "complete" sequence of crucial genetic (E-Bt) and brings together soils with mollik, umbrik and areni- diagnostic (eluwik-argik) horizons are considered murszik horizons allocated into seven soil types. The "typical", whereas soils featured by Ap-Bt morpho- definition of (czarnoziemy) in SGP6 is logy are distinguished as eroded (truncated) clay- broader than of the respective RSG in WRB 2015 illuvial soils (Kobierski 2013, Œwitoniak 2014, because the mollik (but not chernic) horizon is required Œwitoniak et al. 2016). All these soils may be corre- (≥30 cm thick) and secondary carbonates must occur lated with Luvisols in WRB2015 if the stagnic at ≥150 cm, irrespectively of the thickness of the properties are weak to medium strong, or with Luvic mollik horizon (£abaz et al., 2018). Black earths if stagnic properties are strongly (czarne ziemie) have a mollik horizon and strong developed and start ≥25 cm from the soil surface redoximorphic features, either as gleyic or stagnic (Waroszewski et al. 2018). Many of such soils, both properties (Konecka-Betley et al. 1996, £abaz and silty- and loamy-textured, have eluvial tongues in Kaba³a 2014, Orzechowski et al. 2004). Some of an argik horizon, thus commonly were classified these black earths have kalcik horizons below the as in accordance with previous WRB mollik and therefore may be correlated with Gleyic/ versions (Szymañski et al. 2011). Former Albeluvi- Stagnic Chernozems in WRB 2015; the other black sols were also correlated with texturally contrasted earths, free of secondary carbonates, usually meet soils (gleby p³owe dwudzielne), i.e. soils with sandy the requirements of Gleyic/Stagnic Phaeozems; topsoil and an abrupt textural difference at ≥50 cm whereas, the waterlogged black earths may fulfill from the soil surface, if eluvial tongues were present the criteria of Mollic Gleysols. The next three types of in the Bt horizon. At present, the texturally contra- soils with a mollik horizon correspond to Phaeozems. sted soils with stagnic properties are correlated Chernozemic rendzinas (rêdziny czarnoziemne) with (irrespectively of the presence of developed from carbonate (or gypsum) rocks tonguing) or with , if stagnic properties are correlate well with Rendzic Phaeozems. The type also weak (or absent) and tonguing is clearly developed includes the specific subtype of limnic chernozemic (Komisarek and Sza³ata 2008; Koz³owski and Komi- rendzinas developed of drained calcareous gyttja sarek 2017; Musztyfaga and Kabala 2015; Waro- or highly calcareous meadow/lacustrine marl szewski et al. 2019). This complicated system of (Lemkowska and Sowiñski 2018; Uggla 1976). equivalents is due to splitting the soils with an argic Chernozemic alluvial soils (mady czarnoziemne) horizon into several separate RSGs in WRB 2015. typically correlate with Fluvic Phaeozems, and In contrast, in SGP6, all these features are indicative chernozemic colluvial soils (gleby deluwialne of separate subtypes listed hierarchi-cally (table 5), czarnoziemne) may be classified as Phaeozems with that may be used to name the soil individually or in a Colluvic qualifier (Œwitoniak 2015). The unique combination, still within one type of clay-illuvial type of semimurszik soils (gleby murszowate) soils (gleby p³owe). Extremely leached clay-illuvial requires an arenimurszik horizon featured by elevated soils, featured by very low base saturation and podzoli- content of organic matter and weak binding of organic zation (gleby p³owe zbielicowane) have to be corre- particles to mineral grains. The concept and definition lated with , and particularly wet (waterlogged) of an arenimurszik horizon has a long tradition in clay-illuvial soils (gleby p³owe podmok³e) with Polish pedology and it allows distinguishing between gleyic properties starting near the surface, have their several steps of organic material degradation and equivalent in Gleysols (Luvic). Most of arable clay- transformation of organic layers into mineral-organic illuvial soils in Poland have a plough layer thicker and mineral soil horizons after drainage (£abaz and than 20 cm (due to the standard depth of ploughing) Kaba³a 2016, Mocek 1978, Rz¹sa 1963). Typically, that may fulfil the requirements for a mollic horizon these sandy soils correlate with Gleyic according to WRB2015 and result in soil „transfer” or Umbric Gleysols. And finally, the grey soils (gle- to Phaeozems. To avoid an inappropriate classi- by szare) accommodate all other soils with mollik 90 CEZARY KABA£A et al. or umbrik horizons, which do not fulfil the criteria consists in the majority of non-fibrous, humified of any other above listed type of chernozemic soils. organic material (sapric) and has higher bulk density They are mostly correlated with Umbrisols, but some and aggregate structure (Glina and Bogacz 2016; soils with mollik horizons, but lacking secondary Piaœcik and Gotkiewicz 2004), reflected in a carbonates and strong redoximorphic features, may Murshic qualifier (WRB2015). correlated with Haplic Phaeozems in WRB 2015. The last, 9th order – anthropogenic soils (gleby The 6th order of swelling soils (gleby pêczniej¹ce) antropogeniczne) – consists of two types of (a) soils involves one type of soils with a wertik horizon and deeply mixed and fertilized to create a thick "cherno- clayey texture throughout – wertisols, correlated zemic-like" topsoil horizon aimed to improve their simply with of WRB2015. The most common agricultural productivity – culturozems, correlated with and most important are black vertisols (wertisole (WRB2015), and (b) transformed or czarnoziemne), correlated with the Pellic Vertisols created in the course of intentional industrial or (Mollic), and previously referred to as Smolnica constructional activity, often consisting of artefacts soils (Mocek et al. 2009, Prusinkiewicz 2001). (tab. 3) – technogenic soils, in the majority correlated The 7th order of gleyzemic soils (gleby glejoziemne) with (WRB2015). The first soil type, consists of two soil types: (a) soils featured with culturozems (gleby kulturoziemne), is traditionally gleyic properties starting ≥30 cm from the soil surface, distinguished if a thick (>50 cm) hortik or antrik well correlated with Gleysols (WRB 2015), and (b) horizon is present, or the soil is deeply mixed (rigo- soils featured with strong stagnic properties at a sols) (Krupski et al. 2017). A new soil type of techno- shallow depth, generally correlated with Stagnosols genic soils brings together three previous types of (WRB 2015). However, the definitions of gleysols and urbanozemic, industriozemic and saline soils (Syste- stagnosols in SGP6 are narrower than the respective matyka gleb Polski 2011). The soil subtypes are RSGs definitions in WRB2015 and do not include soils distinguished based on the presence of specific kind with diagnostic horizons such as mollik, umbrik, of artefacts – urbisols and industriosols (Greinert argik and spodik, all of which are keyed out 2015, Uzarowicz et al. 2017, 2018), the presence of earlier (table 4). the (near) surface soil coverage/sealing with The 8th order of organic soils (gleby organiczne) impermeable layer of concrete, asphalt etc. – ekrano- brings together soil developed of organic material, sols (Charzyñski et al. 2013a), or the presence of a which have a histik/murszik/folik horizon ≥30 cm geomembrane or technogenic hard layer within the soil thick. Although the required thickness of organic profile (constructosols), including the concrete horizon for Histosols (table 4) and the required bunkers/fortification (Charzyñski et al. 2013b). Soils content of organic carbon in an organic material on the ruins, degraded walls or roofs of buildings are (table 3) differ in SGP6 and WRB2015, these units distinguished as edifisols (Charzyñski et al. 2015). All are in general well correlated. Separate types of peat these soils are simply correlated with Technosols soils, limnic soils, murszik soils and folisols, subdivided accompanied with respective Principal qualifiers into numerous respective subtypes, provide a broad (table 5). Additiolenally, technogenic soils in SGP6 possibility to reflect the different organic soil origin, involve the aggerosols – soil developed from earth composition, transformation or degradation paths, and material poor in artefacts (thick heap material), functions in natural and human-impacted ecosystems transported more or less locally that forms an antropo- (Glina et al. 2017; Kalisz and £achacz 2008, £achacz genic convex relief form (e.g. dam, road embankment) et al. 2009, Mendyk et al. 2015, Okruszko 1969, or fulfills concave forms. These soils may be correlated Roj-Rojewski and Walasek 2013; Skiba and Komor- in WRB2015 with Regosols (Transportic) that seems nicki 1983; Wasak and Drewnik 2012). The unique inappropriate in case of soils existing in intentionally type of murszik soils (gleby murszowe) includes soils constructed relief forms. Also, the soils transformed/ developed of various primary organic materials (peat, degraded due to deep mixing (in situ) of native soil at gyttja, etc.); those surface layers have pedogeni- construction or other non-agricultural activity, termed cally transformed to a depth of at least 30 cm after turbisols, are distinguished as a subtype of technogenic soil drainage and under crop cultivation or forest soils in SGP6, but in WRB2015 must be correlated management (Glina et al. 2016, Marcinek and with Regosols (Relocatic). An indication of soil con- Spychalski 1998, Mocek 1978, Piaœcik and £achacz tamination (toxicity), alkalinization, salinization, 1990; Rz¹sa 1963). The resulting murszik horizon excessive fertilization etc. may be added as a variety meets the criteria of histic horizon (WRB2015), but (table 6). Polish Soil Classification, 6th edition – principles, classification scheme and correlations 91

RULES FOR SOIL CLASSIFICATION 2. Classification must stop in a first (the earliest) clas- sification unit if all those requirements are met by The only appropriate way for soil classification the soil under assessment. In other words, classifi- (naming) in SGP6 is to follow the key to soil orders cation may follow to the next unit in the key only if and types (table 4) because the key reflects the priori- the soil does not meet all criteria listed in the unit ties of classification (i.e. the diagnostic features that placed earlier in the key. have higher priority than others are listed earlier 3. The soil classification begins at the order level (i.e. the (higher) and have to be considered first). When classi- soil must be first allocated to an appropriate soil order). fying soils, the following rules must be applied: 4. The key to soil types in a selected order can be 1. Classification must always start from the begin- followed, when the soil certainly meets the criteria ning of the key. of this order and does not meet all the criteria of the previous order (placed earlier in the key).

TABLE 6. Soil varieties in Polish Soil Classification (SGP6): original names, English translations and their WRB closest equiva- lents

6PGS noitalsnarthsilgnE 5102BRWnisreifilauQ )mroflarulpaniseman( 3( dr )yteiravasadesuepytbus sepytbus2fI 3eht,emanliosanidesuneebydaerlaevah)mumixamdewolla( dr txenyllautnevedna( crareihehtmorfsepytbus .)seiteirav(yteiravsadeddaebyam)sepytbusfotsillacih )yteiravasadesuepytbusdettimo( htsteemnoitacifissalcrednuliosehtfI nidetacidnitontub,6PGSnidenifedepytbusarofairetirce ytbusfotsillacihcrareiha .yteiravasaemanliosotdeddaebyam,epytliosnevigrofsep retawdnastoorrofsreirraB )rf(ewonapigarf napigarf cigarF )cp(ewokicalp cicalp cicalP )ur(ewocwadur norigob cirreF )ro(ewonytzsro nietstro cinietstrO )gz(enozczsêgaz deifisned eDekil nozirohhguolpehtgniylrednureyalehtotdetimiltub,cisn )ls(ewollemaloba³s rallemal-otorp ,cillemaLekil ;)mc5dnamc051 noitcarf )xm(enazseim dexim lppa;tnelaviuqeon ehttakcorsuoeraclac/cirispygahtiwsliosanizdnerotdei fohtped ≥1 noteleksehtnistnemgarfkcorsuoecilis)1(evahtaht,mc05 uoecilis)2(ro,noitcarf shtraeenifehtnignitanimod)dnasztrauq.g.e(slairetams )zp(etyrkyzrp derevoc civoN,civullocipE,ciloeA )zc(enowrezc der )RY5.7nahtredder,tsiom,euhruoloc(cidohR,cimorhC )hg(enzcinhcórpokobê³g cimuhpeed cihcaP )sz(enolosaz enilas cilasotorP )ss(ewodos-ono³s cidos-enilas cidoSdnacilasotorP )ds(enzcilakla-owodos enilakla-cidos cilaklA,cidoS )sk(ewonazcrais-onœawk cidicaetaflus cinoihT )rs(ewokzcrais cidiflus cidiflusrepyH )ro(enzcinegotinro cinegohtinro itub;cihtinrOekil feilerorcimgnivahsetisgnitsendribfosliososlasedulcn snoitcurtsnoctsenoteuddegnahc )xxb(enabezrgop deirub patub,-otpahTekil )nozirohcitsongaidelpmisfodaetsni(liosevitanotdeilp lioscinegoporhtnarolaivullocnredomrednudeirub 92 CEZARY KABA£A et al.

Table 6 continued

serutaefcihpromixoderkaew/peeD -owotnurgokobê³goinderœ ciyelgpeedmuidem mc031dna08neewtebseitreporpciyelgtub,ciyelgodnEekil )ggs(ewojelg -owodapookobê³goinderœ peedmuidem il mc031dna08neewtebseitreporpcingatstub,cingatsodnEek )gos(ewojelg cingats ewojelg-owotnurgokobê³g ciyelgpeed mc031wolebseitreporpciyelgtub,ciyelgyhtaBekil )ggg( ewojelg-owodapookobê³g cingatspeed mc031wolebseitreporpcingatstub,cingatsyhtaBekil )gog( )ggs(ewojelg-owotnurgoba³s ciyelgylkaew ciyelg-otorPekil,tnelaviuqeon )gos(ewojelg-owodapooba³s cingatsylkaew cingats-otorPekil,tnelaviuqeon erutaefcinegoporhtnA s )wo(enoindowdo deniard ciniarD )wz(enoindowaz yllaicifitra taw;tnelaviuqeon ciyelgrocingatstub,ytivitcanamuhtneceroteuddeggolre deggolretaw depolevedtonseitreporp )bz(enozrubaz debrutsid mc05sniatnoc noitcudorplaocrahcremroffosetisniyltsom;laocrahcfo) )wa(ewolgêw-oportna cinobrac-oporhtna cinobraC )sa(ewokzcrais-oportna cidiflus-oporhtna slairetamcinegoporhtnaotdetimiltub,cidifluSekil )za(ewonazcrais-oportna citaflus-oporhtna iatnoc;tnelaviuqeon rofairetirclifluftahtnigirocinegoporhtnafosetaflusn stcafetra sliostserofniserutaefcinegoporhtnacificepS )pl(enlorop elbara-tsop erof;tnelaviuqeon reyalhguolpevah;noitatseroffaerofebdetavitlucliosts ≥ mc02 rokciht ≥1 noitategevnisecnereffidelbatcetedylraelcdnakcihtmc0 )al(enzcifortorga cihportorga bara-tsopekil;tnelaviuqeon tahtstneirtunhtiwdehcirneyltnacifingistub,yteiravel noitategevnotcapmiraelcsahllits )sl(enwarpuiwlys larutlucivlys reyaldexim/hguolpevahtahtliostserof;tnelaviuqeon ≥ tserofoteudkcihtmc02 noitavitluc )yl(enzcifortiwlys cihportivlys rutlucivlysekil;tnelaviuqeon tahtstneirtunhtiwdehcirneyltnacifingistub,yteiravla noitategevnotcapmiraelcsah )zl(enawozilaklaz dezilaklayllaicifitra erof;tnelaviuqeon fonoissimioteuddezilaklareyalliospotevahtahtsliosts tsudlairtsudnienilakla rof-nonotdeilppaebyam(tatibahtseroffosutatscihporT )nosirapmocetisrofronoitatseroffarofdennalpsliostse 3 )yd(enzcifortsyd cihportsyd cirtsyDhtiwsetalerroctub,tnelaviuqeon )lo(enzcifortogilo cihportogilo cirtsyDhtiwsetalerroctub,tnelaviuqeon )em(enzcifortosem cihportosem cirtuEhtiwsetalerroctub,tnelaviuqeon )ue(enzcifortue cihportue cirtuEhtiwsetalerroctub,tnelaviuqeon slioscinagro-larenimdnacinagroniepytylppusretaW )mo(enzcinegorbmo suoenegorbmo cirbmO )rz(enzcinegilos suoenegilos retawgnirpsotdetimiltub,ciehR )wf(enzcinegoiwulf suoenegoivulf retaw)doolf(revirotdetimiltub,ciehR )ab(ewonesab retawdnuorg retawdnuorgotdetimiltub,ciehR deilppus )os(ewokots retawepols Rekil sepols-llihnoretawdnuorgdnaecafrusotdetimiltub,cieh deilppus

3 according to trophic soil index (SIG) (Bro¿ek et al. 2011). Polish Soil Classification, 6th edition – principles, classification scheme and correlations 93

Table 6 continued

ssenkcihtdnasepytdnaltaeP )tp(eikty³p wollahs citsiH )wt(ewoksiwofrotokosyw gobdesiar n ytirojamnisessomhtiwgobdesiarcihportsyd;tnelaviuqeo )pt(ewoksiwofrot-owoicœjezrp goblanoitisnart laviuqeon noitategevsuoiravhtiwgoblanoitisnartcihportosem;tne ewoksiwofrotoksin nefssom ytirojamnisessomhtiwnefcihportue;tnelaviuqeon )mnt(ewoksiwohcem ewoksiwofrotoksin nefegdes ytirojamniseicepsegdeshtiwnefcihportue;tnelaviuqeon )tnt(ewoksiwocyzrut eworawuzsewoksiwofrotoksin nefdebdeer uqeon ytirojamninoitategevdebdeerhtiwnefcihportue;tnelavi )snt( ewoseloewoksiwofrotoksin nefdnaldoow ue;tnelaviuqeon )redlayltsom(noitategevtseroftnanimodhtiwnefcihport )ont(

5. There is no exclusive key to soil subtypes, but the CLASSIFICATION OF BURIED SOILS list of subtypes within a certain type is hierarchical (strictly ordered), i.e. the subtype placed earlier in Although the Polish Soil Classification (SGP6), the list has a higher priority than the subtypes similarly to other contemporary international and mentioned below. Thus, the selection of subtypes national systems, refers mainly to soils that are should always start from the beginning of their list. currently forming and existing on the land surface, it 6. Soil subtypes can be combined if the soil has may be also used for naming of the buried (fossil) diagnostic features of more than one subtype. When soils – due to the absence of alternatives. However, it combining subtypes, the following rules apply: should be stressed that its use for classification of a) the "typical" subtype is excluded from the the buried (subsurface) soils cannot distort the sense combinations (may be used as single only); it of surface (modern) soil classification because the means that the "typical" subtype is used if none of classification priorities are established taking into the earlier listed subtypes can be applied; account current productivity and environmental b) two subtypes may be combined at maximum; functions of soils identified on the land surface. the third and more subtypes, if necessary, can be It is assumed that the buried soils will be distingu- added to soil name as the variety; ished rather exceptionally, mainly for scientific requ- (c) combined subtypes cannot exclude each other irements. in any of the listed criteria; SGP6 can separately classify the surface (modern) d) any concurrent subtype and primary subtype soil and the buried soil using the following rules: cannot be combined with other concurrent subtype 1. Buried soil is a soil covered by younger sediments. or primary subtype; The presence of the secondary soil-forming process e) the order of subtypes in the combination must that overlaps the original soil profile without follow their order in the hierarchical list of subty- physical coverage with the younger sediment is not pes; thus, the concurrent/primary subtype will be a basis for distinguishing buried soil. always placed before the transitional or supplemen- 2. Buried soil and the overlying younger material are tary subtype; classified as one (surface/modern) soil, when as a (f) rules c-e apply differently in peat soils because whole they meet the criteria of: the layers of different organic materials may (a) organic, gleyzemic or anthropogenic soil occur in the soil profile in various combinations orders, (the rules are separately specified). (b) the subtype of texturally contrasted clay-illu- 7. Soil varieties are used optionally only, but for vial soils, various reasons, it is recommended to record them (c) alluvial or colluvial soil types (in the orders in all fieldwork. The following rules apply at where they are distinguished). recording of soil varieties: 3. Surface soil (developed from the younger covering (a) the varieties are given in brackets after the type material) may be classified separately from the and subtype(s), but before the genus and species; buried soil if: (b) the varieties are separated by a comma(s); (a) the covering material is >50 cm thick, and (c) the varieties in the soil name are listed in the (b) the surface soil meets all diagnostic criteria for same order as varieties are listed in the classification. a given soil type, and 94 CEZARY KABA£A et al.

(c) separate classification of surface soil does not REFERENCES interfere with the classification of soil as a whole. 4. If the thickness of the younger covering material is Arnold R.W., 2002. Soil classification principles. [In:] Soil Clas- <50 cm, the buried soil is classified with priority sification 2001 (Micheli E., Nachtergaele F.O., Jones R.J.A., (like surface soil) and the presence of thin covering Montanarella L., Editors). ESBR Report No 7, EUR 20398 material is indicated as a variety. EN, Luxembourg: 3–8. 5. In the case of anthropogenic and colluvial soils, it Bednarek R., 1991. Wiek, geneza i stanowisko systematyczne gleb rdzawych w œwietle badañ paleopedologicznych w oko- is possible to indicate the name of native soil (de licach Osia (Bory Tucholskie). Wyd. UMK, Toruñ: 422 ss. facto buried) as the variety; however, this supple- Brevik E.C., Calzolari C., Miller B.A., Pereira P., Kabala C., mentary information does not change the classifi- Baumgarten A., Jordán A., 2016. Soil mapping, classifica- cation of the modern soil recognized as an anthro- tion, and pedologic modeling: History and future directions. pogenic or colluvial one. Geoderma 264: 256–274. Bro¿ek S., Lasota J., Zwydak M., Wanic T., Gruba P., B³oñska CLOSING WORDS E., 2011. Zastosowanie siedliskowego indeksu glebowego (SIG) w diagnozie typów siedlisk leœnych. Roczniki Glebo- Classification, as a system comprehensively znawcze – Soil Science Annual 62(4): 133–149. covering all pedological knowledge on soil genesis and Charzyñski P., Bednarek R., Greinert A., Hulisz P., Uzarowicz relationships, should be periodically revised in £., 2013a. Classification of technogenic soils according to accordance with the state-of-the-art. We hope the WRB system in the light of Polish experiences. Soil Science Annual 64(4): 145–150. modernized sixth edition of Polish Soil Classification Charzyñski P., Hulisz P., Bednarek R., 2013b. Technogenic so- will allow for enhanced, both precise and syntetic ils of Poland. PTSH, Toruñ: 357 pp. description of soil resources in Poland, their diversity Charzyñski P., Hulisz P., Bednarek R., Piernik A., Winkler M., and environmental and utility functions, and will Chmurzyñski M., 2015. Edifisols – a new soil unit of tech- become a platform for new cartographic studies, nogenic soils. Journal of Soils and Sediments 15(8): 1675– preparation of modern soil databases and initiation of 1686. new interdisciplinary scientific studies at the Chodorowski J., 2009. Geneza, wiek oraz cechy diagnostyczne highest international level. SGP6, benefiting from the orsztynu w œwietle badañ gleb piaszczystych Kotliny Sando- achievements of global soil science, offers at the same mierskiej. Wydawnictwo UMCS. Lublin: 132 pp. time a number of essential modifications and innova- Czerwiñski Z., Kaczorek D., 1996. W³aœciwoœci i typologia gleb tive solutions for international classification systems. wytworzonych z rudy darniowej. Roczniki Gleboznawcze – Soil Science Annual 47(1): 97–101. Drewnik M., 2008. Geomorfologiczne uwarunkowania rozwoju ACKNOWLEDGEMENTS pokrywy glebowej w obszarach górskich na przyk³adzie Tatr. Wydawnictwo UJ, Kraków: 118 pp. We would like to thank all members of the Com- Glina B., Bogacz A., 2016. Selected issues relating to classifi- mission for Soil Genesis, Classification and Carto- cation of mountain organic soils in Poland according graphy of the Soil Science Society of Poland and all to the Polish Soil Classification 2011. Soil Science other people who actively supported preparartion of Annual 67(4): 185–189. SGP6 with kind suggestions, professional discussion Glina B., Bogacz A., Gulyás M., Zawieja B., Gajewski P., Kacz- and field testing, in particular: Prof. Renata Bedna- marek Z., 2016. The effect of long-term forestry drainage on rek, Prof. Stanis³aw Bia³ousz, Prof. Adam Bogacz, the current state of peatland soils: A case study from the Cen- Prof. Józef Chojnicki, Prof. Danuta Czêpiñska-Ka- tral Sudetes (SW Poland). Mires and Peat 18(21): 1–11. miñska, Dr Wojciech Kwasowski, Prof. Andrzej Glina B., Malkiewicz M., Mendyk £., Bogacz A., WoŸniczka P., Mocek, Prof. Stefan Skiba, Prof. Piotr Sk³odowski 2017. Human affected disturbances in vegetation cover and peatland development in the late Holocene recorded in shal- and Dr hab. Wojciech Szymañski. low mountain peatlands (Central Sudetes, SW Poland). Boreas We would like also to express our gratitude to 46(2): 294–307. authors of the previous editions of the Polish Soil Greinert A., 2015. The heterogeneity of urban soils in the light Classification and Classfication of Forest Soils of of their properties. Journal of Soils and Sediments 15(8): Poland; such work has continually greatly supported 1725–1737. development of new ideas in soil science and modern Hulisz P., 2007. Proposals of systematics of Polish salt-affected understanding of soil classification in Poland to a soils. Roczniki Gleboznawcze – Soil Science Annual 58(1/2): significant degree. 1–10. We are also grateful to the President of the Soil Hulisz P., Kwasowski W., Pracz J., Malinowski R., 2017. Science Society of Poland, Prof. Zbigniew Zagórski, Coastal acid sulphate soils in Poland: a review. Soil for his strong support of this project. Science Annual 68(1): 46–54. Polish Soil Classification, 6th edition – principles, classification scheme and correlations 95

Ibanez J.J., Boixadera J., 2002. The search for a new paradigm Komisarek J., Sza³ata S., 2008. Zró¿nicowanie uziarnienia w in pedology. [In:] Soil Classification 2001 (Micheli E., Na- profilach gleb p³owych zaciekowych z obszaru Wielkopol- chtergaele F.O., Jones R.J.A., Montanarella L., Editors). ski. Nauka Przyroda Technologie 2(2): 10. ESBR Report No 7, EUR 20398 EN, Luxembourg: 93–110. Konecka-Betley K., Czêpiñska-Kamiñska D., Janowska E., 1996. IUSS Working Group WRB, 2015. World Reference Base for Czarne ziemie w staroaluwialnym krajobrazie Puszczy Kam- soil resources 2014. International soil classification system pinoskiej. Roczniki Gleboznawcze – Soil Science Annual, for naming soils and creating legends for soil maps. Update 47(3–4): 145–158. 2015. World Soil Resources Report No. 106. FAO, Rome: Kowalska J., Kajdas B., Zaleski T., 2017. Variability of mor- 212 pp. phological, physical and chemical properties of soils derived Jankowski M., 2013. Gleby ochrowe. Pozycja w krajobrazie, from carbonate-rich parent material in the Pieniny Mounta- w³aœciwoœci, geneza i miejsce w systematyce. Wyd. Nauk. ins (south Poland). Soil Science Annual 68(1): 27–38. UMK: 129 ss. Kowalska J. B., Zaleski T., Józefowska A., Mazurek R., 2019. Jankowski M., Bednarek R., 2000. Quantitative and qualitative Soil formation on calcium carbonate-rich parent material in changes of properties as basis for distinguishing develop- the outer Carpathian Mountains-A case study. Catena 174: ment stages of soils formed from dune sands. Polish Journal 436–451. Soil Science 33(2): 61–69. Koz³owski M., Komisarek J., 2017. Textural diversity in selec- Jarnuszewski G., Meller E., 2018. Morphological and physical ted Retisols in the catena of the Opalenica (western properties of dehydrated Holocene carbonate limnic depo- Poland). Soil Science Annual 68(1): 11–18. sits in post-bog areas of NW Poland. Journal of Ecological Krasilnikov P., Martí J. J. I., Arnold R., Shoba S., 2009. A hand- Engineering 19(1): 136–142. book of soil terminology, correlation and classification. Ro- Kaba³a C., 2018. Rendzina (rêdzina) – Soil of the Year 2018 in utledge, London, UK: 448 pp. Poland. Introduction to origin, classification and land use of Krupski M., Kaba³a C., Sady A., Gliñski R., Wojcieszak J., 2017. rendzinas. Soil Science Annual 69(2): 63–74. Double-and triple-depth digging and formation in Kaba³a C., Ga³ka B., £abaz B., Anjos L., de Souza Cavassani a medieval and modern-era city (Wroc³aw, SW Poland). Geo- R., 2018. Towards more simple and coherent chemical crite- archaeological research on past horticultural practices. Cate- ria in a classification of anthropogenic soils: A comparison of na 153: 9–20. phosphorus tests for diagnostic horizons and properties. Lasota J., B³oñska E., Pacanowski P., 2018. Forest sites and Geoderma 320: 1–11. forest types on rendzinas in Poland. Soil Science Annual Kaba³a C., £abaz B., 2018. Relationships between soil pH and 69(2): 121–129. base saturation – conclusions for Polish and international Lemkowska B., Sowiñski P., 2018. Limnic Rendzinas in the soil classifications. Soil Science Annual 69(4): 206–214. Mazurian Lakeland (NE Poland). Soil Science Annual 69(2): Kaba³a C., Œwitoniak M., Charzyñski P., 2016. Correlation 109–120. between the Polish Soil Classification (2011) and internatio- Ligêza S., 2016. Zmiennoœæ wspó³czesnych mad pu³awskiego nal soil classification system World Reference Base for Soil odcinka Wis³y. Wydawnictwo UP w Lublinie, Lublin: 131 Resources (2015). Soil Science Annual 67(2): 88–100. pp. Kaba³a C., Waroszewski J., Bogacz A., £abaz B., 2012. On the £abaz B., Kaba³a C., 2014. Geneza, w³aœciwoœci i klasyfikacja specifics of Podzols in mountain areas. Soil Science Annual czarnych ziem w Polsce. Soil Science Annual 65(2): 80–90. 63(2): 55–64. £abaz B., Kaba³a C., 2016. Human-induced development of Kacprzak A., Drewnik M., Uzarowicz £., 2006. Rozwój i kie- mollic and umbric horizons in drained and farmed swampy runki przemian wêglanowych gleb rumoszowych na terenie alluvial soils. Catena 139: 117–126. Pieniñskiego parku Narodowego. Pieniny – Przyroda i Cz³o- £abaz B., Musztyfaga E., Waroszewski J., Bogacz A., Jezierski wiek 9: 41–50. P., Kaba³a C., 2018. Landscape-related transformation and Kacprzak A., Migoñ P., Musielok £., 2013. Using soils as indi- differentiation of Chernozems – Catenary approach in the cators of past slope instability in forested terrain, Kamienne Silesian Lowland, SW Poland. Catena 161: 63–76. Mts., SW Poland. Geomorphology 194: 65–75. £achacz A., Nitkiewicz M., Pisarek W., 2009. Soil conditions Kalisz B., £achacz A., 2008. Morfologia i systematyka gleb and vegetation on gyttja lands in the Masurian Lakeland. mu³owych na przyk³adzie transektów w dolinie Omulwi i [W:] Wetlands – their functions and protection (£achacz A., Rozogi. Roczniki Gleboznawcze – Soil Science Annual 59(3/ Editor), Department of Land Reclamation and Environmen- 4): 89–96. tal Management, University of Warmia and Mazury in Olsz- Klasyfikacja gleb leœnych Polski, 2000. Centrum Informacyjne tyn: 61–94. Lasów Pañstwowych, Warszawa: 127 pp. Marcinek J., Spychalski M., 1998. Degradacja gleb organicz- Klasyfikacja uziarnienia gleb i utworów mineralnych Polskiego nych doliny Obry po ich odwodnieniu i wieloletnim rolni- Towarzystwa Gleboznawczego 2008, 2009. Roczniki Glebo- czym u¿ytkowaniu. Zeszyty Problemowe Postêpów Nauk znawcze – Soil Science Annual, 60(2): 6–15 Rolniczych 460: 219–236. Kobierski M., 2013. Morfologia, w³aœciwoœci oraz sk³ad mine- Mendyk £., Œwitoniak M., Bednarek R., Falkowski A., 2015. ralny gleb p³owych zerodowanych w wybranych obszarach Genesis and classification of the soils developed from the morenowych województwa kujawsko-pomorskiego. Wyd. sediments of the former Oleszek mill pond basin (the UTP, Bydgoszcz, 166: 121 pp. Che³miñskie Lakeland, N Poland). Soil Science Annual 66(1): 29–35. 96 CEZARY KABA£A et al.

Miechówka A., Drewnik M., 2018. Rendzina soils in the Tatra Szymañski W., Skiba M., Skiba S., 2011. Fragipan horizon Mountains, central : a review. Soil Science Annual degradation and bleached tongues formation in Albeluvisols 69(2): 88–100. of the Carpathian Foothills, Poland. Geoderma 167: 340– Mocek A., 1978. Gleby o charakterze murszowym w otulinie 350. S³owiñskiego Parku Narodowego. Roczniki Gleboznawcze Œwitoniak M., 2014. Use of soil profile truncation to estimate – Soil Science Annual 29(3): 175–202. influence of accelerated erosion on soil cover transformation Mocek A., Owczarzak W., Tabaczyñski R., 2009. Uziarnienie in young morainic landscapes, North-Eastern Poland. Cate- oraz sk³ad mineralogiczny frakcji ilastej czarnych ziem na 116: 173–184. Gniewskich. Roczniki Gleboznawcze – Soil Science Annual Œwitoniak M., 2015. Issues relating to classification of colluvial 60(3): 123–132. soils in young morainic areas (Che³mno and Brodnica Lake Musielok £., Drewnik M., Stolarczyk M., Gus M., Bartkowiak District, northern Poland). Soil Science Annual 66(2): 57–66. S., Ko¿yczkowski K., Lasota J., Motak A., Szczechowska Œwitoniak M., Kaba³a C., Charzyñski P., 2016. Propozycja an- K., W¹t³y M., 2018. Rates of anthropogenic transformation glojêzycznych nazw jednostek Systematyki gleb Polski. Soil of soils in the Botanical Garden of Jagiellonian University in Science Annual 67(3): 103–116. Kraków (Poland). Catena 170: 272–282. Œwitoniak M., Mroczek P., Bednarek R., 2016. Luvisols or Musztyfaga E., Kaba³a C., 2015. Lithological discontinuity in Cambisols? Micromorphological study of soil truncation in Glossic Planosols (Albeluvisols) of Lower Silesia (SW young morainic landscapes – Case study: Brodnica and Poland). Soil Science Annual 66(4): 180–190. Che³mno Lake Districts (North Poland). Catena 137: 583– Okruszko H., 1969. Powstawanie mu³ów i gleb mu³owych. Rocz- 595. niki Gleboznawcze – Soil Science Annual 20(1): 25–49. Uggla H., 1976. „Rêdziny” Pojezierza Mazurskiego. Roczniki Orzechowski M., Smólczyñski S., Sowiñski P., 2004. Przekszta³- Gleboznawcze – Soil Science Annual 27(2), 113–125. cenia antropogeniczne gleb obni¿eñ œródmorenowych Poje- Uzarowicz £., Kwasowski W., Œpiewak O., Œwitoniak M., 2018. zierza Mazurskiego. Roczniki Gleboznawcze – Soil Science Indicators of of developed in an ash Annual 55(2): 311–320. settling pond at the Be³chatów thermal power station (cen- Piaœcik H., Gotkiewicz J., 2004: Przeobra¿enia odwodnionych tral Poland). Soil Science Annual 69(1): 49–59. gleb torfowych jako przyczyna ich degradacji. Roczniki Gle- Uzarowicz £., Zagórski Z., Mendak E., Bartmiñski P., Szara E., boznawcze – Soil Science Annual 45(2): 331–338. Kondras M., Oktaba L., Turek A., Rogoziñski R., 2017. Tech- Piaœcik H., £achacz A., 1990. W³aœciwoœci fizyczno-wodne i re- nogenic soils (Technosols) developed from fly ash and bot- tencyjne gleb mineralno-murszowych, murszowatych i mur- tom ash from thermal power stations combusting bitumino- szastych sandru mazursko-kurpiowskiego. Acta Acad. Agri- us coal and lignite. Part I. Properties, classification, and in- cult. Tech. Olst. Geod. Ruris Regulat. 20: 79–88. dicators of early pedogenesis. Catena 157: 75–89. Prusinkiewicz Z., 2001. Smolnice gniewskie-w³aœciwoœci, ge- Waroszewski J., Kaliñski K., Malkiewicz M., Mazurek R., Ko- neza, systematyka. Roczniki Gleboznawcze – Soil Science z³owski G., Kaba³a C., 2013. Pleistocene-Holocene cover- Annual 52(1–2): 5–21. beds on granite regolith as parent material for Podzols – An Roj-Rojewski S., Walasek M., 2013. Katena gleb mu³owo-ma- example from the Sudeten Mountains. Catena 104: 161–173. dowych w okolicy Sura¿a w Dolinie Górnej Narwi. Soil Waroszewski J., Sprafke T., Kaba³a C., Kobierski M., Kierczak Science Annual 64(2): 34–40. J., Musztyfaga E., £abaz B., 2019. Tracking textural, mine- Rz¹sa S., 1963. Geneza i ewolucja mineralnych gleb murszo- ralogical and geochemical signatures in soils developed from wych na terenie odwadnianym. Roczniki WSR w Poznaniu basalt-derived materials covered with sediments (SW 18: 151–223. Poland). Geoderma 337: 983–997. Skiba S., Komornicki T., 1983. Gleby organiczno-sufozyjne w Waroszewski J., Sprafke T., Kaba³a C., Musztyfaga E., £abaz Tatrach Polskich. Roczniki Gleboznawcze – Soil Science B., WoŸniczka P., 2018. Aeolian contribution to soils on Annual 34(4): 113–122. mountain slopes (Mt. Œlê¿a, southwest Poland). Quaternary Systematyka gleb Polski, 2011. Roczniki Gleboznawcze – Soil Research 89(3): 702–717. Science Annual 62(3): 1–193. Wasak K., Drewnik M., 2012. Properties of humus horizons of Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznaw- soils developed in the lower montane belt in the Tatra Mo- cze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wy- untains. Polish Journal Soil Science 45(1): 57–68. dawnictwo Uniwersytetu Przyrodniczego we Wroc³awiu, Zagórski Z., 2003. Mineralogiczne i mikromorfologiczne wskaŸ- Polskie Towarzystwo Gleboznawcze, Wroc³aw -Warszawa: niki genezy i w³aœciwoœci rêdzin wytworzonych ze ska³ wê- 250 pp. glanowych ró¿nych formacji geologicznych. Fundacja „Roz- Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA- wój SGGW”: 245 ss. Natural Resources Conservation Service, Washington, DC: 633 pp.

Received: May 27, 2019 Accepted: July 24, 2019 Associated editor: J. Chojnicki Polish Soil Classification, 6th edition – principles, classification scheme and correlations 97

Systematyka gleb Polski, wydanie szóste – podstawy teoretyczne, schemat klasyfikacji i korelacje

Streszczenie: Szóste wydanie Systematyki gleb Polski (SGP6) ma na celu ugruntowanie pozycji klasyfikacji gleb w Polsce jako nowoczesnego systemu naukowego, który odzwierciedla aktualny stan wiedzy naukowej, wspó³czesne rozumienie funkcji gleb oraz potrzeby praktyczne, w tym zwi¹zane z kartografi¹ gleb. SGP6 kontynuuje tradycjê ostatnich wydañ systematyki przygotowa- nych pod auspicjami Polskiego Towarzystwa Gleboznawczego, w szczególnoœci w zakresie konsekwentnego stosowania iloœciowo zdefiniowanych poziomów, w³aœciwoœci i materia³ów diagnostycznych, ale zawsze odnosz¹cych siê do genezy i wspó³czesnego przeobra¿enia gleb. Definicja gleby – przedmiotu klasyfikacji – zosta³a zmodernizowana w odpowiedzi na wspó³czesne potrzeby szerszego uwzglêdnienia (oraz w³aœciwego nazwania) gleb stworzonych przez cz³owieka lub podlegaj¹cych silnym przeobra¿e- niom pod wp³ywem cz³owieka. Zatem na potrzeby SGP6 gleba jest definiowana jako powierzchniowa czêœæ litosfery lub trwale powi¹zane z litosfer¹ (za poœrednictwem budynków lub budowli) nagromadzenie czêœci mineralnych i organicznych, pochodz¹cych z wietrzenia lub akumulacji, naturalnej lub antropogenicznej, ulegaj¹ce przeobra¿eniu przy udziale czynników glebotwórczych oraz maj¹ce zdolnoœæ zaopatrywania organizmów ¿ywych w wodê i sk³adniki pokarmowe. SGP6 wyró¿nia trzy hierarchiczne poziomy klasyfikacji: rz¹d (w ³¹cznej liczbie 9), typ (podstawowa jednostka klasyfikacyjna; ³¹cznie 30 typów) i podtyp (³¹cznie 183 jednostki wyró¿niane na podstawie 62 zdefiniowanych podtypów; podtypy s¹ wymienione hierarchicznie, osobno w ka¿dym typie), którym towarzysz¹ trzy niehierarchiczne poziomy klasyfikacyjne: odmiana (definiuj¹ca dodatkowe cechy pedo-, lito- lub antropogeniczne), rodzaj (definiuj¹cy rodzaj ska³y macierzystej) i gatunek (definiuj¹cy uziarnienie w profilu). Jednostki niehierar- chiczne maj¹ uniwersalne definicje, co umo¿liwia ich u¿ycie w ró¿nych rzêdach/typach, jeœli tylko spe³nione s¹ wszystkie wyma- gania wymienione w definicji. Poni¿szy artyku³ objaœnia podstawy teoretyczne, schemat klasyfikacji oraz zasady klasyfikacji gleb w SGP6, obejmuje klucz do rzêdów i typów, tabelê wyjaœniaj¹c¹ zale¿noœci miêdzy poziomami, w³aœciwoœciami i materia³ami diagnostycznymi wyró¿nianymi w SGP6 oraz w ostatnim wydaniu klasyfikacji miêdzynarodowej FAO-WRB, a tak¿e tabelê kore- lacji miêdzy SGP6 a WRB i Soil Taxonomy. S³owa kluczowe: systematyka gleb, rz¹d gleb, typ gleb, geneza gleb, World Reference Base, Soil Taxonomy