2012 on Lessons Learned from Fukushima

Total Page:16

File Type:pdf, Size:1020Kb

2012 on Lessons Learned from Fukushima ii Preface Information in this Report covers the period up to March 31, 2011. However, given the timing of the earthquake and tsunami in Japan, the Report does not take into consideration actions taken by the CNSC with Class I Nuclear Facilities, mines and mills which include spent fuel bays and radioactive waste facilities. On March 22, 2011, under section 12(2) of the General Safety and Control Regulations (GNSCR), the CNSC requested all Class 1 licensed facilities in Canada to review initial lessons learned from the incident in Japan and to confirm that their overall safety cases remain strong. All licensees provided the requisite initial responses, identifying their proposed plans and schedules to meet the CNSC’s request. Licensees concluded that their overall safety cases remain strong. To confirm their findings, the CNSC has performed a series of inspections at each station. In addition, Canada will be participating in an Extraordinary Meeting of the Convention on Nuclear Safety in August 2012 on lessons learned from Fukushima. More information on the CNSC’s response is available at nuclearsafety.gc.ca iii iv Table of Contents Executive Summary......................................................................................................................................................1 1.0 Introduction....................................................................................................................................................1 2.0 Canada’s key highlights and current priorities ..............................................................................................1 3.0 Progress since the Third Review Meeting .....................................................................................................2 3.1 Canada continues progress for long-term management strategies by:...........................................................2 3.1 (a) Implementation of long-term management approaches for spent fuel ............................................2 3.1 (b) Fostering relationships gained through stakeholder consultation....................................................2 3.1 (c) Ensuring that there are adequate human resources to implement future work................................3 3.1 (d) Increasing regulatory efforts necessary to support future industry initiatives.................................5 3.1 (e) Continuing the production of supporting regulatory documentation ..............................................5 3.1 (f) Validation of model predictions for waste rock and tailings...........................................................5 3.1 (g) Decommissioning of older waste rock sites and the development of new tailings management capacity.......................................................................................................................6 3.1 (h) Continued implementation and ongoing funding requirements for AECL CRL (Nuclear Legacy Liability Program)...............................................................................................................6 3.1 (i) Finalization of the regulatory approval process for the low- and intermediate-level waste deep geological repository...............................................................................................................7 4.0 Conclusion .....................................................................................................................................................7 Section A – Introduction ..............................................................................................................................................9 A.1 Scope of the section .......................................................................................................................................9 A.2 Introduction....................................................................................................................................................9 A.3 Nuclear substances.......................................................................................................................................10 A.4 Canadian philosophy and approach to safety ..............................................................................................10 A.5 Fundamental principles................................................................................................................................11 A.6 Main safety issues........................................................................................................................................11 A.7 Survey of the main themes...........................................................................................................................11 Section B – Policies And Practices.............................................................................................................................13 B.1 Scope of the section .....................................................................................................................................13 B.2 Introduction..................................................................................................................................................13 B.3 Legislative instruments ................................................................................................................................13 B.4 National framework for radioactive waste management .............................................................................13 B.5 Regulatory policy on managing spent fuel and radioactive waste...............................................................15 B.6 Regulatory guide G-320: Assessing the Long Term Safety of Radioactive Waste Management.................16 B.7 Classification of radioactive waste in Canada .............................................................................................16 B.7.1 High-level radioactive waste (HLW).............................................................................................17 B.7.2 Intermediate-level radioactive waste (ILW)..................................................................................17 B.7.3 Low-level radioactive waste (LLW)..............................................................................................17 B.7.4 Uranium mine and mill waste........................................................................................................18 B.8 Operational responsibilities for long-term management..............................................................................18 B.9 Management practices for spent fuel ...........................................................................................................19 B.10 Management practices for low- and intermediate-level radioactive waste..................................................20 B.11 Management practices for uranium mine waste rock and mill tailings .......................................................21 Section C – Scope of Application...............................................................................................................................25 C.1 Scope of the section .....................................................................................................................................25 C.2 Introduction..................................................................................................................................................25 C.3 Reprocessed spent fuel.................................................................................................................................25 C.4 Naturally occurring nuclear substances .......................................................................................................25 C.5 Department of National Defence programs .................................................................................................25 C.6 Discharges....................................................................................................................................................26 v Section D – Inventories and Lists ..............................................................................................................................27 D.1 Scope of the section .....................................................................................................................................27 D.2 Inventory of spent fuel in Canada................................................................................................................27 D.2.1 Spent fuel wet storage inventory at nuclear reactor sites ..............................................................27 D.3 Radioactive waste inventory – Radioactive waste management facilities...................................................28 D.4 Uranium mining and milling waste .............................................................................................................33 D.4.1 Operational mine and mill sites .....................................................................................................33 D.4.2 Inventory of uranium mine and mill waste at inactive tailings sites .............................................34 Section E – Legislative and Regulatory Systems......................................................................................................39 E.1 Scope of the section .....................................................................................................................................39 E.2 Establishment
Recommended publications
  • Heu Repatriation Project
    HEU REPATRIATION PROJECT RATIONALE In April 2010, the governments of Canada and the United States (U.S.) committed to work cooperatively to repatriate spent highly- enriched uranium (HEU) fuel currently stored at the Chalk River Laboratories in Ontario to the U.S. as part of the Global Threat Reduction Initiative, a broad international effort to consolidate HEU inventories in fewer locations around the world. This initiative PROJECT BACKGROUND promotes non-proliferation This HEU is the result of two decades of nuclear fuel use at the by removing existing weapons Chalk River Laboratories for Canadian Nuclear Laboratories (CNL) grade material from Canada research reactors, the National Research Experimental (NRX) and and transferring it to the National Research Universal (NRU), and for the production of U.S., which has the capability medical isotopes in the NRU, which has benefitted generations of to reprocess it for peaceful Canadians. Returning this material to the U.S. in its existing solid purposes. In March 2012, and liquid forms ensures that this material is stored safely in a Prime Minister Harper secure highly guarded location, or is reprocessed into other forms announced that Canada and that can be used for peaceful purposes. the U.S. were expanding their efforts to return additional Alternative approaches have been carefully considered and inventories of HEU materials, repatriation provides the safest, most secure, and fastest solution including those in liquid form. for the permanent disposition of these materials, thereby eliminating a liability for future generations of Canadians. For more information on this project contact: Email: [email protected] Canadian Nuclear Laboratories 1-866-886-2325 or visit: www.cnl.ca persons who have a legitimate need to PROJECT GOAL know, such as police or emergency response To repatriate highly-enriched uranium forces.
    [Show full text]
  • Canadian Nuclear Safety Commission
    Canadian Nuclear Safety Commission Performance Report For the period ending March 31, 2007 ________________________ ________________________ The Honourable Gary Lunn Linda J. Keen, M.Sc. Minister President and Chief Executive Officer Natural Resources Canada Canadian Nuclear Safety Commission Table of Contents SECTION I: OVERVIEW........................................................................................................... 1 Message from the President and Chief Executive Officer...................................................................3 Management Representation Statement ...............................................................................................4 Summary Information..................................................................................................................... 5 Mission.................................................................................................................................... 5 Governance ............................................................................................................................. 5 Regulatory Framework ........................................................................................................... 5 Funding of CNSC Operations................................................................................................. 6 Additional Funding Resources Received for 2006-07............................................................ 6 Financial Resources ...............................................................................................................
    [Show full text]
  • Supplementary Information Written Submission from Lake Ontario
    CMD 19-M24.7A Date: 2019-10-30 File / dossier : 6.02.04 Edocs pdf : 6032342 Supplementary Information Renseignements supplémentaires Written submission from Mémoire de Lake Ontario Waterkeeper Lake Ontario Waterkeeper et and Ottawa Riverkeeper Sentinelle Outaouais Regulatory Oversight Report for Rapport de surveillance réglementaire Canadian Nuclear Laboratories des sites des Laboratoires Nucléaires (CNL) sites: 2018 Canadiens (LNC) : 2018 Commission Meeting Réunion de la Commission November 7, 2019 Le 7 novembre 2019 This page was intentionally Cette page a été intentionnellement left blank laissée en blanc Amendments have been made to these submissions to reflect additional information that has been received by Ottawa Riverkeeper and Lake Ontario Waterkeeper since October 7. In addition to some typographical corrections, the following changes were made to these previously submitted main report: 1) Recommendation #20 no longer requires that CNL confirm whether a DFO permit has been issued for any Chalk River facilities. This recommendation still requests that any assessments accompanying the permit application be provided. Now it also requests a timeline for CNSC staff consideration of the permit; 2) Recommendation #21 no longer requires that CNL confirm whether there are any ECAs for the Chalk River site. This recommendation still requests any assessments that were undertaken to determine whether one was necessary; 3) Discussions of issues concerning DFO permits and ECAs on page 20 have been updated to reflect the fact that Ottawa Riverkeeper is no longer waiting for confirmation of whether there are any DFO permits or ECAs for the Chalk River site. However, formal access to information requests are still ongoing to provide more background information on both DFO and ECA assessments, and CNL has still been asked to provide this information as well; and 4) Discussions of the Port Hope Harbour wall collapse on page 26 have been amended to reflect additional disclosures received since October 7.
    [Show full text]
  • NRC Collection of Abbreviations
    I Nuclear Regulatory Commission c ElLc LI El LIL El, EEELIILE El ClV. El El, El1 ....... I -4 PI AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee docu- ments and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference pro- ceedings, international agreement reports, grantee reports, and NRC booklets and bro- chures. Also available are regulatory guides, NRC regulations in the Code of Federal Regula- tions, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions.
    [Show full text]
  • General Vgs Template
    Chapter 5 - Safety Systems Introduction - Special Safety Systems Functions In previous chapters we have referred to the four safety functions required in a nuclear reactor: • shut down the reactor • remove decay heat • contain any radioactivity • monitor the state of the plant. In this chapter we shall describe the major systems that perform these functions. We shall concentrate on CANDU for our examples, although other reactor types have similar systems. Shutdown Systems Shutdown is one of the most important safety functions in a reactor because it reduces the amount of energy that has to be removed from the fuel after an accident. It is usually accomplished through rapid insertion of a neutron-absorbing material into the core. Another way is to remove from the core material which is essential to the chain reaction - e.g. the moderator. There are more radical concepts possible in principle, such as removing fuel or changing the core geometry, but they are not in widespread use for fast shutdown. Before a shutdown system is designed, the requirements should be defined (although again historically, the two went along together). Here are some of the questions that must be asked, and answered: • how do we get negative reactivity into the core? • how fast does the system have to act, once it receives a signal? • how much reactivity depth must it have (how many negative milli-k?) • how reliable must it be? • what are the acceptance criteria? • what sort of signals are available and practical to trigger the shutdown system for each accident? • what sort of environment must the shutdown system be designed to withstand? • how do we ensure that a fault which could affect the control system or a shutdown system does not affect both? Or both shutdown systems? • how do we know the systems will work as designed? • how does the operator know the system has been required, and that it has worked? 1 Chapter 5 - Safety Systems.wpd Rev.
    [Show full text]
  • Environmental Activities in Uranium Mining and Milling
    Nuclear Development Environmental Activities in Uranium Mining and Milling A Joint NEA/IAEAReport NUCLEAR•ENERGY•AGENCY OECD, 1999. Software: 1987-1996, Acrobat is a trademark of ADOBE. All rights reserved. OECD grants you the right to use one copy of this Program for your personal use only. Unauthorised reproduction, lending, hiring, transmission or distribution of any data or software is prohibited. You must treat the Program and associated materials and any elements thereof like any other copyrighted material. All requests should be made to: Head of Publications Service, OECD Publications Service, 2, rue AndrÂe-Pascal, 75775 Paris Cedex 16, France. ENVIRONMENTAL ACTIVITIES IN URANIUM MINING AND MILLING A JOINT REPORT BY THE OECD NUCLEAR ENERGY AGENCY AND THE INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: ± to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining ®nancial stability, and thus to contribute to the development of the world economy; ± to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and ± to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]
  • Fifth Canadian National Report for the Joint Convention
    Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management © Canadian Nuclear Safety Commission (CNSC) 2014 PWGSC catalogue number CC172-23/2014E-PDF ISSN 2368-4828 Extracts from this document may be reproduced for individual use without permission provided the source is fully acknowledged. However, reproduction in whole or in part for purposes of resale or redistribution requires prior written permission from the Canadian Nuclear Safety Commission. Également publié en français sous le titre: Rapport national du Canada pour la Convention commune sur la sûreté de la gestion du combustible usé et sur la sûreté de la gestion des déchets radioactifs Document availability This document can be viewed on the CNSC website at nuclearsafety.gc.ca. To request a copy of the document in English or French, please contact: Canadian Nuclear Safety Commission 280 Slater Street P.O. Box 1046, Station B Ottawa, Ontario K1P 5S9 CANADA Tel.: 613-995-5894 or 1-800-668-5284 (in Canada only) Facsimile: 613-995-5086 Email: [email protected] Website: nuclearsafety.gc.ca Facebook: facebook.com/CanadianNuclearSafetyCommission YouTube: youtube.com/cnscccsn Publishing history October, 2011 Fourth Report October, 2008 Third Report October, 2005 Second Report October, 2002 First Report ii Preface Information in this report covers the period up to March 31, 2014. However, in some instances the reporting period extends beyond this to the time of writing the report: July 31, 2014. Examples include the current status of the Canadian Nuclear Safety Commission’s regulatory documents, the Nuclear Waste Management Organization’s (NWMO) Adaptive Phased Management (APM) approach, and Ontario Power Generation’s (OPG) Deep Geologic Repository (DGR).
    [Show full text]
  • Decommissioning Projects at the Chalk River Laboratories Over the Next 5 Years and the Challenges with Delivery
    Waste Management, Decommissioning and Environmental Restoration for Canada’s Nuclear Activities September 11-14, 2011 CW -508300-CONF-003 UNRESTRICTED DECOMMISSIONING PROJECTS AT THE CHALK RIVER LABORATORIES OVER THE NEXT 5 YEARS AND THE CHALLENGES WITH DELIVERY K. Schruder, J. McKenna and A. Winter Atomic Energy of Canada Limited, Chalk River Laboratories Chalk River, Ontario, Canada ABSTRACT Nuclear research and development carried out on behalf of the Government of Canada have resulted in 60 years of nuclear legacy liabilities at the Chalk River Laboratories. The liabilities consist of shutdown reactors, research facilities and supporting infrastructure. The Government of Canada in 2006 initiated a five-year, $520 million start-up phase and in April 2011 entered the next 5-year program of decommissioning as part of the long term strategy to address the legacy liabilities. A number of planned projects in Facilities Decommissioning, at the Chalk River Laboratories, have been defined for the next 3 years and will be described in this paper in combination with operational lessons learned for future decommissioning project work. 1. INTRODUCTION The Chalk River Laboratories (CRL) is the Canadian nuclear research facility located near Chalk River, Ontario, approximately 180 km north-west of Ottawa, on the Trans-Canada Highway. CRL is a site of major research and development to support and advance nuclear technology. CRL has expertise in physics, metallurgy, chemistry, biology, and engineering and consists of both operating and shutdown unique research facilities. CRL was conceived in 1942 from collaboration between British and Canadian nuclear researchers, where a research laboratory established in Montreal under the National Research Council of Canada (NRC).
    [Show full text]
  • Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings Series
    Spine for 280 pages: 14,48 mm Management and Storage of Research Reactor Spent Nuclear Fuel Research Reactor Spent Storage of Management and Proceedings Series Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings of a Technical Meeting held in Thurso, United Kingdom, 19–22 October 2009 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–138210–8 ISSN 0074–1884 MANAGEMENT AND STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PANAMA ALBANIA HAITI PAPUA NEW GUINEA ALGERIA HOLY SEE PARAGUAY ANGOLA HONDURAS PERU ARGENTINA HUNGARY PHILIPPINES ARMENIA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BAHRAIN IRAQ REPUBLIC OF MOLDOVA BANGLADESH IRELAND ROMANIA BELARUS ISRAEL RUSSIAN FEDERATION BELGIUM ITALY Rwanda BELIZE JAMAICA SAUDI ARABIA BENIN JAPAN SENEGAL BOLIVIA JORDAN SERBIA BOSNIA AND HERZEGOVINA KAZAKHSTAN SEYCHELLES BOTSWANA KENYA SIERRA LEONE BRAZIL KOREA, REPUBLIC OF BULGARIA KUWAIT SINGAPORE BURKINA FASO KYRGYZSTAN SLOVAKIA BURUNDI LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMBODIA REPUBLIC SOUTH AFRICA CAMEROON LATVIA SPAIN CANADA LEBANON SRI LANKA CENTRAL AFRICAN LESOTHO SUDAN REPUBLIC LIBERIA SWAZILAND CHAD LIBYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC CONGO MADAGASCAR TAJIKISTAN COSTA RICA MALAWI THAILAND CÔTE D’IVOIRE MALAYSIA THE FORMER YUGOSLAV CROATIA MALI REPUBLIC OF MACEDONIA CUBA MALTA TOGO CYPRUS MARSHALL
    [Show full text]
  • Uranium and Thorium Deposits of Northern Ontario
    Ontario Geological Survey Mineral Deposits Circular 25 Uranium and Thorium Deposits of Northern Ontario by James A. Robertson and Kerry L. Gould This project was partially funded by the Ministry of Northern Affairs 1983 Ministry of Hoa Alan w. Pope Minister Natural lA(__ , W. T. Foster Resources Deputy Minister Ontario Copyright OMNR 1983 ISSN 0706-4551 Printed in Canada ISBN 0-7743-8439-5 Publications of the Ontario Ministry of Natural Resources are available from the following sources. Orders for publications should be accompanied by cheque or money order payable to the Treasurer of Ontario. Reports, maps, and price lists (personal shopping or mail order): Public Service Centre, Ministry of Natural Resources Room 1640, Whitney Block, Queen's Park Toronto, Ontario M7A 1W3 Reports and accompanying maps only (personal shopping). Ontario Government Bookstore Main Floor, 880 Bay Street Toronto, Ontario Reports and accompanying maps (mail order or telephone orders): Publications Services Section, Ministry of Government Services 5th Floor, 880 Bay Street Toronto, Ontario M7A 1N8 Telephone (local calls), 965-6015 Toll-free long distance, 1-800-268-7540 Toll-free from area code 807, O-ZENITH-67200 Every possible effort is made to ensure the accuracy of the information contained in this report, but the Ministry of Natural Resources does not assume any liability for errors that may occur. Source references are included in the report and users may wish to verify critical information. Parts of this publication may be quoted if credit is given. It is recommended that reference to this report be made in the following form: Robertson, J.A., and Gould, K.L 1983: Uranium and Thorium Deposits of Northern Ontario; Ontario Geological Survey, Mineral Deposits Circular 25, 152p.
    [Show full text]
  • Submissions of Lake Ontario Waterkeeper and Ottawa Riverkeeper
    Submissions of Lake Ontario Waterkeeper and Ottawa Riverkeeper Re: 2018 CNSC Staff Regulatory Oversight Report Meeting concerning Canadian Nuclear Laboratories Sites Notice of Public Meeting: Ref 2019-M24 October 7, 2019 Submitted to: Participant Funding Program Administrators [email protected] ad the CNSC Secretariat [email protected] 1 Table of Contents Executive Summary …………………………………………………………………………………...…. 3 About the Intervenors ………………………………………………………………………………..….. 4 Current Intervention Opportunity …………………………………………………………………..…. 4 Concerns with current Commission Meeting intervention processes …………………………….….. 5 Timelines ……………………………………………………………………………………….… 6 Access to Information ……………………………………………………………………….……. 6 ORK Review: Chalk River Laboratories ………………………………………………………...….…. 7 Chalk River’s Ecological Context …………………………………………………………………7 Chalk River’s Historical Context ………………………………………………………………..…9 Review of Selected CRL Facilities and Associated Ecological Concerns ………………….…….. 9 Chalk River Regulation: Licences and Permits …………………………………………….………..... 16 Public Access to Information Concerning Chalk River ………………………………………………. 20 Proactive Disclosure by CNL ……………………………………………………………………. 21 Reportable Events ……………………………………………………………………………….. 22 LOW Review: Port Hope Area Initiative ……………………………………………………………… 23 Port Hope Harbour and the Port Hope Area Initiative …………………………………………… 23 Port Hope Harbour Incident Lake October ………………………………………………………. 24 Appendix A: Information Request Summaries Appendix B: Expert Report of
    [Show full text]
  • Performance of Shallow Water Covers on Pyritic Uranium Tailings
    Performance of Shallow Water Covers on Pyritic Uranium Tailings I Ludgate1, A Coggan2 and N K Davé3 ABSTRACT The ore was hosted as metamorphosed quartz-pebble conglomerate with the mineralisation confined mainly to the The performance of in situ, shallow water covers in controlling acid generation was evaluated at four recently decommissioned pyritic cementing material that bound the pebbles. The uranium milling uranium tailings sites at Elliot Lake, Ontario, Canada. The tailings are and extraction processes consisted of hot-sulfuric-acid leaching, acid generating, having a pyrite content of approximately five to ten per using compressed air or hydrogen peroxide as an oxidant, cent and a very low to non-existent alkaline buffering capacity. followed by ion-exchange separation and precipitation as Adverse market conditions led to the closure of all operating uranium ammonium di-uranate or magnesium uranate (yellow cake). The mines in the early- to mid-1990s, followed by rehabilitation and latter process was adopted for newer second-generation mills for decommissioning of mine and waste management facilities. In order to decreasing the total ammonia load to the environment. control acidic drainage, all new and active tailings areas at Denison, The tailings were neutralised and deposited in surface-based Quirke, Panel, Spanish-American and Stanleigh mine sites were overland tailings impoundments. The Tailings Management re-engineered to provide in situ submersion of these tailings under Areas (TMAs) were generally located in valley depressions shallow water covers. The tailings impoundment dams were upgraded and reinforced or in some cases reconstructed, to minimise seepages and bounded by upland ridges and outcrops and impounded by provide a minimum 1 m depth of water cover.
    [Show full text]