Downloaded on 22 May 2018

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded on 22 May 2018 CONSERVATION PRIORITIZATION AND ECOLOGY OF DATA- POOR MARINE SPECIES UNDER HUMAN PRESSURES by Xiong Zhang B.S., Chongqing University, 2010 M.Sc., The University of Chinese Academy of Sciences, 2013 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2019 © Xiong Zhang, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Conservation Prioritization and Ecology of Data-poor Marine Species under Human Pressures submitted by Xiong Zhang in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Faculty of Graduate and Postdoctoral Studies (Zoology) Examining Committee: Dr. Amanda Vincent Supervisor Dr. William Cheung Supervisory Committee Member Dr. Tara Martin University Examiner Dr. Mary O’Connor University Examiner Additional Supervisory Committee Members: Dr. Christopher Harley Supervisory Committee Member Dr. Sarah Gergel Supervisory Committee Member ii Abstract Securing a healthy and biodiverse ocean is vital to our human wellbeing. However, marine conservation is challenging, especially for data-poor species, whose habitats and threats are understudied. My dissertation explored how to address such challenges at two large spatial scales (in China and globally), with a focus on the little studied seahorses (Hippocampus spp.). In the first two data chapters, I explored the utility of various sources of information about species and habitat covariates in species distribution models (SDMs). My results from the first chapter showed that local ecological knowledge provided useful biogeographic data of five Chinese seahorse species to predict their distributions, which were mainly associated with ocean temperature. My second chapter at the global scale indicated that integrating citizen sciences, museum collections, and research-grade data with continuous predictors derived the best SDM models; these models predicted reliable habitat maps for 33 out of 42 species that were primarily associated with depths, proximity to macrohabitats (e.g., sponges), pH, and ocean temperature. In the third analytical chapter, I explored global threat patterns and conservation status for 42 seahorse species with two cumulative-human-impact (CHI) models (spatial and non-spatial) and random forest (RF) models. I found that human-impact indices (from the CHI models) can be used to predict conservation status at high accuracies (87% and 96%) in RF models. Applying a non-spatial CHI model derived indices better predicted conservation status, while using a spatial CHI model identified distribution patterns of threats. In the fourth data chapter, I integrated the derived biogeographic and threat maps in a novel framework to set conservation priorities for seahorse habitats in China and globally, using Marxan software. I found that the two major outputs of Marxan (i.e., selection frequency and best solution) were useful to determine feasible priority solutions at large spatial scales. iii My results identified valuable datasets and approaches to advancing ecological and conservation knowledge for data-poor marine species, an essential precursor to action for the ocean. iv Lay Summary Managing and protecting marine life requires an understanding of where species live, what threatens them and their habitats, and what we might do to help them. Seahorses are particularly charming examples of the many marine species that are little understood. I set off to study seahorses in China, where they are heavily fished, and around the world. I found we could learn most by integrating information from diverse sources, including local fishers’ knowledge, citizen science (e.g., divers’ observations), museum collections, and scientists’ knowledge and data. We then applied novel computer techniques (e.g. machine learning models and decision-making software) and considered our results from both natural and social science perspectives. This helped us find out what seahorses are threatened and allowed us to plan possible conservation action, particularly for deciding where to urge creation of protected areas. Our new methods are of value to many species and spaces. v Preface This dissertation contains four scientific papers of which I am or will be the first author. I designed the framework, scope, and question of each research chapter with my supervisor, Dr. Amanda Vincent. I was primarily responsible for conducting the research, including project planning, field work and data gathering, development of methodology, data analysis, interpretation of results, and manuscript writing. My supervisor, Dr. Amanda Vincent, guided me through all these processes, especially helping me with grant applications, project management, field work, and drafting and refining the manuscripts. My committee members, Dr. William Cheung, Dr. Sarah Gergel, and Dr. Christopher Harley also provided intellectual feedback that helped me refine my research methods and manuscript writing. For Chapter 2, Dr. William Cheung introduced me to local colleagues in China who facilitated my field work. This field work was assisted by many Chinese colleagues (see Acknowledgements). For Chapter 3, some undergraduate and graduate students at UBC worked with me to gather seahorse data from peer-reviewed literature (see Acknowledgements). My Chapters 2 and 3 have resulted in two publications: • Chapter 2: Zhang, X. and Vincent, A.C. (2017) Integrating multiple datasets with species distribution models to inform conservation of the poorly-recorded Chinese seahorses. Biological Conservation, 211, 161-171. I conceived the preliminary idea, conducted the field work, analyzed the data, and wrote the manuscript. Dr. Amanda Vincent helped me refine the idea and the manuscript. • Chapter 3: Zhang, X. and Vincent, A.C. (2018) Predicting distributions, habitat preferences and associated conservation implications for a genus of rare fishes, seahorses (Hippocampus spp.). Diversity and Distributions. https://doi.org/10.1111/ddi.12741. I conceived the preliminary idea, conducted the research and wrote the manuscript. Dr. Amanda Vincent helped me refine the idea and the manuscript. Chapters 4 and 5 will be submitted to leading journals as two co-authored papers with Dr. Amanda Vincent. vi The field work in my dissertation was approved by UBC’s Animal Care Committee Office of Research Service (A12-0288-A011) and UBC’s Human Behavioural Research Ethics Board (H12-02731). vii Table of Contents Abstract ............................................................................................................................. iii Lay Summary .................................................................................................................... v Preface ............................................................................................................................... vi Table of Contents ........................................................................................................... viii List of Tables ................................................................................................................... xii List of Figures ................................................................................................................. xiv List of Symbols ............................................................................................................. xviii List of Abbreviations ..................................................................................................... xix Acknowledgements ......................................................................................................... xx Dedication ...................................................................................................................... xxii Chapter 1: Introduction ................................................................................................... 1 1.1 Rationale ................................................................................................................................ 1 1.2 Background ........................................................................................................................... 2 1.3 Case Study ............................................................................................................................. 6 1.4 Context and Collaborators ..................................................................................................... 9 1.5 Research Questions ............................................................................................................... 9 1.6 Thesis Outline ...................................................................................................................... 10 1.6.1 Chapter 2: Integrating multiple datasets with species distribution models to inform conservation of the poorly-recorded Chinese seahorses ........................................................ 12 1.6.2 Chapter 3: Predicting distributions, habitat preferences, and associated conservation implications for a genus of data-poor species, seahorses (Hippocampus spp.) 12 1.6.3 Chapter 4: Cumulative human impact models reveal threat patterns of seahorses (Hippocampus spp.) ..............................................................................................................
Recommended publications
  • EST 1. Species of Aglaophenia Reported from Patagonia, South
    EST 1. Species of Aglaophenia reported from Patagonia, South Atlantic, South Africa, Tasmania and New Zealand [Locations marked with * slighly northern to Patagonian region (i.e. 40° S in the western sector)]. Only the last and/or major contributions per locality are given. Patagonia South Atlantic South Africa Tasmania New Zealand Source (respectively) Aglaophenia acacia Allman, 1883 x El Beshbeeshy & Jarms 2011 Aglaophenia acanthocarpa Allman, 1876 x Vervoort & Watson 2003, Alfaro et al. 2004 Aglaophenia antarctica Jäderholm, 1903 x Jäderholm 1903 Aglaophenia ctenata (Totton, 1930) x Vervoort & Watson 2003 Aglaophenia cupressina Lamouroux, 1816 x Millard 1975 Aglaophenia decumbens Bale, 1914 x Hodgson 1950 Aglaophenia difficilis Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia digitulus Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia divaricata (Busk, 1852) x* x Galea et al. 2014; Watson 1975 Aglaophenia hystrix Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia latecarinata Allman, 1877 x Millard 1975 Aglaophenia laxa Allman, 1876 x Vervoort & Watson 2003 Aglaophenia parvula Bale, 1882 x x x Galea 2015; Millard 1975 (as Aglaophenia pluma parvula), Gili et al. 1989; Hodgson 1950 Aglaophenia patagonica d'Orbigny, 1839 x Leloup 1974 Aglaophenia picardi Svoboda, 1979 x Galea 2015 Aglaophenia pluma (Linnaeus, 1758) x Millard 1975 (as Aglaophenia pluma pluma and Aglaophenia pluma dichotoma) Aglaophenia plumosa Bale, 1882 x x Watson 1975; Vervoort & Watson 2003 Aglaophenia sinuosa Bale, 1888 x Vervoort & Watson 2003 Aglaophenia subspiralis Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia tasmanica Bale, 1914 x Hodgson 1950 ALFARO, C.A., JEFFS, A.G. & CREESE, R.G. 2004. Bottom-drifting algal/mussel spat associations along a sandy coastal region in northern New Zealand.
    [Show full text]
  • Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
    Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol­ published by his friend Sagot (1873). Although an aristo­ land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon­ Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial­ his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche­ around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat­ (notably Nevis, Sint Eustatius, St.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • AC26 Doc. 20 Annex 1 English Only / Únicamente En Inglés / Seulement En Anglais
    AC26 Doc. 20 Annex 1 English only / únicamente en inglés / seulement en anglais Fauna: new species and other taxonomic changes relating to species listed in the EC wildlife trade regulations January, 2012 A report to the European Commission Directorate General E - Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre AC26 Doc. 20, Annex 1 UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL United Kingdom Tel: +44 (0) 1223 277314 Fax: +44 (0) 1223 277136 Email: [email protected] Website: www.unep-wcmc.org CITATION ABOUT UNEP-WORLD CONSERVATION UNEP-WCMC. 2012. Fauna: new species and MONITORING CENTRE other taxonomic changes relating to species The UNEP World Conservation Monitoring listed in the EC wildlife trade regulations. A Centre (UNEP-WCMC), based in Cambridge, report to the European Commission. UNEP- UK, is the specialist biodiversity information WCMC, Cambridge. and assessment centre of the United Nations Environment Programme (UNEP), run PREPARED FOR cooperatively with WCMC, a UK charity. The Centre's mission is to evaluate and highlight The European Commission, Brussels, Belgium the many values of biodiversity and put authoritative biodiversity knowledge at the DISCLAIMER centre of decision-making. Through the analysis and synthesis of global biodiversity The contents of this report do not necessarily knowledge the Centre provides authoritative, reflect the views or policies of UNEP or strategic and timely information for contributory organisations. The designations conventions, countries and organisations to use employed and the presentations do not imply in the development and implementation of the expressions of any opinion whatsoever on their policies and decisions.
    [Show full text]
  • Hippocampus Bargibanti Whitley 1970
    Order Gasterosteiformes / Family Syngnathidae CITES Appendix II Hippocampus bargibanti Whitley 1970 Common names Bargibant’s seahorse (U.S.A.); pygmy seahorse (Australia) Synonyms None known Description Maximum recorded adult height: 2.4 cm45 Trunk rings: 11–12 Tail rings: 31–32 (31–33) HL/SnL: 4.6 (4.3–5.4) Rings supporting dorsal fin: 3 trunk rings (no tail rings) Dorsal fin rays: 14 (13–15) Pectoral fin rays: 10 (10–11) Coronet: Rounded knob Spines: Irregular bulbous tubercles scattered over body and tail; single, prominent rounded eye spine; single, low rounded cheek spine Other distinctive characteristics: Head and body fleshy, mostly without recognisable body rings; ventral portion of trunk segments incomplete; snout extremely short 30 Order Gasterosteiformes / Family Syngnathidae CITES Appendix II Colour/pattern: Two colour morphs are known: (a) pale grey or purple with pink or red tubercles (found on gorgonian coral Muricella plectana); and (b) yellow with orange tubercles (found on gorgonian coral Muricella paraplectana) Confirmed distribution Australia; France (New Caledonia); Indonesia; Japan; Papua New Guinea; Philippines Suspected distribution Federated States of Micronesia; Malaysia; Palau; Solomon Islands; Vanuatu Habitat Typically found at 16–40 m depth46; only known to occur on gorgonian corals of the genus Muricella45, 46 Life history Breeding season year round47; adults usually found in pairs or clusters of pairs in the wild (up to 28 on a single gorgonian)47; gestation duration averages 2 weeks48; length at birth averages 2 mm48; brood size 34 from one male47 Trade Not known in international trade Conservation status The entire genus Hippocampus is listed in Appendix II of CITES, effective May 20041.
    [Show full text]
  • Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia
    Diversity 2016, 8, 21; doi:10.3390/d8040021 S1 of S3 9 Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia Jane Fromont, Muhammad Azmi Abdul Wahab, Oliver Gomez, Merrick Ekins, Monique Grol and John Norman Ashby Hooper 1. Materials and Methods 1.1. Collation of Sponge Occurrence Data Data of sponge occurrences were collated from databases of the Western Australian Museum (WAM) and Atlas of Living Australia (ALA) [1]. Pilbara sponge data on ALA had been captured in a northern Australian sponge report [2], but with the WAM data, provides a far more comprehensive dataset, in both geographic and taxonomic composition of sponges. Quality control procedures were undertaken to remove obvious duplicate records and those with insufficient or ambiguous species data. Due to differing naming conventions of OTUs by institutions contributing to the two databases and the lack of resources for physical comparison of all OTU specimens, a maximum error of ± 13.5% total species counts was determined for the dataset, to account for potentially unique (differently named OTUs are unique) or overlapping OTUs (differently named OTUs are the same) (157 potential instances identified out of 1164 total OTUs). The amalgamation of these two databases produced a complete occurrence dataset (presence/absence) of all currently described sponge species and OTUs from the region (see Table S1). The dataset follows the new taxonomic classification proposed by [3] and implemented by [4]. The latter source was used to confirm present validities and taxon authorities for known species names. The dataset consists of records identified as (1) described (Linnean) species, (2) records with “cf.” in front of species names which indicates the specimens have some characters of a described species but also differences, which require comparisons with type material, and (3) records as “operational taxonomy units” (OTUs) which are considered to be unique species although further assessments are required to establish their taxonomic status.
    [Show full text]
  • Ircinia Strobilina (Black-Ball Sponge)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Ircinia strobilina (Black-ball Sponge) Order: Dictyoceratida (Horny Sponges) Class: Demospongiae (Common Sponges) Phylum: Porifera (Sponges) Fig. 1. Black-ball sponge, Ircinia strobilina. [http://bicamsoft.nl/mieke/index.php/sponge/#jp-carousel-889, downloaded 25 October 2016] TRAITS. Ircinia strobilina is a large, spherical sponge with a fibrous skeleton of the protein spongin, similar to collagen, and no mineral spicules (Fig.1). Its size is from 5cm to over 1m diameter. Internally, it can be described as stiff and soft, whilst externally I. strobilina is covered with small connected cones approximately 3-8mm high and wide. Small pores 2-5mm wide are scattered over the outer surface. The colour varies from grey to black, with a dull yellow at the base as well as inside the cavity of the sponge (SMS, 2016). DISTRIBUTION. Ircinia strobilina is found from Florida to the Bahamas, throughout the Caribbean, to Brazil (NOAA, 2016). UWI The Online Guide to the Animals of Trinidad and Tobago Diversity HABITAT AND ECOLOGY. Found at 5-23m depth, mainly in inner-reef zones as well as lagoons, and among beds of Thalassia testudinum turtle grass (Xavier Biology, 2016). It may also thrive on rocky substrate in strong currents of rocky reef channels, such as in the Bahamas. I. strobilina are filter feeders. They draw water which carries food particles into their internal cavities through the small pores on the surface. Inside the sponge the choanocytes (feeding cells) trap the food whilst the water flows through the body and exits through the osculum, which is the large opening at the top of the sponge.
    [Show full text]
  • (Teleostei: Syngnathidae: Hippocampinae) from The
    Disponible en ligne sur www.sciencedirect.com Annales de Paléontologie 98 (2012) 131–151 Original article The first known fossil record of pygmy pipehorses (Teleostei: Syngnathidae: Hippocampinae) from the Miocene Coprolitic Horizon, Tunjice Hills, Slovenia La première découverte de fossiles d’hippocampes « pygmy pipehorses » (Teleostei : Syngnathidae : Hippocampinae) de l’Horizon Coprolithique du Miocène des collines de Tunjice, Slovénie a,∗ b Jure Zaloharˇ , Tomazˇ Hitij a Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aˇskerˇceva 12, SI-1000 Ljubljana, Slovenia b Dental School, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, SI-1000 Ljubljana, Slovenia Available online 27 March 2012 Abstract The first known fossil record of pygmy pipehorses is described. The fossils were collected in the Middle Miocene (Sarmatian) beds of the Coprolitic Horizon in the Tunjice Hills, Slovenia. They belong to a new genus and species Hippotropiscis frenki, which was similar to the extant representatives of Acentronura, Amphelikturus, Idiotropiscis, and Kyonemichthys genera. Hippotropiscis frenki lived among seagrasses and macroalgae and probably also on a mud and silt bottom in the temperate shallow coastal waters of the western part of the Central Paratethys Sea. The high coronet on the head, the ridge system and the high angle at which the head is angled ventrad indicate that Hippotropiscis is most related to Idiotropiscis and Hippocampus (seahorses) and probably separated from the main seahorse lineage later than Idiotropiscis. © 2012 Elsevier Masson SAS. All rights reserved. Keywords: Seahorses; Slovenia; Coprolitic Horizon; Sarmatian; Miocene Résumé L’article décrit la première découverte connue de fossiles d’hippocampes « pygmy pipehorses ». Les fos- siles ont été trouvés dans les plages du Miocène moyen (Sarmatien) de l’horizon coprolithique dans les collines de Tunjice, en Slovénie.
    [Show full text]
  • Structure of Mediterranean 'Cnidarian Populations In
    Homage to Ramon Marga/et,· or, Why there is such p/easure in studying nature 243 (J. D. Ros & N. Prat, eds.). 1991 . Oec% gia aquatica, 10: 243-254 STRUCTURE OF 'CNIDARIAN POPULATIONS IN MEDITERRANEAN SUBLITTORAL BENTHIC COMMUNITIES AS A RESUL T OF ADAPTATION TO DIFFERENT ENVIRONMENTAL CONDITIONS 2 JOSEP-MARIA GILIl & ENRIe BALLESTEROs .• 1 Insti t de Ciencies del Mar (CSIC). Passeig Nacional, s/n. 08039 Barcelona. Spain 2 � Centre d'Estudis Avanc;:atsde Blanes (CSIC). Camí de Santa Barbara, s/n. 17300 Blanes. Spain Received: March 1990 SUMMARY The presence and abundance of Cnidarians, extremely cornmon in Mediterranean sublittoral benthic communities, exerts a profound effect on the entire structure of such communities, although the roles of Anthozoans and Hydrozoans differ in accordance with their different biological characteristics. Structural differences in benthic cnidarian populations were observed in three sublittoral cornmunities located within 100 m of each other yet differing considerably in light intensity and water movement. Species-area and Shannon's diversity-area curves were computed for each community from reticulate samples constituted by 18 subsamples 2 of 289 cm . Species-area curves were fitted to semilogarithmic functions, while diversity-area curves were fitted to Michaelis-Menten functions by the method of least squares. Species richness, species distribution, alpha-diversity, and pattem diversity were estimated from the fitted curves. Patch size for Anthozoans was smaller than that for Hydrozoans in all three communities. Diversity was greatest in the cornmunities with the lowest and with the highest light intensity and water flow levels, but species richness was highest in the intermediate community.
    [Show full text]
  • Trade in Seahorses and Other Syngnathids in Countries Outside Asia (1998-2001)
    ISSN 1198-6727 Fisheries Centre Research Reports 2011 Volume 19 Number 1 Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) Fisheries Centre, University of British Columbia, Canada Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) 1 Edited by Amanda C.J. Vincent, Brian G. Giles, Christina A. Czembor and Sarah J. Foster Fisheries Centre Research Reports 19(1) 181 pages © published 2011 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 1 Cite as: Vincent, A.C.J., Giles, B.G., Czembor, C.A., and Foster, S.J. (eds). 2011. Trade in seahorses and other syngnathids in countries outside Asia (1998-2001). Fisheries Centre Research Reports 19(1). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. Fisheries Centre Research Reports 19(1) 2011 Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) edited by Amanda C.J. Vincent, Brian G. Giles, Christina A. Czembor and Sarah J. Foster CONTENTS DIRECTOR ’S FOREWORD ......................................................................................................................................... 1 EXECUTIVE SUMMARY ............................................................................................................................................. 2 Introduction ..................................................................................................................................................... 2 Methods ...........................................................................................................................................................
    [Show full text]
  • Hydrozoa, Cnidaria
    pp 003-268 03-01-2007 08:16 Pagina 3 Atlantic Leptolida (Hydrozoa, Cnidaria) of the families Aglaopheniidae, Halopterididae, Kirchenpaueriidae and Plumulariidae collected during the CANCAP and Mauritania-II expeditions of the National Museum of Natural History, Leiden, the Netherlands CANCAP-project. Contributions, no. 125 J. Ansín Agís, F. Ramil & W. Vervoort Ansín Agís, J., F. Ramil & W. Vervoort. Atlantic Leptolida (Hydrozoa, Cnidaria) of the families Aglaopheniidae, Halopterididae, Kirchenpaueriidae and Plumulariidae collected during the CAN- CAP and Mauritania-II expeditions of the National Museum of Natural History, Leiden, the Nether- lands. Zool. Verh. Leiden 333, 29.vi.2001: 1-268, figs 1-97.— ISSN 0024-1652/ISBN 90-73239-79-6. J. Ansín Agís & F. Ramil, Depto de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Spain; e-mail addresses: [email protected] & [email protected]. W. Vervoort, National Museum of Natural History, Leiden, The Netherlands; e-mail: vervoort@natu- ralis.nnm.nl. Key words: Cnidaria; Hydrozoa; Leptolida; Aglaopheniidae; Halopterididae; Kirchenpaueriidae; Plumulariidae; north-eastern Atlantic; geographical distribution. Forty-six species of the superfamily Plumularioidea (Hydrozoa, Cnidaria) and some material identi- fied to the generic level, collected by the CANCAP and Mauritania-II expeditions of the Rijkmuseum van Natuurlijke Historie (now Nationaal Natuurhistorisch Museum) in the period 1976-1988, are described, as well as two other species that were used in the present study. In addition to the descrip- tions, synonymy, variability and geographical distribution are discussed; autoecological data and measurements are also presented. The new species described here are: Aglaophenia svobodai spec. nov., Streptocaulus caboverdensis spec. nov., S. chonae spec. nov., Antennella confusa spec.
    [Show full text]
  • Ip Man from Wikipedia, the Free Encyclopedia
    Ip Man From Wikipedia, the free encyclopedia [2] Ip Man, also known as Yip Man, (Chinese: 葉問; 1 October 1893 – 2 December 1972), was a Chinese martial artist, and a master Ip Man teacher of Wing Chun. He had several students who later became martial arts masters in their own right. His most famous student was Bruce Lee. Contents 1 Early life 2 Life in Hong Kong 3 Death and legacy 4 In popular culture 5 Martial arts lineage Born 1 October 1893 Foshan, 6 References Guangdong, Qing China Died 2 December 1972 Early life (aged 79) Mong Kok, Ip Man was born to Yip Oi-dor and Wu Shui. He grew up in a wealthy family in Foshan, Guangdong, and received a traditional Chinese Kowloon, Hong education. His elder brother was Yip Kai-gak, his elder sister was Yip Wan-mei and his younger sister was Yip Wan-hum.[3] Kong[1] Throat cancer [4][5] Ip started learning Wing Chun from Chan Wah-shun when he was 7. Chan was 64 at the time, and Ip became Chan's last student. Other Yip Man, Due to his teacher's age, Ip learned most of his skills and techniques from Chan's second eldest disciple, Wu Chung-sok (吳仲素). Chan names Yip Kai-man, lived three years after Ip's training started and one of his dying wishes was to have Wu continue teaching Ip. Ye Wen At the age of 16, Ip moved to Hong Kong with help from his relative Leung Fut-ting. One year later, he attended school at St.
    [Show full text]