SAND, SAND ADDITIVES and SAND PROPERTİES

Total Page:16

File Type:pdf, Size:1020Kb

SAND, SAND ADDITIVES and SAND PROPERTİES MOLD SAND, SAND ADDITIVES & SAND PROPERTIES Collection and Selection by Dr. Mehdi Divandari IUST Castin g 1 Flow Chart of a Metal Casting System Sand Casting of Metals Mold Materials Topics covered: Molding sand Constituents of molding sand Property requirements of molding sand Testing of sand properties 1 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Mold Material The mold material is the one out of which the mold is made. The mold material should be such that casting should be able to retain its shape till the molten metal has solidified. Types of molds: Permanent molds: They are made up of ferrous metals and alloys (Steel, Grey CI, etc.). Temporary refractory molds: They are made of refractory sands and resins Molds made of wax, plastic, Plaster of Paris , carbon, ceramics are also employed. 2 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Mold Material Permanent molds Temporary refractory molds Since they are made of refractory sands, the They are employed for casting low melting temporary refractory molds employed for point materials casting high melting point materials They are costly. They are cheaper. They are employed to produce objects They are employed to produce objects bigger smaller in size. in size. The surface finish, quality and dimensional They produce casting with better surface accuracy of the casting produced by finish, quality and dimensional accuracy. temporary molds is poor. 3 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Properties of Molding Material Flowability – It is ability of molding sand to get compacted to a uniform density. Flowability assists molding sand to flow and pack all around the pattern and take up the required shape. The sand mold should response to different molding processes. Flowability increases as the clay and water content increases. Green Strength - The molding sand that contains moisture is termed as green sand. The strength of the sand in green or moist state is termed as green strength. A mold with adequate green strength will be able to retain its shape and will not distort or collapse. The green sand particles have the ability to cling to each other to impart sufficient strength to the mold. Collapsibility - It is property due to which the sand mold automatically gets collapsed after casting solidifies. The molding sand should also have collapsibility so that during the contraction of the casting it does not provide any resistance, which may result in the cracks in the casting. 4 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Properties of Molding Material Dry Strength - It is the strength of the molding sand in dry conditions. When the molten metal is poured in the mold, the sand around the mold cavity is quickly converted into dry sand as the moisture in the sand evaporates due to the heat of the molten metal. At this stage the molding sand must posses the sufficient strength to retain the exact shape of the mold cavity and at the same time it must be able to withstand the metallostatic pressure of the liquid material. Dry sand strength is related to grain size, binder and water content. Permeability - During pouring and subsequent solidification of a casting, a large amount of gases and steam is generated. These gases are those that have been absorbed by the metal during melting, air absorbed from the atmosphere and the steam generated by the molding and core sand. The binder, additives, etc. present in the molding sand also produce steam and other gases. If these gases are not allowed to escape from the mold, they would be entrapped inside the casting and cause casting defects. To overcome this problem the molding material must be porous or permeable to provide path for the escape of gases. Proper venting of the mold also helps in escaping the gases that are generated inside the mold cavity. Sand with Coarse grains exhibit more permeability. In absence of permeability the defects like surface blows, gas holes, etc. may be experienced. 5 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Properties of Molding Material Hot Strength - It is strength of the sand above 212oF. As soon as the moisture is eliminated, the sand would reach at a high temperature when the metal in the mold is still in liquid state. The strength of the sand that is required to hold the shape of the cavity is called hot strength. In absence of hot strength the mold may enlarge, break, erode or get cracked. Durability – The molding sand should possess the capacity to withstand repeated cycles of heating and cooling during casting process Molding sand should be chemically immune to molten metals. Should be reusable. It should be easy to prepare and control. 6 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Properties of Molding Material Refractoriness - It is the ability of the molding material to withstand the temperature of the liquid metal to be poured so that it does not get cracked, fused with the metal or experience any major physical change. Refractoriness is essential while casting high melting point materials. The refractoriness of the silica sand is highest. Fineness – Finer sand molds resists metal penetration and produces smooth casting surface. Fineness and permeability are in conflict with each other and hence they must be balanced for optimum results. Bench Life – It is ability of the molding sand to retain its properties during storage. Besides these specific properties the molding material should be cheap, reusable, coefficient of expansion, durability and should have good thermal conductivity. 7 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Molding Sands: Sources, Types, Ingredients Sources: Types: Ingredients: River beds Natural sands Refractory sand grains Sea Synthetic sands Binders Lakes Loam sands Water (moisture) Desert Additives 8 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Natural Sands It can be used as soon as received from source. It contains binding material (5-20%), water (5-8%) and considerable amount of organic matter. It can maintain moisture contain for long time. The finishing obtained on natural sand molds is good. It is cheaper compared to other sands. It has lesser refractoriness. It is employed for casting CI and non-ferrous metals. Molds made of natural sand can be easily repaired. When mixed with Bentonite, the properties of the sand gets improved and it gets properties like Synthetic sand. 9 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Synthetic Sands A synthetic sand consists of natural sand with or without clay, binder and moisture. The organic matter is not present in synthetic sand. Synthetic sand is a formulated sand, formulation is done to impart certain desired properties not possessed by natural sand. Possesses good refractoriness, high permeability, uniform grain size as compared to natural sand. It is more suitable for mass production and mechanized foundries. 10 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Loam Sands It contains much more clay (50% or more) as compared to ordinary sand. The ingredients of Loam sand may be fine sand, clay, finely ground refractories, graphite and fibrous reinforcement. 11 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Refractory Sands 1. Silica sand 2. Magnite 3. Zircon 4. Dolomite 5. Olivine 6. Silimanite 7. Graphite / Carbon 12 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Properties of Refractory Sands They maintain their shape and other characteristics at high temperature. When packed to produce the mold cavity, they remain sufficiently porous or permeable to give out gases produced during solidification of molten material. They can be molded into intricate shapes. They are chemically immune to molten metals. They can be used repeatedly to make molds. They are inexpensive. They can be made available without much difficulty. 13 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Molding Sand Composition Base Sand Silica sand is most commonly used base sand. Other base sands that are also used for making mold are zircon sand, Chromite sand and olivine sand. Silica sand is cheapest among all types of base sand and it is easily available. Binder Binders are of many types such as, Clay binders, Organic binders and Inorganic binders Clay binders are most commonly used binding agents mixed with the molding sands to provide the strength. The most popular clay types are: Kaolinite or fire clay (Al2O3 2SiO2 2H2O) and Bentonite (Al2O3 4SiO2 nH2O) Bentonite can absorb more water than fire clay which increases its bonding power. Water (Moisture) Clay acquires its bonding action only in the presence of the required amount of moisture. When water is added to clay, it penetrates the mixture and forms a microfilm, which coats the surface of each flake of the clay. The amount of water used should be properly controlled. This is because a part of the water, which coats the surface of the clay flakes, helps in bonding, while the remainder helps in improving the plasticity. 14 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Molding Sand Composition Typical Composition of Molding Sand Molding Sand Constituent Weight (%) Silica sand 92 Clay (Sodium Bentonite) 8 Water 4 15 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Grain Size The grain shape and size of molding sand defines the total surface area of grains contained in unit mass. Total surface area is known as Specific Surface. Specific surface gives rough idea of amount of binder needed to coat the grains of molding sand. 16 Compiled by Prof. Amruta A. Rane (Asst. Prof., DJSCE) Grain Size The grain size and distribution influences many sand properties such as permeability, flowability, refractoriness, surface fineness and strength. The finer the sand grains, the finer is the molding sand as whole.
Recommended publications
  • Actions Aimed at Increasing the Beneficial Use of Foundry Sand
    Draft 9/17/09 ACTIONS AIMED AT INCREASING THE BENEFICIAL USE OF FOUNDRY SAND A MULTI-STAKEHOLDER ACTION PLAN September, 2009 Draft 9/17/09 September, 2009 Over the past year, a core planning group has worked in consultation with a broad group of stakeholders, to consider various actions for increasing the beneficial use of foundry sand. This process has produced a Multi-Stakeholder Action Plan (MAP) which identifies key challenges to increased beneficial use, and a comprehensive set of actions aimed at increasing the beneficial use, of foundry sands. These actions will a) document the economic and environmental case for beneficial use, b) foster sustainable markets linking sand generators with end users, c) address regulatory processes, and d) establish a coordinated framework to oversee implementation and measure progress. The planning process also generated a set of Initial Priority Actions that various key parties are undertaking over the next few years. These actions will address many of the challenges identified in the MAP and lay the groundwork for implementation of additional MAP actions. Currently, the foundry industry estimates that about 28% of sands are directed to beneficial use. The industry’s national trade association—the American Foundry Society—has set a goal of 50% beneficial use by 2015. During the development of the MAP, the stakeholders listed below expressed support for this goal and committed to work together towards achieving it through implementation of the Initial Priority Actions. Organizations Playing Key Roles
    [Show full text]
  • The Revised Handbook for Analyzing Jobs
    This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com The Revised Handbook for Analyzing Jobs U.S. Department of Labor Employment and Training Administration - 1I . 1 a .1 i MM | • 1 \ \ j • far* ! \ > f | f • i ' 1 • ■ J : ■1 mm i 1 1 I ' • < - ' ffiiliKii ... * in .n mil i ifnrtriw ffiii * > l • \ / i r □ j | . - j Material in this publication is in the public domain and may be reproduced, fully or partially, without permission of the Federal Government. Source credit is requested but not required. Permis sion is required only to reproduce any copyrighted material contained herein. The Handbook for Analyzing Jobs (HAJ) contains the methodology Ml and benchmarks used by the cooperative Federal-State Occupational Analysis Program in gathering and recording information about jobs. Major Occupational Analysis products include the Dictionary of Occu pational Titles which contains occupational definitions of some 13,000 occupations, Selected Characteristics of Occupations Defined in the Dictionary of Occupational Titles, and the Guide for Occupational Exploration. All of these publications are available from the U.S. Government Printing Office. Since the first edition of the Handbook was published in 1944, changes and improvement in occupational analysis methodology have resulted in periodic revisions. This, the fourth revision, has been used by staff of State Occupational Analysis Field Centers since 1984. Dur ing this time, analysts have continued to refine the Handbook in order to reduce ambiguities and further refine procedures to facilitate accu rate and consistent gathering, synthesis, interpretation, and reporting of occupational information.
    [Show full text]
  • Implementation of Metal Casting Best Practices
    Implementation of Metal Casting Best Practices January 2007 Prepared for ITP Metal Casting Authors: Robert Eppich, Eppich Technologies Robert D. Naranjo, BCS, Incorporated Acknowledgement This project was a collaborative effort by Robert Eppich (Eppich Technologies) and Robert Naranjo (BCS, Incorporated). Mr. Eppich coordinated this project and was the technical lead for this effort. He guided the data collection and analysis. Mr. Naranjo assisted in the data collection and analysis of the results and led the development of the final report. The final report was prepared by Robert Naranjo, Lee Schultz, Rajita Majumdar, Bill Choate, Ellen Glover, and Krista Jones of BCS, Incorporated. The cover was designed by Borys Mararytsya of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy, the Advanced Technology Institute, and the Cast Metals Coalition in conducting this project. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof. The views and opinions expressed by the authors herein do not necessarily state or reflect those of the United States Government or any Agency thereof.
    [Show full text]
  • Optimizing Green Sand Properties of Fluidized Sand from Aeration and Developing New Green Sand Testing Technique
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 5-2010 Optimizing Green Sand Properties of Fluidized Sand from Aeration and Developing New Green Sand Testing Technique Ananda Mani Paudel Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Industrial Engineering Commons Recommended Citation Paudel, Ananda Mani, "Optimizing Green Sand Properties of Fluidized Sand from Aeration and Developing New Green Sand Testing Technique" (2010). Dissertations. 618. https://scholarworks.wmich.edu/dissertations/618 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. OPTIMIZING GREEN SAND PROPERTIES OF FLUIDIZED SAND FROM AERATION AND DEVELOPING NEW GREEN SAND TESTING TECHNIQUE by Ananda Mani Paudel A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Industrial and Manufacturing Engineering Advisor: Sam Ramrattan, Ph.D. Western Michigan University Kalamazoo, Michigan May 2010 UMI Number: 3410416 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT UMI 3410416 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Foundry Industry SOQ
    STATEMENT OF QUALIFICATIONS Foundry Industry SOQ TRCcompanies.com Foundry Industry SOQ About TRC The world is advancing. We’re advancing how it gets planned and engineered. TRC is a global consulting firm providing environmentally advanced and technology‐powered solutions for industry and government. From solid waste, pipelines to power plants, roadways to reservoirs, schoolyards to security solutions, clients look to TRC for breakthrough thinking backed by the innovative follow‐ through of a 50‐year industry leader. The demands and challenges in industry and government are growing every day. TRC is your partner in providing breakthrough solutions that navigate the evolving market and regulatory environment, while providing dependable, safe service to our customers. We provide end‐to‐end solutions for environmental management. Throughout the decades, the company has been a leader in setting industry standards and establishing innovative program models. TRC was the first company to conduct a major indoor air study related to outdoor air quality standards. We also developed innovative measurements standards for fugitive emissions and ventilation standards for schools and hospitals in the 1960s; managed the monitoring program and sampled for pollutants at EPA’s Love Canal Project in the 1970s; developed the basis for many EPA air and hazardous waste regulations in the 1980s; pioneered guaranteed fixed‐price remediation in the 1990s; and earned an ENERGY STAR Partner of the Year Award for outstanding energy efficiency program services provided to the New York State Energy Research and Development Authority in the 2000s. We are proud to have developed scientific and engineering methodologies that are used in the environmental business today—helping to balance environmental challenges with economic growth.
    [Show full text]
  • MSL Engineering Limited Platinum Blue House 1St Floor, 18 the Avenue Egham, Surrey, TW20 9AB
    SMR Final Report 121404 Purpose of Issue Rev Date of Issue Author Agreed Approved Issued for information 0 Aug 2004 SM Issued for internal comment 1 November 2004 AFD DJM JB Issued as Final Report 2 December 2004 AFD DJM JB This Final report has been reviewed and approved by the Mineral Management Service. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This study was funded by the Mineral Management Service, U.S. Department of the Interior, Washington, D.C., under Contract Number 1435-01-04-CT-35320 ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES Project #502 DOC REF C357R001 Rev 1 NOV 2004 MSL Engineering Limited Platinum Blue House 1st Floor, 18 The Avenue Egham, Surrey, TW20 9AB Tel: +44 (0)1784 439194 Fax: +44 (0)1784 439198 E-mail: [email protected] C357R001Rev 2, December 2004 MMS Project #502 NUMBER DETAILS OF REVISION 0 Issued for information, August 2004 1 Issued for comment, November 2004. Extensive revisions throughout, including restructuring of report. 2 Issued as Final Report, December 2004. Conversion table added, Figure showing clamp details to avoid added, and general editorial revisions. C357R001Rev 2, December 2004 MMS Project #502 Assessment of Repair Techniques for Ageing or Damaged Structures By Dr. Adrian F Dier MSL Services Corporation Final Project Report: ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES MMS Project Number 502 November 2004 C357R001Rev 2, December 2004 i This Final report has been reviewed a nd approved by the Mineral Management Service.
    [Show full text]
  • Metal Casting Terms and Definitions
    Metal Casting Terms and Definitions Table of Contents A .................................................................................................................................................................... 2 B .................................................................................................................................................................... 2 C .................................................................................................................................................................... 2 D .................................................................................................................................................................... 4 E .................................................................................................................................................................... 5 F ..................................................................................................................................................................... 5 G .................................................................................................................................................................... 5 H .................................................................................................................................................................... 6 I ....................................................................................................................................................................
    [Show full text]
  • Metal Casting and Solidification
    METAL CASTING AND SOLIDIFICATION Monil Salot SYLLABUS Moulding materials: Properties, preparation & testing: Functional requirements of moulding materials, moulding practice & special requirements of core sands, foundry sands & binders, sand preparation & systems, silica programme. MOLDING MATERIAL AND PROPERTIES: A large variety of molding materials is used in foundries for manufacturing molds and cores. They include molding sand, system sand or backing sand, facing sand, parting sand, and core sand. The choice of molding materials is based on their processing properties. The properties that are generally required in molding materials are: 1. REFRACTORINESS: It is the ability of the molding material to with stand high temperatures (experienced during pouring) with out 1. Fusion, 2. Cracking, buckling or scabbing, 3. Experiencing any major physical change. Silica sand has a high refractoriness. 2. PERMEABILITY: During pouring and subsequent solidification of a casting, a large amount of gases and steam is generated. These gases are those that have been absorbed by the metal during melting, air absorbed from the atmosphere and the steam generated by the molding and core sand. If these gases are not allowed to escape from the mold, they would be entrapped inside the casting and cause casting defects. To overcome this problem the molding material must be porous. Proper venting of the mold also helps in escaping the gases that are generated inside the mold cavity. 3. GREEN STRENGTH: The molding sand that contains moisture is termed as green sand. The green sand particles must have the ability to cling to each other to impart sufficient strength to the mold. The green sand must have enough strength so that the constructed mold retains its shape.
    [Show full text]
  • Foundry Work; a Text on Molding, Dry-Sand Core-Making, and the Melting and Mixing of Metals
    Class Vd2.I rj Book No. I 2-77 & NORTHEASTERN UNIVERSITY LIBRARY DAY DIVISION LIBRARY KULES This book may be kept 0.1?^.^ weeks. A fine of two cents will be charged for each day books or magazines arc kept overtime. Two books may be borrowed from the Library at one time. Any book injured or lost shall be paid for by the person to whom it is charged. No member shall transfer his right to use the Library to any other person. i FOUNDRY WORK FOUNDRY WORK A Text on Molding, Dry-sand Core-Making, and the Melting and Mixing of Metals R. E: WENDT Head Instructor in Foundry Practice, Purdue University ; Member of American Foundrymens Association and the Society for the Promotion of Engineering Education First Edition Third Impression McGRAW-HILL BOOK COMPANY, Inc. NEW YORK: 370 SEVENTH AVENUE LONDON: 6 & 8 BOUVERIE ST., E. C. 4 1923 TS Copyright, 1923, by the McGraw-Hill Book Company, Inc. PRINTED IN THE UNITED STATES OF AMERICA PREFACE In preparing this book, it has been the author's aim to provide a suitable text for schools and colleges and for use by apprentices in commercial shops. It is elementary to the extent that the student can grasp the fundamental principles of foundry work, yet deep enough to give a general working knowledge of foundry practice. The book consists of three parts. The first will enable the student to secure a general knowledge of foundry work, of the sizes and types of blast furnaces, and of the making of pig iron.
    [Show full text]
  • Modernization and Optimization of Phosphoric Cast Iron Casting
    metals Article Modernization and Optimization of Phosphoric Cast Iron Casting Piotr Kurylo Department of Mechanical Engineering, University of Zielona Gora, 65-246 Zielona Góra, Poland; [email protected] Received: 2 September 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The article presents a detailed analysis of technical and organizational problems of modernization of a phosphoric cast iron casting process. The paper indicates the need to optimize the process of phosphoric cast iron casting, and the analysis carried out in the article about the possibility of optimization of the casting process allowed us to determine the main direction of modernization of the process, oriented on a significant increase in the quality of the cast iron, as well as in the direction of a significant increase in the efficiency of the cast iron production process. Keywords: phosphoric cast iron; casting; optimalizations; casting process 1. Introduction Casting is one of the most common methods of producing semi-finished and finished products. Thanks to the technological progress in casting processes of iron alloys, gray iron castings, especially castings of nodular and vermicular cast iron, as well as ADI cast iron and phosphorus cast iron, play a special role, because these cast irons can be successfully produced in current technological processes on a mass scale. The widespread use of iron castings results from its advantages, such as: Good casting properties, relatively simple casting technology, and various technological
    [Show full text]
  • UNIT 8 DESIGN of METAL CASTING TOOLS Casting Tools
    Design of Metal UNIT 8 DESIGN OF METAL CASTING TOOLS Casting Tools Structure 8.1 Introduction Objectives 8.2 Principal Types of Casting Tools and its Application 8.2.1 Hand Tools 8.2.2 Mechanical Tools 8.2.3 Containers 8.3 Summary 8.4 Key Words 8.1 INTRODUCTION Large number of tools and other equipment are used in casting industry, particularly in sand molding, for carrying out different foundry operations. All of them can be classified into following categories : Hand Tools It is used for doing operations by hand. Mechanical Tools It is used in mechanized foundries. These tools include different types of molding machines, power riddles, sand mixers, conveyors etc. Containers It is used for carrying sand molds and molten metal from one place to another. Objectives After studying this unit, you should be able to • understand hand tools, • understand mechanical tools, and • understand moulding containers. 8.2 PRINCIPAL TYPES OF CASTING TOOLS AND ITS APPLICATION 8.2.1 Hand Tools The common hand tools which are used in foundry are as follows : Rammer It is used to strike the sand mass in the molding box to pack it uniformly around the pattern. Peen rammer, hand rammer and floor rammer are commonly used in foundry industry. Peen Rammer It is wedge shaped in construction and formed at the bottom of a metallic rod. A peen rammer is shown in Figure 8.1. It is very useful in packing the sand in pockets and corners. 31 Design of Metal Shaping Tools Figure 8.1 : Peen Rammer Hand Rammer It is smaller than peen rammer.
    [Show full text]
  • A Study of Mixed Manufacturing Methods in Sand Casting Using 3D Sand Printing and FDM Pattern-Making Based on Cost and Time by R
    A Study of Mixed Manufacturing Methods in Sand Casting Using 3D Sand Printing and FDM Pattern-making Based on Cost and Time by Ram A. Gullapalli Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Industrial and Systems Engineering Program Youngstown State University Dec, 2016 A Study of Mixed Manufacturing Methods in Sand Casting Using 3D Sand Printing and FDM Pattern-Making Based on Cost and Time By Ram A. Gullapalli I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Ram A. Gullapalli, Student Date Approvals: Dr. Brett Conner, Thesis Advisor Date Dr. Darrell Wallace, Committee Member Date Dr. Eric MacDonald, Committee Member Date Dr. Sal Sanders, Dean of Graduate Studies Date Abstract Sand casting has long been known to be an effective manufacturing method for metal casting and especially for parts of large dimensions and low production volume. But, for increasing complexity, the conventional sand casting process does have its limitations; one of them mainly being the high cost of tooling to create molds and cores. With the advent of additive manufacturing (AM), these limitations can be overcome by the use of a 3D sand printer which offers the unique advantage of geometric freedom. Previous research shows the cost benefits of 3D sand printing molds and cores when compared to traditional mold and core making methods.
    [Show full text]