Evolution of the Holozoan Ribosome Biogenesis Regulon

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Holozoan Ribosome Biogenesis Regulon Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 9-24-2008 Evolution of the Holozoan Ribosome Biogenesis Regulon Seth J. Brown Dartmouth College Michael D. Cole Dartmouth College Albert J. Erives Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons, and the Genetics and Genomics Commons Dartmouth Digital Commons Citation Brown, Seth J.; Cole, Michael D.; and Erives, Albert J., "Evolution of the Holozoan Ribosome Biogenesis Regulon" (2008). Dartmouth Scholarship. 604. https://digitalcommons.dartmouth.edu/facoa/604 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. BMC Genomics BioMed Central Research article Open Access Evolution of the holozoan ribosome biogenesis regulon Seth J Brown1, Michael D Cole*1,2 and Albert J Erives*3 Address: 1Department of Genetics, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA, 2Department of Pharmacology and Toxicology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA and 3Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA Email: Seth J Brown - [email protected]; Michael D Cole* - [email protected]; Albert J Erives* - [email protected] * Corresponding authors Published: 24 September 2008 Received: 19 June 2008 Accepted: 24 September 2008 BMC Genomics 2008, 9:442 doi:10.1186/1471-2164-9-442 This article is available from: http://www.biomedcentral.com/1471-2164/9/442 © 2008 Brown et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The ribosome biogenesis (RiBi) genes encode a highly-conserved eukaryotic set of nucleolar proteins involved in rRNA transcription, assembly, processing, and export from the nucleus. While the mode of regulation of this suite of genes has been studied in the yeast, Saccharomyces cerevisiae, how this gene set is coordinately regulated in the larger and more complex metazoan genomes is not understood. Results: Here we present genome-wide analyses indicating that a distinct mode of RiBi regulation co-evolved with the E(CG)-binding, Myc:Max bHLH heterodimer complex in a stem-holozoan, the ancestor of both Metazoa and Choanoflagellata, the protozoan group most closely related to animals. These results show that this mode of regulation, characterized by an E(CG)-bearing core- promoter, is specific to almost all of the known genes involved in ribosome biogenesis in these genomes. Interestingly, this holozoan RiBi promoter signature is absent in nematode genomes, which have not only secondarily lost Myc but are marked by invariant cell lineages typically producing small body plans of 1000 somatic cells. Furthermore, a detailed analysis of 10 fungal genomes shows that this holozoan signature in RiBi genes is not found in hemiascomycete fungi, which evolved their own unique regulatory signature for the RiBi regulon. Conclusion: These results indicate that a Myc regulon, which is activated in proliferating cells during normal development as well as during tumor progression, has primordial roots in the evolution of an inducible growth regime in a protozoan ancestor of animals. Furthermore, by comparing divergent bHLH repertoires, we conclude that regulation by Myc but not by other bHLH genes is responsible for the evolutionary maintenance of E(CG) sites across the RiBi suite of genes. Background proteins are involved both in this enzymatic processing as Ribosome biogenesis (RiBi) is a primary function of the well in assisting with proper rRNA folding to produce nucleolus [1-3]. In the nucleolus, rRNA molecules are syn- functional ribosomal subunits [1]. Synthesizing func- thesized as precursors by DNA-directed RNA Pol I and Pol tional ribosomes requires immense coordination because III. Nascent rRNAs then undergo extensive chemical mod- gene products from all three DNA-dependent RNA ifications and RNA cleavage reactions. Numerous RiBi polymerases are required to ensure proper stoichiometry Page 1 of 13 (page number not for citation purposes) BMC Genomics 2008, 9:442 http://www.biomedcentral.com/1471-2164/9/442 of ribosomal components. This level of co-regulation is ize a co-regulated RiBi gene set definable by a shared reg- likely to be controlled through a highly-specific DNA sig- ulatory signature, a component of which would be the nature as seen in other gene regulatory systems [4]. Such a Myc-Max binding site E(CG). A priori, we had no reason to signature would allow the appropriate factors to co-ordi- expect whether a common regulatory signature would be nately regulate the RiBi genes as a distinct regulon. For found across the large number of known ribosome bio- example, in the yeast Saccharomyces cerevisiae two impor- genesis genes or whether such a signature would be lim- tant regulatory motifs consisting of the PAC (polymerase ited to only a subset (i.e. the sensitivity of the postulated A and C) and RRPE (Ribosomal RNA Processing Element) signature for RiBi genes). Furthermore, we set no expecta- motifs have been identified in RiBi genes [5-7]. In animals tion on whether this signature would necessarily be no known factor or motif is known to coordinate the present or absent in other non-RiBi genes devoted to cell entire RiBi set. However, the metazoan transcription fac- growth or other functions (i.e. the specificity of the postu- tor Myc has been found to target at least some RiBi genes. lated signature for RiBi genes). For this purpose, we chose the Drosophila melanogaster genome because of its rela- Myc is a bHLH DNA-binding protein present in animals tively compact size and absence of genome wide duplica- where it plays an important role in cell growth and prolif- tions characteristic of vertebrates. Both of these properties eration by regulating gene expression during development facilitate the identification of a sequence signature and the and tumorigenesis [8-10]. Myc functions by heterodimer- characterization of its sensitivity and specificity for entire izing with its obligate partner Max to bind the sequence biological functions because they simplify the ability to 5'-CACGTG [a CG-core E-box, or E(CG)] and transactivate conduct and interpret computational queries of genome target genes [11-14]. Previous studies have implicated the sequence. Myc transcription factor in rRNA transcription [15-17], but the possibility that Myc could directly regulate the Having identified the list of genes in this fly regulon we hundreds of gene products involved in RiBi, as opposed to would then utilize the many available eukaryotic genome a few early genes or key steps [18-20], has not been inves- sequences to identify shared sequence signatures associ- tigated. Also unknown is when such an RiBi circuit or ated with this regulon in each genome. Because of the other non-RiBi targets of Myc may have evolved and highly conserved nature of the protein functions associ- whether it was in the most recent common ancestor of ated with ribosome biogenesis, it is likely that this list of Bilateria (protostomes and deuterostomes), Metazoa genes would remain co-regulated in other genomes (animals), Holozoa (Metazoa + choanoflagellates), despite evolution of the regulatory signatures associated Opisthokonta (Holozoa + fungi), or Eukaryota. with this regulon. Here, we use a multi-genomic approach to show that the E(CG) is highly specific to the fly RiBi regulon vast majority of genes implicated in ribosome biogenesis An overwhelming majority of confirmed Myc targets con- are associated with E(CG)-bearing core promoters in all tain E(CG) near the transcriptional start site (TSS) [19]. holozoan genomes containing Myc, and thus constitutes We therefore examined all fly genes with promoter proxi- a uniquely holozoan RiBi regulon. Max, Mad, and Mnt, all mal E(CG) sites to determine whether they were related by members of the Myc bHLH superfamily, are all either a common cellular function. We searched the Drosophila insufficient or dispensable in explaining the correlation of melanogaster genome and identified only 390 promoter E(CG) with RiBi as revealed by a comparison of multiple sequences containing an E(CG) site in the core promoter eukaryotic genomes, which differ in their bHLH reper- region (160 bp centered around +1) out of 20,468 anno- toires. Thus, in addition to known RiBi targets of Myc [18- tated transcripts (14,752 genes). Remarkably, these genes 20] and the similar growth defects of both RiBi and myc include most proteins known to be involved throughout mutant alleles [8-10,18,20,21], our comparative genomic ribosome biogenesis [see Additional file 1]. To examine results suggest that the characteristic RiBi E(CG) core pro- the relationship between the E(CG) motif and ribosome moter architecture co-evolved with a proto-Myc:Max com- biogenesis in more detail, we used Gene Ontology (GO) plex in a unicellular holozoan ancestor. This is consistent classification of the yeast genome to map 121 fly with the metabolic evolution of a unique, Myc-Max regu- orthologs
Recommended publications
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • Using Viper, a Package for Virtual Inference of Protein-Activity by Enriched Regulon Analysis
    Using viper, a package for Virtual Inference of Protein-activity by Enriched Regulon analysis Mariano J. Alvarez1,2, Federico M. Giorgi1, and Andrea Califano1 1Department of Systems Biology, Columbia University, 1130 St. Nicholas Ave., New York 2DarwinHealth Inc, 3960 Broadway, New York May 19, 2021 1 Overview of VIPER Phenotypic changes effected by pathophysiological events are now routinely captured by gene expression pro- file (GEP) measurements, determining mRNA abundance on a genome-wide scale in a cellular population[8, 9]. In contrast, methods to measure protein abundance on a proteome-wide scale using arrays[11] or mass spectrometry[10] technologies are far less developed, covering only a fraction of proteins, requiring large amounts of tissue, and failing to directly capture protein activity. Furthermore, mRNA expression does not constitute a reliable predictor of protein activity, as it fails to capture a variety of post-transcriptional and post-translational events that are involved in its modulation. Even reliable measurements of protein abundance, for instance by low-throughput antibody based methods or by higher-throughput methods such as mass spectrometry, do not necessarily provide quantitative assessment of functional activity. For instance, enzymatic activity of signal transduction proteins, such as kinases, ubiquitin ligases, and acetyltransferases, is frequently modulated by post-translational modification events that do not affect total protein abundance. Similarly, transcription factors may require post-translationally mediated activation, nuclear translocation, and co-factor availability before they may regulate specific repertoires of their transcriptional targets. Fi- nally, most target-specific drugs affect the activity of their protein substrates rather than their protein or mRNA transcript abundance.
    [Show full text]
  • Toolbox Model of Evolution of Prokaryotic Metabolic Networks and Their Regulation
    Toolbox model of evolution of prokaryotic metabolic networks and their regulation Sergei Maslova,1, Sandeep Krishnab, Tin Yau Panga,c, and Kim Sneppenb aDepartment of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973; bNiels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark; and cDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 Edited by David J. Lipman, National Institutes of Health, Bethesda, MD, and approved April 16, 2009 (received for review March 23, 2009) It has been reported that the number of transcription factors A simple evolutionary model explains both these empirical encoded in prokaryotic genomes scales approximately quadrati- observations in a unified framework based on modular functional cally with their total number of genes. We propose a conceptual design of prokaryotic metabolic networks and their regulation. explanation of this finding and illustrate it using a simple model in which metabolic and regulatory networks of prokaryotes are Toolbox View of Metabolic Networks shaped by horizontal gene transfer of coregulated metabolic Metabolic networks are composed of many semiautonomous func- pathways. Adapting to a new environmental condition monitored tional modules corresponding to traditional metabolic pathways (8) by a new transcription factor (e.g., learning to use another nutri- or their subunits (9). Constituent genes of such evolutionary ent) involves both acquiring new enzymes and reusing some of the modules tend to cooccur (be either all present or all absent) in enzymes already encoded in the genome. As the repertoire of genomes (9, 10). These pathways overlap with each other to form branched, interconnected metabolic networks.
    [Show full text]
  • An Improved Bind-N-Seq Strategy to Determine Protein-DNA Interactions Validated Using the Bacterial Transcriptional Regulator Yipr Shi-Qi An1,2* , Miguel A
    An et al. BMC Microbiology (2020) 20:1 https://doi.org/10.1186/s12866-019-1672-7 METHODOLOGY ARTICLE Open Access An improved bind-n-seq strategy to determine protein-DNA interactions validated using the bacterial transcriptional regulator YipR Shi-qi An1,2* , Miguel A. Valvano2, Yan-hua Yu3, Jeremy S. Webb1 and Guillermo Lopez Campos2 Abstract Background: Interactions between transcription factors and DNA lie at the centre of many biological processes including DNA recombination, replication, repair and transcription. Most bacteria encode diverse proteins that act as transcription factors to regulate various traits. Several technologies for identifying protein–DNA interactions at the genomic level have been developed. Bind-n-seq is a high-throughput in vitro method first deployed to analyse DNA interactions associated with eukaryotic zinc-finger proteins. The method has three steps (i) binding protein to a randomised oligonucleotide DNA target library, (ii) deep sequencing of bound oligonucleotides, and (iii) a computational algorithm to define motifs among the sequences. The classical Bind-n-seq strategy suffers from several limitations including a lengthy wet laboratory protocol and a computational algorithm that is difficult to use. We introduce here an improved, rapid,andsimplifiedBind-n-seqprotocolcoupledwithauser-friendly downstream data analysis and handling algorithm, which has been optimized for bacterial target proteins. We validate this new protocol by showing the successful characterisation of the DNA-binding specificities of YipR (YajQ interacting protein regulator), a well- known transcriptional regulator of virulence genes in the bacterial phytopathogen Xanthomonas campestris pv. campestris (Xcc). Results: The improved Bind-n-seq approach identified several DNA binding motif sequences for YipR, in particular the CCCTCTC motif, which were located in the promoter regions of 1320 Xcc genes.
    [Show full text]
  • Making Informed Decisions: Regulatory Interactions Between Two-Component Systems
    Review TRENDS in Microbiology Vol.11 No.8 August 2003 359 Making informed decisions: regulatory interactions between two-component systems Jetta J.E. Bijlsma and Eduardo A. Groisman Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St Louis, MO 63110, USA Bacteria experience a multitude of stresses in the com- phosphorylate from small molecular weight phosphoryl plex niches they inhabit. These stresses are denoted by donors, such as acetyl phosphate and carbamoyl phos- specific signals that typically alter the activity of individ- phate [3,4]. In addition, the vast majority of sensor kinases ual two-component regulatory systems. Processing of exhibit phosphatase activity towards their cognate multiple signals by different two-component systems response regulators. Although most two-component sys- occurs when multiple sensors interact with a single tems entail a single His-to-Asp phosphotransfer event response regulator, by phosphatases interrupting phos- between a histidine kinase and a response regulator, there phoryl transfer in phosphorelays and through transcrip- is a subset that consists of a three-step His-Asp-His-Asp tional and post-transcriptional mechanisms. Gaining phosphorelay (Fig. 1b) [1,2]. The extra phosphorylatable insight into these mechanisms provides an understand- domains in a phosphorelay can be present in separate ing at the molecular level of bacterial adaptation to ever proteins or be part of multi-domain (i.e.
    [Show full text]
  • Testing the DNA Repair Hypothesis in Bacillus Subtilis and Haemophilus Intuenzae
    Copyright 0 1993 by the Genetics Society of America Evolution of Natural Transformation: Testing the DNA Repair Hypothesis in Bacillus subtilis and Haemophilus intuenzae Rosemary J. Redfield' Department of Biochemistry, University of British Columbia, Vancouver, BritishColumbia V6T lZ3, Canada Manuscript received July 23, 1992 Accepted for publication December 15, 1992 ABSTRACT The hypothesis that the primary function of bacterial transformation is DNA repair was tested in the naturallytransformable bacteria Bacillus subtilis and Haemophilusinjluenzae by determining whether competence for transformation is regulated by DNA damage. Accordingly, DNA damage was induced by mitomycin C and by ultraviolet radiation at doses that efficiently induced a known damage-inducible gene fusion, and the ability of the damaged cultures to transform was monitored. Experiments were carried out both under conditions wherecells do not normally become competent and under competence-inducing conditions.No induction or enhancement of competence by damage was seen in either organism. These experiments strongly suggest thatthe regulation of competence does not involve a response to DNA damage, andthus that explanations other than DNA repair must be sought for the evolutionaryfunctions of natural transformation systems. ANY groups of bacteria have evolved mecha- noncompetent cells) are provided with homologous M nisms of natural transformation which enable DNA after the cell's own DNA has been damaged by them to take upfree DNA fragmentsfrom their UV irradiation, the proportion of transformants is environments. If this DNA is homologous and genet- increased amongthe survivors (MICHOD, WOJCIE- ically marked, recombinant pregnancy are often pro- CHOWSKI and HOELZER1988). The favored interpre- duced (STEWARTand CARLSON1986). Most research- tation was that the cells that took up DNA survived ers have assumed thattransformation evolved for damage better than the cells that did not.
    [Show full text]
  • View for Two New Positions 7 Connections in China Associated with the AMBI and the Newly Formed Genetics Cluster
    www.biology.uiowa.edu Winter 2012 in this issue Changes to Biology Undergraduate and Graduate Programs Former Dean Maxson Rejoins Department of Biology 1 Strengthening Connections in China Winter 2012 | Department of Biology | The UniversiTy of ioWa neW faculty Veena Prahlad Most proteins function efficiently within a narrow range of optimal conditions. Yet, cells and organisms not only survive a wide variety of environmental and physiological fluctuations, but have evolved to colonize a vast diversity of environmental niches. Our lab seeks to understand how organisms function in, and adapt to, varying and stressful environments. To begin to understand this, we focus on an ancient and highly conserved transcriptional program that minimizes the accumulation of damaged and misfolded proteins upon exposure to stress. This transcriptional program, called the heat shock response, is implemented by the transcription factor, heat shock factor 1 (HSF1). Upon exposure to extreme environments, HSF1 activity increases the intracellular levels of specific cytoprotective proteins called the heat shock proteins (HSPs). HSPs are molecular chaperones that maintain protein conformation and help refold or degrade damaged proteins that can result due to stress, thereby restoring cellular function. In isolated cells and unicellular organisms, the heat shock response is autonomously controlled by every cell. However, in the metazoan C. elegans, although the heat shock machinery is present in every cell, the ability of the cell to activate a heat shock response is centrally controlled by the animal’s nervous system. In our lab we ask how the nervous system controls HSP gene expression in non-neuronal cells. Specifically, we investigate how the sensory perception of suboptimal conditions or stress is signaled by the nervous system, which signaling pathways are involved, how the signals are transmitted to non-neuronal cells to regulate protein folding and HSP gene expression, and how the neuronal regulation of the heat shock response impacts organismal growth and reproduction.
    [Show full text]
  • A Schnurri/Mad/Medea Complex Attenuates the Dorsal–Twist Gradient Readout at Vnd
    Developmental Biology 378 (2013) 64–72 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Genomes and Developmental Control A Schnurri/Mad/Medea complex attenuates the dorsal–twist gradient readout at vnd Justin Crocker a, Albert Erives b,* a Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA b Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA article info abstract Article history: Morphogen gradients are used in developing embryos, where they subdivide a field of cells into territories Received 24 November 2012 characterized by distinct cell fate potentials. Such systems require both a spatially-graded distribution of the Received in revised form morphogen, and an ability to encode different responses at different target genes. However, the potential for 13 February 2013 different temporal responses is also present because morphogen gradients typically provide temporal cues, Accepted 4 March 2013 which may be a potential source of conflict. Thus, a low threshold response adapted for an early temporal Available online 13 March 2013 onset may be inappropriate when the desired spatial response is a spatially-limited, high-threshold expression Keywords: pattern. Here, we identify such a case with the Drosophila vnd locus, which is a target of the dorsal (dl) nuclear Drosophila concentration gradient that patterns the dorsal/ventral (D/V) axis of the embryo. The vnd gene plays a critical Morphogen gradients role in the “ventral dominance” hierarchy of vnd, ind,andmsh, which individually specify distinct D/V neural vnd columnar fates in increasingly dorsal ectodermal compartments.
    [Show full text]
  • Localized Repressors Delineate the Neurogenic Ectoderm in the Early Drosophila Embryo
    Developmental Biology 280 (2005) 482–493 www.elsevier.com/locate/ydbio Genomes & Developmental Control Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo Angelike StathopoulosT,1, Michael Levine Division of Genetics and Development, Department of Molecular Cell Biology, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA Received for publication 3 February 2005, revised 3 February 2005, accepted 3 February 2005 Abstract The Dorsal gradient produces sequential patterns of gene expression across the dorsoventral axis of early embryos, thereby establishing the presumptive mesoderm, neuroectoderm, and dorsal ectoderm. Spatially localized repressors such as Snail and Vnd exclude the expression of neurogenic genes in the mesoderm and ventral neuroectoderm, respectively. However, no repressors have been identified that establish the dorsal limits of neurogenic gene expression. To investigate this issue, we have conducted an analysis of the ind gene, which is selectively expressed in lateral regions of the presumptive nerve cord. A novel silencer element was identified within the ind enhancer that is essential for eliminating expression in the dorsal ectoderm. Evidence is presented that the associated repressor can function over long distances to silence neighboring enhancers. The ind enhancer also contains a variety of known activator and repressor elements. We propose a model whereby Dorsal and EGF signaling, together with the localized Schnurri repressor, define a broad domain of ind expression throughout the entire presumptive neuroectoderm. The ventral limits of gene expression are defined by the Snail and Vnd repressors, while the dorsal border is established by the newly defined silencer element. D 2005 Elsevier Inc. All rights reserved.
    [Show full text]
  • A Schnurri/Mad/Medea Complex Attenuates the Dorsalamp
    Developmental Biology 378 (2013) 64–72 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Genomes and Developmental Control A Schnurri/Mad/Medea complex attenuates the dorsal–twist gradient readout at vnd Justin Crocker a, Albert Erives b,* a Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA b Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA article info abstract Article history: Morphogen gradients are used in developing embryos, where they subdivide a field of cells into territories Received 24 November 2012 characterized by distinct cell fate potentials. Such systems require both a spatially-graded distribution of the Received in revised form morphogen, and an ability to encode different responses at different target genes. However, the potential for 13 February 2013 different temporal responses is also present because morphogen gradients typically provide temporal cues, Accepted 4 March 2013 which may be a potential source of conflict. Thus, a low threshold response adapted for an early temporal Available online 13 March 2013 onset may be inappropriate when the desired spatial response is a spatially-limited, high-threshold expression Keywords: pattern. Here, we identify such a case with the Drosophila vnd locus, which is a target of the dorsal (dl) nuclear Drosophila concentration gradient that patterns the dorsal/ventral (D/V) axis of the embryo. The vnd gene plays a critical Morphogen gradients role in the “ventral dominance” hierarchy of vnd, ind,andmsh, which individually specify distinct D/V neural vnd columnar fates in increasingly dorsal ectodermal compartments.
    [Show full text]
  • Coordinate Enhancers Share Common Organizational Features in the Drosophila Genome
    Coordinate enhancers share common organizational features in the Drosophila genome Albert Erives and Michael Levine* Center for Integrative Genomics, Department of Molecular and Cell Biology, Division of Genetics and Development, University of California, Berkeley, CA 94720 Contributed by Michael Levine, January 27, 2004 The evolution of animal diversity depends on changes in the provide a unique opportunity to determine whether coordinate regulation of a relatively fixed set of protein-coding genes. To enhancers contain similar arrangements of regulatory elements. understand how these changes might arise, we examined the The four coregulated enhancers were previously shown to organization of shared sequence motifs in four coordinately reg- share binding sites for Dorsal (GGGWWWWCYS, GGGW4– ulated neurogenic enhancers that direct similar patterns of gene 5CCM), Twist (CACATGT), Suppressor of Hairless [Su(H)] expression in the early Drosophila embryo. All four enhancers (YGTGDGAA), as well as an unknown regulatory element (the possess similar arrangements of a subset of putative regulatory ‘‘mystery site,’’ CTGWCCY). The present study identified spe- elements. These shared features were used to identify a neuro- cialized forms of the Dorsal (SGGAAANYCSS), Su(H) (CGT- genic enhancer in the distantly related Anopheles genome. We GGGAAAWDCSM), and mystery sites (CTGRCCBKSMM) suggest that the constrained organization of metazoan enhancers within each enhancer. These specialized motifs exhibit a number may be essential for their ability to produce precise patterns of of organizational constraints within a 300-bp core domain of gene expression during development. Organized binding sites each enhancer. First, the specialized Dorsal site maps within 20 should facilitate the identification of regulatory codes that link bp of an oriented Twist site.
    [Show full text]
  • Evolution of a Bacterial Regulon Controlling Virulence and Mg(2+) Homeostasis J
    Washington University School of Medicine Digital Commons@Becker ICTS Faculty Publications Institute of Clinical and Translational Sciences 2009 Evolution of a bacterial regulon controlling virulence and Mg(2+) homeostasis J. Christian Perez Washington University School of Medicine in St. Louis Dongwoo Shin Washington University School of Medicine in St. Louis Igor Zwir Washington University School of Medicine in St. Louis Tammy Latifi Washington University School of Medicine in St. Louis Tricia J. Hadley Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/icts_facpubs Part of the Medicine and Health Sciences Commons Recommended Citation Perez, J. Christian; Shin, Dongwoo; Zwir, Igor; Latifi, Tammy; Hadley, Tricia J.; and Groisman, Eduardo A., "Evolution of a bacterial regulon controlling virulence and Mg(2+) homeostasis". PLoS Genetics, e1000428. 2009. Paper 79. https://digitalcommons.wustl.edu/icts_facpubs/79 This Article is brought to you for free and open access by the Institute of Clinical and Translational Sciences at Digital Commons@Becker. It has been accepted for inclusion in ICTS Faculty Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors J. Christian Perez, Dongwoo Shin, Igor Zwir, Tammy Latifi, Tricia J. Hadley, and Eduardo A. Groisman This article is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/icts_facpubs/79 Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis J. Christian Perez1,2¤a, Dongwoo Shin1,2¤b, Igor Zwir1,2, Tammy Latifi1,2, Tricia J. Hadley1,2, Eduardo A. Groisman1,2* 1 Department of Molecular Microbiology, Washington University School of Medicine, St.
    [Show full text]