A Foundation Monograph of Convolvulus L. (Convolvulaceae)

Total Page:16

File Type:pdf, Size:1020Kb

A Foundation Monograph of Convolvulus L. (Convolvulaceae) A peer-reviewed open-access journal PhytoKeys 51: 1–282 (2015)A foundation monograph of Convolvulus L. (Convolvulaceae) 1 doi: 10.3897/phytokeys.51.7104 MONOGRAPH http://phytokeys.pensoft.net Launched to accelerate biodiversity research A foundation monograph of Convolvulus L. (Convolvulaceae) John R.I. Wood1,5, Bethany R.M. Williams1,2, Thomas C. Mitchell3, Mark A. Carine2, David J. Harris4, Robert W. Scotland1 1 Department of Plant Sciences, South Parks Road, University of Oxford, OX1 3RB, UK 2 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3 Plant Biodiversity Research, Technische Universität München, Maximus-von-Imhof Forum 2, 85354 Freising, Germany 4 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK 5 Honorary Research Associate, Royal Botanic Gardens, Kew Corresponding author: Robert W. Scotland ([email protected]) Academic editor: Sandra Knapp | Received 20 January 2014 | Accepted 25 March 2015 | Published 18 June 2015 Citation: Wood JRI, Williams BRM, Mitchell TC, Carine MA, Harris DJ, Scotland RW (2015) A foundation monograph of Convolvulus L. (Convolvulaceae). PhytoKeys 51: 1–282. doi: 10.3897/phytokeys.51.7104 Abstract A global revision of Convolvulus L. is presented, Calystegia R.Br. being excluded on pragmatic grounds. One hundred and ninety species are recognised with the greatest diversity in the Irano-Turanian region. All recognised species are described and the majority are illustrated. Distribution details, keys to species iden- tification and taxonomic notes are provided. Four new species, Convolvulus austroafricanus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulus iranicus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulus peninsularis J.R.I.Wood & R.W.Scotland, sp. nov. and Convolvulus xanthopotamicus J.R.I.Wood & R.W.Scotland, sp. nov., one new subspecies Convolvulus chinensis subsp. triangularis J.R.I.Wood & R.W.Scotland, subsp. nov., and two new varieties Convolvulus equitans var. lindheimeri J.R.I.Wood & R.W.Scotland, var. nov., Convol- vulus glomeratus var. sachalitarum J.R.I.Wood & R.W.Scotland, var. nov. are described. Convolvulus incisoden- tatus J.R.I.Wood & R.W.Scotland, nom. nov., is provided as a replacement name for the illegitimate Convol- vulus incisus Choisy. Several species treated as synonyms of other species in recent publications are reinstated including C. chinensis Ker-Gawl., C. spinifer M.Popov., C. randii Rendle and C. aschersonii Engl. Ten taxa are given new status and recognised at new ranks: Convolvulus namaquensis (Schltr. ex. A.Meeuse) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hermanniae subsp. erosus (Desr.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus crenatifolius subsp. montevidensis (Spreng.) J.R.I.Wood & R.W.Scotland, stat. nov., Convol- vulus fruticulosus subsp. glandulosus (Webb) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus capituliferus subsp. foliaceus (Verdc.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hystrix subsp. ruspolii (Dammer Copyright John R.I. Wood et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 John R.I. Wood et al. / PhytoKeys 51: 1–282 (2015) ex Hallier f.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hystrix subsp. inermis (Chiov.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus rottlerianus subsp. stocksii (Boiss.) J.R.I.Wood & R.W.Scotland, comb. et stat. nov., Convolvulus calvertii subsp. ruprechtii (Boiss.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus cephalopodus subsp. bushiricus (Bornm.) J.R.I.Wood & R.W.Scotland, stat. nov. The status of various infraspecific taxa is clarified and numerous taxa are lectotypified. This account represents a new ini- tiative in terms of taxonomic monography, being an attempt to bring together the global approach of the traditional monograph with the more pragmatic and identification-focussed approach of most current floras while at the same time being informed by insights from molecular systematics. Keywords Convolvulaceae, global revision, lectotypification, monograph, morning glories, new species, new taxa Table of contents Introduction ............................................................................................................. 9 Our methodology and its implications ............................................................... 10 Generic delimitation .......................................................................................... 11 Geographical distribution ................................................................................... 12 Discovery ........................................................................................................... 13 Economic importance ........................................................................................ 13 Molecular systematics ......................................................................................... 14 Species concept .................................................................................................. 17 Morphological characters and their use in species delimitation ........................... 19 Dichotomous keys .................................................................................................. 28 Key to species in South America ......................................................................... 29 Key to species in North America ........................................................................ 30 Key to species in Australia .................................................................................. 30 Key to species in New Zealand ........................................................................... 31 Key to species in Southern Africa ....................................................................... 32 Key to species in Tropical Africa ......................................................................... 33 Key to species in North Africa ............................................................................ 35 Key to species in the Atlantic Islands .................................................................. 38 Key to species in Europe..................................................................................... 39 Key to species in the Levant ............................................................................... 41 Key to species in the Arabian Peninsula (including Socotra) ............................... 44 Key to species in the Indo-Iranian region ........................................................... 47 Key to species in the Former Soviet Union ......................................................... 51 Key to species in East Asia .................................................................................. 54 Taxonomic treatment of Convolvulus ...................................................................... 55 Names ................................................................................................................ 55 Specimen citations ............................................................................................. 55 Literature citations ............................................................................................. 56 Convolvulus ............................................................................................................ 56 A foundation monograph of Convolvulus L. (Convolvulaceae) 3 Species 1–22. Eurasian and North African species with leaves abruptly narrowed into a distinct petiole. ......................................................................................... 57 1. Convolvulus scammonia ............................................................................... 57 2. Convolvulus pseudoscammonia ..................................................................... 59 3. Convolvulus durandoi .................................................................................. 59 4. Convolvulus arvensis .................................................................................... 60 5. Convolvulus chinensis ................................................................................. 62 5a. Convolvulus chinensis subsp. chinensis ........................................................ 63 5b. Convolvulus chinensis subsp. triangularis ................................................... 64 6. Convolvulus mairei...................................................................................... 64 7. Convolvulus fatmensis ................................................................................. 65 8. Convolvulus steppicola ................................................................................. 65 9. Convolvulus sinuatodentatus ........................................................................ 66 10. Convolvulus rufescens ................................................................................ 66 11. Convolvulus betonicifolius .......................................................................... 67 12. Convolvulus longipedicellatus .................................................................... 70 13. Convolvulus cassius .................................................................................... 71 14. Convolvulus stachydifolius ......................................................................... 71 14a. Convolvulus stachydifolius
Recommended publications
  • Jazani Et Al., Afr J Tradit Complement Altern Med., (2018) 15 (2): 58-67
    Jazani et al., Afr J Tradit Complement Altern Med., (2018) 15 (2): 58-67 https://doi.org/10.21010/ajtcam.v15i2.8 INTESTINAL HELMINTHS FROM THE VIEWPOINT OF TRADITIONAL PERSIAN MEDICINE VERSUS MODERN MEDICINE Arezoo Moini Jazani1,4, Ramin Farajpour Maleki1,2,4, Abdol hasan Kazemi3,4, Leila ghasemi 4 4 5 6 matankolaei , Somayyeh Taheri Targhi , Shirafkan kordi , Bahman Rahimi-Esboei and Ramin Nasimi Doost Azgomi1,4* 1Faculty of Traditional Medicine, Tabriz University of Medical Siences, Tabriz, Iran; 2Neuroscience Research center (NSRC) and Student Research Committtee, Tabriz University of Medical Siences, Tabriz, Iran; 3Infectious and tropical diseases research center, Tabriz University of Medical Siences, Tabriz, Iran; 4Medical Philosophy and History Research Center, Tabriz University of Medical Siences, Tabriz, Iran; 5Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; 6Department of medical parasitology and mycology, School of public health, Tehran university of Medical Sciences, Tehran, Iran. *Corresponding Author’s E-mail: [email protected] ; [email protected] Article History Received: March. 17, 2017 Revised Received: Dec. 11, 2017 Accepted: Dec.11, 2017 Published Online: Feb. 23, 2018 Abstract Background: Traditional Persian Medicine (TPM) has a history of almost 10,000 years with practice and experience aspects. The existing information and experiences of physicians such as Avicenna clearly show the vast amount of knowledge in the classification and treatment of pathogenic worms. The aim of this paper was the description of the various types of helminths along with their treatment in medieval Persia and comparing them with new medical findings. Materials and Methods: We searched main Traditional Persian Medical and pharmacological texts about etiology, manifestation, diagnosis and treatment of worms in the human digestive system and the out come was compared with the data extracted from modern medical sources.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Convolvulaceae1
    Photograph: Helen Owens © Department of Environment, Water and Natural Resources, Government of South Australia Department of All rights reserved Environment, Copyright of illustrations might reside with other institutions or Water and individuals. Please enquire for details. Natural Resources Contact: Dr Jürgen Kellermann Editor, Flora of South Australia (ed. 5) State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia email: [email protected] Flora of South Australia 5th Edition | Edited by Jürgen Kellermann CONVOLVULACEAE1 R.W. Johnson2 Annual or perennial herbs or shrubs, often with trailing or twining stems, or leafless parasites; leaves alternate, exstipulate. Inflorescence axillary, rarely terminal, cymose or reduced to a single flower; flowers regular, (4) 5 (6)-merous, bisexual; sepals free or rarely united, quincuncial; corolla sympetalous, funnel-shaped or campanulate, occasionally rotate or salver-shaped; stamens adnate to the base of the corolla, alternating with the corolla lobes, filaments usually flattened and dilated downwards; anthers 2-celled, dehiscing longitudinally; ovary superior, mostly 2-celled, occasionally with 1, 3 or 4 cells, subtended by a disk; ovules 2, rarely 1, in each cell; styles 1 or 2, stigmas variously shaped. Fruit capsular. About 58 genera and 1,650 species mainly tropical and subtropical; in Australia 20 genera, 1 endemic, with c. 160 species, 17 naturalised. The highly modified parasitic species of Cuscuta are sometimes placed in a separate family, the Cuscutaceae. 1. Yellowish leafless parasitic twiners ...................................................................................................................... 5. Cuscuta 1: Green leafy plants 2. Ovary distinctly 2-lobed; styles 2, inserted between the lobes of ovary (gynobasic style); leaves often kidney-shaped .............................................................................................................
    [Show full text]
  • Evolvulus Alsinoides (Convolvulaceae): an American Herb in the Old World Daniel F
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Journal of Ethnopharmacology 117 (2008) 185–198 Review Evolvulus alsinoides (Convolvulaceae): An American herb in the Old World Daniel F. Austin Arizona-Sonora Desert Museum, 2021 North Kinney Road, Tucson, AZ 85743, USA Received 23 October 2007; received in revised form 28 January 2008; accepted 29 January 2008 Available online 12 February 2008 Abstract People in the Indian region often apply shankhapushpi and vishnukranti, two Sanskrit-based common names, to Evolvulus alsinoides. These are pre-European names that are applied to a medicinal American species transported into the area. The period of introduction is uncertain, but probably took place in the 1500s or 1600s. Examination of relationships of Evolvulus alsinoides, geographic distribution, its names in Asia, medical uses, and chemical and laboratory analysis indicates that the alien plant was adopted, given an ancient Indian name, and incorporated into some Old World pharmacopoeias. The herb apparently was included in medicines because it not only reminded people of certain aspects of their gods and goddesses, but also because the chemicals it contained were useful against some maladies.
    [Show full text]
  • Field Bindweed (Convolvulus Arvensis): “All ” Tied Up
    Weed Technology Field bindweed (Convolvulus arvensis): “all ” www.cambridge.org/wet tied up Lynn M. Sosnoskie1 , Bradley D. Hanson2 and Lawrence E. Steckel3 1 2 Intriguing World of Weeds Assistant Professor, School of Integrative Plant Science, Cornell University, Geneva, NY USA; Cooperative Extension Specialist, Department of Plant Science, University of California – Davis, Davis, CA, USA and 3 Cite this article: Sosnoskie LM, Hanson BD, Professor, Department of Plant Sciences, University of Tennessee, Jackson, TN, USA Steckel LE (2020) Field bindweed (Convolvulus arvensis): “all tied up”. Weed Technol. 34: 916–921. doi: 10.1017/wet.2020.61 Received: 22 March 2020 Revised: 2 June 2020 But your snobbiness, unless you persistently root it out like the bindweed it is, sticks by you till your Accepted: 4 June 2020 grave. – George Orwell First published online: 16 July 2020 The real danger in a garden came from the bindweed. That moved underground, then surfaced and took hold. Associate Editor: Strangling plant after healthy plant. Killing them all, slowly. And for no apparent reason, except that it was Jason Bond, Mississippi State University nature. – Louise Penny Author for correspondence: Lynn M. Sosnoskie, Cornell University, 635 W. Introduction North Avenue, Geneva, NY 14456. (Email: [email protected]) Field bindweed (Convolvulus arvensis L.) is a perennial vine in the Convolvulaceae, or morning- glory family, which includes approximately 50 to 60 genera and more than 1,500 species (Preston 2012a; Stefanovic et al. 2003). The family is in the order Solanales and is characterized by alternate leaves (when present) and bisexual flowers that are 5-lobed, folded/pleated in the bud, and trumpet-shaped when emerged (Preston 2012a; Stefanovic et al.
    [Show full text]
  • Medicinal Plants in the High Mountains of Northern Jordan
    Vol. 6(6), pp. 436-443, June 2014 DOI: 10.5897/IJBC2014.0713 Article Number: 28D56BF45309 ISSN 2141-243X International Journal of Biodiversity Copyright © 2014 Author(s) retain the copyright of this article and Conservation http://www.academicjournals.org/IJBC Full Length Research Paper Medicinal plants in the high mountains of northern Jordan Sawsan A. Oran and Dawud M. Al- Eisawi Department of Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan. Receive 10 April, 2014; Accepted 24 April, 2014 The status of medicinal plants in the high mountains of northern Jordan was evaluated. A total of 227 plant species belonging to 54 genera and 60 families were recorded. The survey is based on field trips conducted in the areas that include Salt, Jarash, Balka, Amman and Irbid governorates. Line transect method was used; collection of plant species was done and voucher specimens were deposited. A map for the target area was provided; the location of the study area grids in relation to their governorate was included. Key words: Medicinal plants, high mountains of northern Jordan, folk medicine. INTRODUCTION Human beings have always made use of their native cinal plant out of 670 flowering plant species identified in flora, not just as a source of nutrition, but also for fuel, the same area in Jordan. Recent studies are published medicines, clothing, dwelling and chemical production. on the status of medicinal plants that are used fofolk Traditional knowledge of plants and their properties has medicine by the local societies (Oran, 2014). always been transmitted from generation to generation Medicinal plants in Jordan represent 20% of the total through the natural course of everyday life (Kargıoğlu et flora (Oran et al., 1998).
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(7), 1301-1312
    ISSN: 2320-5407 Int. J. Adv. Res. 5(7), 1301-1312 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/4841 DOI URL: http://dx.doi.org/10.21474/IJAR01/4841 RESEARCH ARTICLE FLORA OF CHEPAN MOUNTAIN (WESTERN BULGARIA). Dimcho Zahariev. Faculty of Natural Sciences, Department of Plant Protection, Botany and Zoology, University of Shumen, Bulgaria. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Chepan Mountain is located in Western Bulgaria. It is part of Balkan Mountains on the territory of Balkan Peninsula in Southern Europe. As Received: 13 May 2017 a result of this study in Chepan Mountain on the territory of only 25 Final Accepted: 15 June 2017 km2 were found 784 species of wild vascular plants from 378 genera Published: July 2017 and 84 families. Such amazing biodiversity can be found in Southern Europe only. The floristic analysis indicates that the most of the Key words:- families and the genera are represented by a small number of inferior Chepan Mountain, floristic analysis, taxa. The hemicryptophytes dominate among the life forms with vascular plants 53.32%. The biological types are represented mainly by perennial herbaceous plants (59.57%). In the flora of the Mountain there are 49 floristic elements. The most of the species are European-Asiatic floristic elements (14.54%), followed by European-Mediterranean floristic elements (13.78%) and subMediterranean floristic elements (13.52%). Among the vascular plants, there are 26 Balkan endemic species, 4 Bulgarian endemic species and 26 relic species. The species with protection statute are 66 species. The anthropophytes among the vascular plants are 390 species (49.74%).
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Subclass 2. Monochlamydeae Order: Centrospermae (Caryophyllales) (Curvembryeae)
    Subclass 2. Monochlamydeae Perianth undifferentiated into Ca. and Co. or absent. Order: Centrospermae (Caryophyllales) (Curvembryeae) The order is of interest as indicating a passage from Monochlamydeae to the Dialypetalous type. The simplest flower forms of Chenopodiaceae show a similar plan of floral structure to Urticales, while more advanced families are typically dichlamydous reaching in Caryophyllaceae. Key to families of order Centrospermae (Caryophyllales) 1a. Stem nodded, dichasially branched, leaves opposite…………............................…..…….Caryophyllaceae 1b.Not So.........................................................................................2 2a. Carpels 2 or more.....................................................................3 2b. Carpel one.................................................................................6 3a. Fruit achene, inflated...............................................................4 3b. Fruit capsule..............................................................................5 4a. Perianth memberanous…………...…..………Amarantaceae 4b. Perianth herbaceous…….....….......………..Chenopodiaceae 5a. Perianth differentiated into K2 and C 4-6........Portulaccaceae 5b. Perianth single of 5 tepals……………........………Aizoaceae 6a Perianth petaloid………………..…………….Nyctaginaceae 6b. Perianth sepaloid…………..……...………….Phytolaccaceae Family: Amarantaceae Vegetative characters: Leaves: With reticulate venation. Floral characters: Inflorescence: Dense small showy cymose. Flower: Small dry pentamerous. Bract:
    [Show full text]
  • Convolvulus Arvensis
    Species: Convolvulus arvensis http://www.fs.fed.us/database/feis/plants/forb/conarv/all.html SPECIES: Convolvulus arvensis Choose from the following categories of information. Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Management considerations References INTRODUCTORY SPECIES: Convolvulus arvensis AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS ©Barry A. Rice/The Nature Conservancy AUTHORSHIP AND CITATION: Zouhar, Kris. 2004. Convolvulus arvensis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: CONARV SYNONYMS: None 1 of 48 9/24/2007 4:13 PM Species: Convolvulus arvensis http://www.fs.fed.us/database/feis/plants/forb/conarv/all.html NRCS PLANT CODE [111]: COAR4 COMMON NAMES: field bindweed field morning-glory morning glory small bindweed devil's guts TAXONOMY: The currently accepted name for field bindweed is Convolvulus arvensis L. It is a member of the morning-glory family (Convolvulaceae) [30,37,50,54,60,64,70,71,81,88,96,110,145,146,149,153]. LIFE FORM: Vine-forb FEDERAL LEGAL STATUS: No special status OTHER STATUS: As of this writing (2004), field bindweed is classified as a noxious or prohibited weed or weed seed in 35 states in the U.S. and 5 Canadian provinces [139]. See the Invaders, Plants, or APHIS databases for more information. The Eastern Region of the U.S. Forest Service ranks field bindweed as a Category 3 plant: often restricted to disturbed ground and not especially invasive in undisturbed natural habitats [136].
    [Show full text]
  • 134 CONVOLVULUS CANTABRICA L. (Convolvulaceae) in the «Lower Prut» Biosphere Reserve (Republic of Moldova)
    134 JOURNAL OF BOTANY VOL. XII, NR. 2(21), 2020 https://doi.org/10.52240/1857-2367.2020.2(21).21 CONVOLVULUS CANTABRICA L. (CONVOLVULACEAE) IN THE «LOWeR PRUt» BiOsPHeRe ReseRve (RePUBLic OF MOLDOVA) Polina CASSIR1, Tatiana IZVERSCAIA2, Nina CIOCARLAN2, Veaceslav GHENDOV2 1Natural Scientific Reserve” Lower Prut”, Slobozia Mare (Cahul), Republic of Moldova 2“Al. Ciubotaru” National Botanical Garden (Institute), Chisinau, Republic of Moldova Abstract: The morphometric parameters, density of individuals, reproductive strategy and the ability of adaptation of the populations of Convolvulus cantabrica L. in the “Lower Prut” Biosphere reserve (Cahul district) were studied. There were registered 7 fragmented populations (the biggest being cca 0,5 ha). Key words: Convolvulus cantabrica, flora, “Lower Prut” biosphere reserve, Republic of Moldova Currently, the processes of extinction of species and a decrease in the area of habitats of natural and semi-natural steppe vegetation are increasing. There is an urgent need to study the current state of conservation of rare and valuable plant species found in such areas. Due to the increasing sensitivity to changes in environmental conditions, accompanied by increased anthropogenic pressure, many species of steppe plants are considered endangered, many of them are taken under state protection. In the year 2000, after the adherence of the Republic of Moldova to the Ramsar convention, the lake area of Lower Prut got the status of wetland of international importance. The Ramsar convention calls for the wise use of wetlands and adjacent territories, and the Convention on Biological Diversity promotes the ecosystem approach for sustainable management of natural resources, it follows that for the improvement of ecosystem quality in the lower Prut region.
    [Show full text]