Micrc5films International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

Micrc5films International 300 N MULTIPLE OBJECT SPECTROSCOPY: THE MX SPECTROMETER DESIGN. Item Type text; Dissertation-Reproduction (electronic) Authors HILL, JOHN MILTON. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 23:12:57 Link to Item http://hdl.handle.net/10150/187696 INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. I. The sign or "target" for pages apparently lacking from the document photographed. is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. Uni\6Sit.v Micrc5films International 300 N. Zeeb Road Ann Arbor, MI4B106 8415068 Hill, John Milton MULTIPLE OBJECT SPECTROSCOPY: THE MX SPECTROMETER DESIGN The University of Arizona PH.D. 1984 University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way fror:n the available copy. Problems encountered with this document have been identified here with a check mark_-I_. 1. Glossy photographs or pages 2. Colored illustrations, paper or print __ 3. Photographs with dark background ~ 4. Illustrations are poor copy __ 5. Pages with black marks, not original copy __ 6. Print shows through as there is text on both sides of page __ 7. Indistinct, broken or small print on several pages __ 8. Print exceeds margin requirements __ 9. Tightly bound copy with print lost in spine __ 10. Computer printout pages with indistinct print __ 11. Page(s) lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages __ 15. cnher___________________________________ _ University Microfilms International MULTIPLE OBJECT SPECTROSCOPY: THE MX SPECTROMETER DESIGN by John Milton Hill A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 198 4 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by ________~J~o~h~n~~~i~l~t~on~H--il-l~------------------- entitled ____________~M~u~l~t~i~p~l~e-~Ob~J~·e~c~t~S~r~e~c~t~r~o~s~c~o~p~y~: ______________________ __ The MX Spectrometer Design and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ~----------~l~----~~-------------------------------- Date Date Date 4)l(Jf4. Q Date Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this disse~tation prepared under my direction and recommend that it be accepted as fulfilling the dissertation Date r I STATEMENT BY THE AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under the rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledge of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate Coll ege when in his judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. 1 f..... 0)/,'1 .. iJ. /; Signed:~r/VV"-n /11 t#t':~{{ 'vI DEDICATION AND ACKNOWLEDGEMENTS Dedication I would like to dedicate this work to Howard Milton Hill, July 1,1924 to December 12,1970, a father who shared his love of science and instrumentation with me; and to Daniel John Frederick, February 19, 1957 to April 13, 1977, a friend who stimulated my interest in astronomy and building telescopes. For he delivered us from the domain of darkness, and transferred us to the kingdom of His beloved Son, in whom we have redemption, the forgiveness of sins. And He is the image of the invisible God, the first-born of all creation. For in Him all things were created, both in heaven and on earth, visible and invisible, whether thrones or dominions or rulers or authorities -- all things have been created through Him and for Him. And he is before all things, and in Him all things hold together. Colossians 1:13-17 NASV Acknowledgements I would like to thank the gang of three advisors who have guided the development of the Medusi and the MX. Roger Angel has been a never ending source of inspiration and great ideas. Perhaps this dissertation should have been titled "Extraction of Ideas from an Angel with High Efficiency". John Scott has been a great source of scientific and personal motivation. Creative proposal writing while bass fishing is an art every astronomer should master. John pOinted out years ag~ and still believes that the MX will produce "big science". Pete Stockman provided an operational CCD camera and has been a continuous reminder iii iv never to sacrifice the quantum efficiency. My other collaborators and friends, Paul Hintzen, Del Lindley, Mike Wenz, Dave Silva, and Jon Eisenhamer should also be credited for doing much of the work required to successfully measure redshifts of galaxies in clusters. I express my gratitude to the members of my prel iminary ( R. Angel, D. Dearborn, A. Pacholczyk, R. Williams, and N. Woolf) and doctoral ( R. Angel, J. McGraw, M. Rieke, and P. Strittmatter) examination committees for their thoughtful comments and advice. I would also like to thank the Steward Observatory scientific and technical staff for their efforts toward making many of these ideas reality. Specific thanks to R. Allen, R. Cromwell, J. Fletchall, R. Goff, D. Harvey, G. Hagedon, K. Johnson, A. Koski, R. Leach, C. Lynn, B. McClendon, G. McGlaughlin, R. Miller, M. Miller, S. Mileski, D. Mitchell, C. Poland, D. Sackenheim, V. Schiano, D. Skillman, L. Steen, J. Stocke, W. Stone, S. Tumia, L. Ulrickson, L. Wilson, R. Young, and others. Not to be forgotten are my fellow graduate students the "Not Ready for Dark Time Players", past and present, who have made it all bea rab 1e and somet i mes even fun. No names will be ment i oned to avoi d recriminations. You know who you are! And perhaps most important, Shirley Hill and Alice Hill, my mother and sister who have baked countless dozen cookies to keep me going through long hours of research. The development and use of the Medusa spectrograph has been supported by NASA grants NAGW-121 and NAGW-124. The MX Spectrome~er is being constructed under grant AST-8116965 from the National Science Foundation. I would like to acknowledge support from the University of Arizona Summer Research Support Program. I would also like to thank the v Quartz Products Corporation for their assistance in providing information and fiber samples. I would also like to thank J. R. Powell of the Royal Greenwi'ch Observatory for permission to reproduce his fiber measurements. TABLE OF CONTENTS Page DEDICATION AND ACKNOWLEDGEMENTS iii LIST OF ILLUSTRATIONS . x LI ST OF TABLES . xi ABSTRACT ••• . · . xii . - 1. INTRODUCTION TO MULTIPLE OBJECT FIBER OPTIC SPECTROSCOPY · . 1 Photons for Spectroscopy • • • • • • • •• 2 Telescopes •••• • • • • • • 2 Detectors • • • • • • • • • • • •• 4 Multiplex Advantage. • • • • • • • • • • • •• 5 Overview of Multiple Fiber Spectroscopy • • • • • •• 7 2. STATISTICAL AND DYNAMICAL PROBLEMS IN ASTRONOMY • · . 11 Clusters of Galaxies . · . 11 Dynamics . 13 Structure • • • • 16 Superclusters ••••••••• 19 Clusters of Stars •••• . 22 Spectroscopic Surveys •••• · '. 25 3. MEDUSA RESULTS FOR CLUSTERS OF GALAXIES • 28 Dynamics •• ••••••••••••• 28 Velocity DisperSions .
Recommended publications
  • JOHN R. THORSTENSEN Address
    CURRICULUM VITAE: JOHN R. THORSTENSEN Address: Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755-3528; (603)-646-2869 [email protected] Undergraduate Studies: Haverford College, B. A. 1974 Astronomy and Physics double major, High Honors in both. Graduate Studies: Ph. D., 1980, University of California, Berkeley Astronomy Department Dissertation : \Optical Studies of Faint Blue X-ray Stars" Graduate Advisor: Professor C. Stuart Bowyer Employment History: Department of Physics and Astronomy, Dartmouth College: { Professor, July 1991 { present { Associate Professor, July 1986 { July 1991 { Assistant Professor, September 1980 { June 1986 Research Assistant, Space Sciences Lab., U.C. Berkeley, 1975 { 1980. Summer Student, National Radio Astronomy Observatory, 1974. Summer Student, Bartol Research Foundation, 1973. Consultant, IBM Corporation, 1973. (STARMAP program). Honors and Awards: Phi Beta Kappa, 1974. National Science Foundation Graduate Fellow, 1974 { 1977. Dorothea Klumpke Roberts Award of the Berkeley Astronomy Dept., 1978. Professional Societies: American Astronomical Society Astronomical Society of the Pacific International Astronomical Union Lifetime Publication List * \Can Collapsed Stars Close the Universe?" Thorstensen, J. R., and Partridge, R. B. 1975, Ap. J., 200, 527. \Optical Identification of Nova Scuti 1975." Raff, M. I., and Thorstensen, J. 1975, P. A. S. P., 87, 593. \Photometry of Slow X-ray Pulsars II: The 13.9 Minute Period of X Persei." Margon, B., Thorstensen, J., Bowyer, S., Mason, K. O., White, N. E., Sanford, P. W., Parkes, G., Stone, R. P. S., and Bailey, J. 1977, Ap. J., 218, 504. \A Spectrophotometric Survey of the A 0535+26 Field." Margon, B., Thorstensen, J., Nelson, J., Chanan, G., and Bowyer, S.
    [Show full text]
  • From Messier to Abell: 200 Years of Science with Galaxy Clusters
    Constructing the Universe with Clusters of Galaxies, IAP 2000 meeting, Paris (France) July 2000 Florence Durret & Daniel Gerbal eds. FROM MESSIER TO ABELL: 200 YEARS OF SCIENCE WITH GALAXY CLUSTERS Andrea BIVIANO Osservatorio Astronomico di Trieste via G.B. Tiepolo 11 – I-34131 Trieste, Italy [email protected] 1 Introduction The history of the scientific investigation of galaxy clusters starts with the XVIII century, when Charles Messier and F. Wilhelm Herschel independently produced the first catalogues of nebulæ, and noticed remarkable concentrations of nebulæ on the sky. Many astronomers of the XIX and early XX century investigated the distribution of nebulæ in order to understand their relation to the local “sidereal system”, the Milky Way. The question they were trying to answer was whether or not the nebulæ are external to our own galaxy. The answer came at the beginning of the XX century, mainly through the works of V.M. Slipher and E. Hubble (see, e.g., Smith424). The extragalactic nature of nebulæ being established, astronomers started to consider clus- ters of galaxies as physical systems. The issue of how clusters form attracted the attention of K. Lundmark287 as early as in 1927. Six years later, F. Zwicky512 first estimated the mass of a galaxy cluster, thus establishing the need for dark matter. The role of clusters as laboratories for studying the evolution of galaxies was also soon realized (notably with the collisional stripping theory of Spitzer & Baade430). In the 50’s the investigation of galaxy clusters started to cover all aspects, from the distri- bution and properties of galaxies in clusters, to the existence of sub- and super-clustering, from the origin and evolution of clusters, to their dynamical status, and the nature of dark matter (or “positive energy”, see e.g., Ambartsumian29).
    [Show full text]
  • Arxiv:Astro-Ph/0007126V1 11 Jul 2000
    The Infall Region of Abell 576: Independent Mass and Light Profiles Kenneth Rines and Margaret J. Geller Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 krines, [email protected] Antonaldo Diaferio Universit`adegli Studi di Torino, Dipartimento di Fisica Generale “Amedeo Avogadro”, Torino, Italy Joseph J. Mohr1 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 Gary A. Wegner Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 ABSTRACT We describe observations of the nearby (cz = 11, 487 km s−1) cluster of galaxies Abell 576 beyond the virial radius and into the infall region where galaxies are on their first or second pass through the cluster. Using 1057 redshifts, we use the infall pattern in redshift space to determine the mass profile of A576 to a radius of ∼ 4 h−1Mpc. This mass estimation technique makes no assumptions about the equilibrium state of the cluster. Within ∼ 1 h−1Mpc, the mass profile we derive exceeds that determined from X-ray observations by arXiv:astro-ph/0007126v1 11 Jul 2000 a factor of ∼ 2.5. At ∼ 2.5 h−1Mpc, however, the mass profile agrees with virial mass estimates. Our mass profile is consistent with a Navarro, Frenk, & White (1997) or Hernquist (1990) profile, but it is inconsistent with an isothermal sphere. R-band images of a 3◦ × 3◦ region centered on the cluster allow an independent determination of the cluster light profile. We calculate the integrated mass-to-light ratio as a function of cluster radius; it decreases −1 smoothly from the core to M/LR ∼ 300h at ∼ 4 h Mpc.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Alma Mater Studiorum Universit`A Degli Studi Di Bologna
    Alma Mater Studiorum Universit`adegli Studi di Bologna Facolt`adi Scienze Matematiche, Fisiche e Naturali Dipartimento di Astronomia DOTTORATO DI RICERCA IN ASTRONOMIA Ciclo XXII ANALYSIS OF THE NUCLEAR PROPERTIES OF BRIGHTEST CLUSTER GALAXIES AND COMPARISON WITH “NORMAL” RADIO GALAXIES. Dottoranda: ELISABETTA LIUZZO Coordinatore: Relatore: Chiar.mo Prof. Chiar.mo Prof. LAURO MOSCARDINI GABRIELE GIOVANNINI Co-relatore: Dr. MARCELLO GIROLETTI Settore Scientifico Disciplinare: Area 02 - Scienze Fisiche FIS/05 Astronomia e Astrofisica Esame Finale Anno 2010 QUESTA TESI E’ STATA SVOLTA NELL’AMBITO DELLE ATTIVITA’ DI RICERCA DELL’ ISTITUTO DI RADIOASTRONOMIA DELL’ ISTITUTO NAZIONALE DI ASTROFISICA (BOLOGNA) Contents Abstract i 1 General properties of BCGs 1 1.1 Observational properties. 1 1.1.1 Morphological types. 1 1.1.2 Position in the cluster. 5 1.1.3 Radii and Surface brightness. 5 1.1.4 Size-luminosity relation. 7 1.1.5 Ellipticity. 9 1.1.6 Dynamical mass. 9 1.1.7 The Fundamental Plane. 10 1.1.8 Faber−Jackson relation. 12 1.1.9 Stellar populations. 14 1.1.10 Emission line properties. 16 1.2 Theories on the origin of BCGs. 20 1.2.1 Cooling Flow. 20 1.2.2 Galactic cannibalism. 22 1.2.3 Galaxy merging. 23 1.3 Radio loud BCGs. 28 1.3.1 The cooling flow problem. 31 2 Pc scale properties of BCGs 37 2.1 The definition of a complete sample of BCGs. 37 2.2 The data set. 40 2.2.1 The data reduction. 40 2.3 Notes on Individual Sources. 42 i ii CONTENTS 2.3.1 NGC708 (B2 0149+35) in Abell 262.
    [Show full text]
  • Arxiv:Astro-Ph/9808050 V1 6 Aug 1998 Rssfo H Cteigo Lcrn Ncutr Fgalax of Clusters in Electrons of Suny Scattering the the Con Occur
    To appear in Physics Reports THE SUNYAEV-ZEL’DOVICH EFFECT Mark Birkinshaw1 Department of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK ABSTRACT The Sunyaev-Zel’dovich effect causes a change in the apparent brightness of the Cosmic Microwave Background Radiation towards a cluster of galaxies or any other reservoir of hot plasma. Measurements of the effect provide distinctly different information about cluster properties than X-ray imaging data, while combining X-ray and Sunyaev-Zel’dovich effect data leads to new insights into the structures of cluster atmospheres. The effect is redshift-independent, and so provides a unique probe of the structure of the Universe on the largest scales. The present review discusses the theory of the Sunyaev-Zel’dovich effect and collects published results for many clusters, presents the overall conclusions that may be drawn from the detections so far, and discusses the prospects for future research on the Sunyaev-Zel’dovich effects. Subject headings: Sunyaev-Zel’dovich Effect; Clusters; Microwave Background Radiation arXiv:astro-ph/9808050 v1 6 Aug 1998 1. Astrophysical Context Compton scattering is one of the major physical processes that couples matter and radiation. Its importance is often stressed in highly relativistic environments where large energy transfers occur: for example, in the synchrotron self-Compton process that may be responsible for much of the X-radiation from active galactic nuclei (e.g., Fabian et al. 1986). However, the Compton process also has observable consequences in low-energy environments, where small energy transfers occur. The Sunyaev-Zel’dovich effect, which arises from the scattering of electrons in clusters of galaxies on the cosmic microwave 1Also Smithsonian Institution Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA –2– background radiation field, is perhaps the most important astrophysical example.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) I t (NASA-Td-851U3) 'ILLIPthATULL 11d; ELZAEb':AL N84 -3!234 ALUbDAMCP. S IN Tbtr ABILL C I L altb A t) 16 DBhlVEv FbU4 X-tAY UbS.: LVAIILN . ) (NASA) 33 N UC AU3/tik A01 CSCL OJb UticI dk G'/90 23130 N/SA Technical Memorandum 85103 TEMPERATURE AND ELEMENTAL ABUNDANCES IN THE ABELL CLUSTER A 576 DERIVED FROM X-RAY OBSERVATIONS .t R. Rothenflug L. Vigroux R. F. Mttshotzky S. S. Holt Oct r I ;I ,.T p:•, ^1 VEp t SEPTEMBER 1983 National Aeronautics and Space Administration 4 Goddard Space Fligil Center Gi eenbelt Maryland 20771 lift? <^$^^ U^r ., 2^^--^ ^ --- ^ qtr t . e ^7 C a Submitted to The Astrophysical Journal t 0, J 4a i e TEMPERATURE AND ELEMENTAL.
    [Show full text]
  • Dark Matter in Galaxy Clusters: Shape, Projection, and Environment
    Dark Matter in Galaxy Clusters: Shape, Projection, and Environment A Thesis Submitted to the Faculty of Drexel University by Austen M. Groener in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2015 c Copyright 2015 Austen M. Groener. ii Dedications I dedicate this thesis to my family, and to my wife, who supported me unconditionally throughout my career as a scientist. iii Acknowledgments I have many people to thank for making this work a possibility. Firstly, I would like to thank my advisor, Dr. David Goldberg. His guidance, support, and most of all his patience provided the framework for which I was able to build my work from. I would also like to thank my dissertation committee members, Dr. Michael Vogeley, Dr. Gordon Richards, Dr. Luis Cruz, and Dr. Andrew Hicks, for their constructive criticism and support of my research. I would also like to acknowledge fellow graduate students for their assistance and support. A special thanks to Justin Bird, Markus Rexroth, Frank Jones, Crystal Moorman, and Vishal Kasliwal for allowing me to bounce ideas off of them, which was a truly important but time consuming process. iv Table of Contents List of Tables ........................................... vi List of Figures .......................................... vii Abstract .............................................. ix 1. Introduction .......................................... 1 1.1 The Radial Density Profile.................................. 2 1.2 Cluster Scaling Relations .................................. 5 1.3 Clusters and Environment.................................. 7 1.4 Outline ............................................ 11 2. Cluster Shape and Orientation .............................. 12 2.1 Introduction.......................................... 12 2.2 Triaxial Projections...................................... 14 2.3 Sample and Methods..................................... 15 2.3.1 Simulation Sample .................................... 15 2.3.2 Methods.........................................
    [Show full text]
  • The Infall Region of Abell 576: Independent Mass and Light Profiles
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 11-2000 The Infall Region of Abell 576: Independent Mass and Light Profiles Kenneth Rines Harvard-Smithsonian Center for Astrophysics Margaret J. Geller Harvard-Smithsonian Center for Astrophysics Antonaldo Diaferio University of Turin Joseph J. Mohr University of Chicago Gary A. Wegner Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the External Galaxies Commons, and the Physical Processes Commons Dartmouth Digital Commons Citation Rines, Kenneth; Geller, Margaret J.; Diaferio, Antonaldo; Mohr, Joseph J.; and Wegner, Gary A., "The Infall Region of Abell 576: Independent Mass and Light Profiles" (2000). Open Dartmouth: Published works by Dartmouth faculty. 2228. https://digitalcommons.dartmouth.edu/facoa/2228 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. THE ASTRONOMICAL JOURNAL, 120:2338È2354, 2000 November ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE INFALL REGION OF ABELL 576: INDEPENDENT MASS AND LIGHT PROFILES KENNETH RINES AND MARGARET J. GELLER Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; krines=cfa.harvard.edu, mgeller=cfa.harvard.edu ANTONALDO DIAFERIO Universita` degli Studi di Torino, Dipartimento di Fisica Generale Amedeo Avogadro, Torino, Italy JOSEPH J. MOHR1 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 AND GARY A.
    [Show full text]
  • NOAO Annual Report FY 2001 October 1, 2000 Œ September 30
    Cerro Tololo Inter-American Observatory Kitt Peak National Observatory US Gemini Program NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO Annual Report FY 2001 October 1, 2000 – September 30, 2001 NOAO is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation NOAO ANNUAL REPORT FY 2001 TABLE OF CONTENTS 1. INTRODUCTION ..................................................................................................................................1 2. SCIENTIFIC RESEARCH ...................................................................................................................2 2.1 Cerro Tololo Inter-American Observatory (CTIO) .........................................................................2 2.1.1 Galaxy Cluster Found Using Gravitational Distortion..........................................................2 2.1.2 High Spatial Density of Halo White Dwarfs .........................................................................2 2.2 Kitt Peak National Observatory (KPNO).........................................................................................3 2.2.1 The Fossil History of Chemical Enrichment in the Early Galaxy ........................................3 2.2.2 The Challenge of Investigating Large-Scale Flows in the Universe ....................................4 2.3 Science from the Gemini Telescopes ..............................................................................................5 3. USER SUPPORT AND TELESCOPE IMPROVEMENTS
    [Show full text]
  • Program Plan 1976 8~0~ National Radio Astronomy Observatory
    U'!; A r( / 0~~ o - Oosaws NATIONAL RADIO 0~ ASTRONOMY o r~ OBSERVATORY PROGRAM PLAN 1976 8~0~ NATIONAL RADIO ASTRONOMY OBSERVATORY CALENDAR YEAR 1976 PROGRAM PLAN NATIONAL RADIO ASTRONOMY OBSERVATORY CALENDAR YEAR 1976 PROGRAM PLAN I 1 Table of Contents Section-Pg I. Introduction.... ...... ....... ...... ...... ... 1 II. Scientific Program................ ....... 2 III. Rsearch Instruments . .......... ........ ........... A. RA Scientific Staff Programs.. ....... .. .... 13 IV. Equipment. ........ .... ..... .. .. .. 7 Committees.. .NR :.4.6 :.. 0 00. B. NRA Permanent ScientifiablCStaff with Major V. Operations andMaintenance............. .......... 8 VI. Construction..Sc ien.tific ..Inte.rests.... .... ... ....... ... ................... ............ 1 11 VII. Financial Plann.......... ........ ..... 12 Appendix C. NRAOrgani zational Chart.... ........ ... ....... 20 21 ........................ D. NRA ommittees.............. NATIONAL RADIO ASTRONOMY OBSERVATORY CALENDAR YEAR 1976 PROGRAM PLAN I. INTRODUCTION The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract to the National Science Foundation, and serves as one of the Foundation's National Centers for research in radio . : astronomy. .At least 60 percent of the observing time On the four major: i..... " .j;=~;-a?;z-., ~.~ ';- radio telescopes which the Observatory operates wi-1l .be used by visiting . T scientists both from universities .and institutions elsewhere in the United States and from abroad.' The research planned for. this period by the NRAO permanent staff and the visiting investigators is summarized in the follow- ing section. The: telescope systems--the 36-foot millimeter wavelength telescope, the 140-foot telescope, the 300-foot meridian transit telescope, and the four-element variable baseline interferometer--are all heavily subscribed and an important aspect of the Observatory's operation is the design and development of new research instrumentation for these telescope systems.
    [Show full text]
  • A Catalog of Galaxy Clusters Observed by XMM-Newton
    A&A 478, 615–658 (2008) Astronomy DOI: 10.1051/0004-6361:20077930 & c ESO 2008 Astrophysics A catalog of galaxy clusters observed by XMM-Newton S. L. Snowden1, R. F. Mushotzky2,K.D.Kuntz3, and D. S. Davis4,5 1 Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA e-mail: [email protected] 2 Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA e-mail: [email protected] 3 Henry A. Rowland Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA e-mail: [email protected] 4 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 5 CRESST and the Astroparticle Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA e-mail: [email protected] Received 22 May 2007 / Accepted 3 October 2007 ABSTRACT Aims. We present a uniform catalog of the images and radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton. Methods. We use a new “first principles” approach to the modeling and removal of the background components; the quiescent particle background, the cosmic diffuse emission, the soft proton contamination, and the solar wind charge exchange emission. Each of the background components demonstrate significant spectral variability, several have spatial distributions that are not described by the photon vignetting function, and all except for the cosmic diffuse emission are temporally variable. Because these backgrounds strongly affect the analysis of low surface brightness objects, we provide a detailed description our methods of identification, characterization, and removal.
    [Show full text]