Biblography (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Biblography (PDF) Papers In Refereed Journals Joel N. Bregman 1. The Blue Stars Above the Turn-Off in M67: Horizontal Branch or Blue Stragglers?; Strom, S. E., Strom, K. M., and Bregman, J. N. 1971, Pub. A.S.P., 83, 768. 2. Circumstellar Shells in the Young Cluster NGC 2264. II. Infrared and Further Optical Observations, S. E. Strom, K. M. Strom, A. L. Brooke, J. N. Bregman, and J. Yost, Ap. J., 171, 267, 1972. 3. Period-Luminosity-Color Relationship and Pulsation Modes of Pulsating Variable Stars, M. Breger and J. N. Bregman, Ap. J., 200, 343, 1975. 4. The Violet Opacity of Carbon Stars, J. D. Bregman and J. N. Bregman, Ap. J., 222, L41, 1978. 5. Radiative Accretion Flow onto Giant Galaxies in Clusters, W. G. Mathews and J. N. Bregman, Ap. J., 224, 308, 1978. 6. Galactic Winds and the Hubble Sequence, J. N. Bregman, Ap. J., 224, 768, 1978. 7. Galactic Wakes and the Magellanic Stream, J. N. Bregman, Ap. J., 229, 514, 1979. 8. The Galactic Fountain of High Velocity Clouds, J. N. Bregman, Ap. J., 236, 577, 1980. 9. A Wind in the Galaxy, J. N. Bregman, Ap. J., 237, 280, 1980. 10. X-Ray Coronae Around Galaxies, J. N. Bregman, Ap. J., 237, 681, 1980. 11. Detection of Lyman Continuum Absorption in the BL Lac Object 0735+178, J. N. Bregman, A. E. Glassgold, and P. J. Huggins, Ap. J., 249, 13, 1980. 12. Multifrequency Observations of the Red QSO 1413+135, J. N. Bregman, M. J.Lebofsky, M. F. Aller, G. H. Rieke, H. D. Aller, P. E. Hodge, A. E. Glassgold, and P. J. Huggins, Nature, 293, 714, 1981. 13. Galactic Absorption-Line Coronae, J. N. Bregman, Ap. J., 250, 7, 1981. 14. Simultaneous Observations of the BL Lac Object I Zw 187, J. N. Bregman, A. E. Glassgold, P. J. Huggins, J. T. Pollock, A. J. Pica, A. G. Smith, J. R. Webb, W. H.-M. Ku, R. J. Rudy, P. D. LeVan, P. M. Williams, P.W.J.L. Brand, G. Neugebauer, T. J. Balonek, W. Dent, H. D. Aller, M. F. Aller, and P. E. Hodge, Ap. J., 253, 19, 1982. 15. X-ray Observations to Detect Coronae Around Galaxies, J. N. Bregman and A. E. Glassgold, Ap. J., 263, 564, 1982. 16. Multifrequency Observations of the Flaring Quasar 1156+295, A. E. Glassgold, J. N. Bregman, P. J. Huggins, A. L. Kinney, A. J. Pica, J. T. Pollock, R. J. Leacock, A. G. Smith, J. R. Webb, W. Z. Wisniewski, N. Jeske, H. Spinrad, R.B.C. Henry, J. S. Miller, C. Impey, G. Neugebauer, M. F. Aller, H. D. Aller, P. E. Hodge, T. J. Balonek, W. A. Dent, and C. P. O'Dea, Ap. J., 274. 101, 1983. 17. Multifrequency Observations of the BL Lac Object 0735+178, J. N. Bregman, A. E. Glassgold, P. J. Huggins, H. D. Aller, M. F. Aller, P. E. Hodge, G. H. Rieke, M. J. Lebofsky, J. T. Pollock, A. J. Pica, R. J. Leacock, A. G. Smith, J. Webb, T. J. Balonek, W. A. Dent, C. P. O'Dea, W. H.-M. Ku, D. A. Schwartz, J. S. Miller, R. J. Rudy, and P. D. LeVan, Ap. J., 276, 454, 1984. 18. X-ray Observations of Broad Absorption Line Quasars, J. N. Bregman, Ap. J., 276, 423, 1984. 19. The Multifrequency Spectrum of the Starburst Galaxy NGC 2782, A. L. Kinney, J. N. Bregman, P. J. Huggins, A. E. Glassgold, and R. D. Cohen, PASP, 84, 398, 1983. 20. Diffuse Shock Acceleration and Quasar Photospheres, J. N. Bregman, Ap. J., 288, 32, 1985. 21. The Ultraviolet Spectra of Intermediate Redshift Quasars, A. L. Kinney, P. J. Huggins, J. N. Bregman, and A. E. Glassgold, Ap. J., 291, 128, 1985. 22. X-ray Emission from Red Quasars, J. N. Bregman, A. E. Glassgold, P. J. Huggins, and A. L. Kinney, Ap. J., 291, 505, 1985. 23. Variability of Lá and the Ultraviolet Continuum of 3C 446, Joel N. Bregman, A. E. Glassgold, P. J. Huggins, and A. L. Kinney, 1986, Ap. J., 301, 698. 24. Multifrequency Observations of the Superluminal Quasar 3C 345, Joel N. Bregman, A. E. Glassgold, P. J. Huggins, G. Neugebauer, D. T. Soifer, K. Matthews, J. Elias, J. Webb, J. T. Pollock, A. J. Pica, R. J. Leacock, A. G. Smith, H. D. Aller, M. F. Aller, P. E. Hodge, W. A. Dent, T. J. Balonek, R. E. Barvainis, T.P.L. Oellig, W. Z. Wisniewski, G. H. Rieke, M. J. Lebofsky, B. J. Wills, D. Wills, W. H.-M. Ku, Jesse D. Bregman, F. C. Witteborn, D. F. Lester, C. D. Impey, and J. A. Hackwell 1986, Ap. J., 301, 708. 25. Photoionization in the Halo of the Galaxy. Joel N. Bregman and J. P. Harrington, 1986, Ap. J., 309, 833. 26. The Ultraviolet Spectra of Intermediate Redshift Quasars. II., A.L. Kinney, P.J. Huggins, A.E. Glassgold, and J.N. Bregman, 1987, Ap. J., 314, 145. 27. Heat Conduction In Cooling Flows, Joel N. Bregman and L.P. David, 1988, Ap. J., 326, 639. 28. A Model For The Interaction Between Stars And Gas In The Interstellar Medium, W.H. Chiang, and Joel N. Bregman, 1988, Ap. J., 328, 427. 29. Thermal Instabilities In Cooling Flows, Laurence P. David, Joel N. Bregman, and C. Gregory Seab, 1988, Ap. J., 329, 66. 30. Multifrequency Observations Of The Optically Violent Variable Quasar 3C 446. Joel N. Bregman, A.E. Glassgold, P.J. Huggins, A.L. Kinney, I. McHardy, J. Webb, J.T. Pollock, R.J. Leacock, A.G. Smith, H.D. Aller, M.F. Aller, P.E. Hodge, J.S. Miller, S. Stephens, W.A. Dent, T.J. Balonek, R. Barvainis, G. Neugebauer, C.D. Impey, B.T. Soifer, K. Matthews, and J. Elias, W.Z. Wisniewski, 1988, Ap. J., 331, 746. 31. HI In Giant Elliptical Galaxies With Cooling Flows, Joel N. Bregman, Morton S. Roberts, and Riccardo Giovanelli, 1988, Ap. J. (Letters), 330, L93. 32. A Search For CO Emission In Cooling Flows, Joel N. Bregman, and D.E. Hogg, 1988, A. J., 96, 455. 33. Detection of CO in the Elliptical Galaxy NGC 4472, K. Huchtmeier, J.N. Bregman, D.E. Hogg, and M.S. Roberts, 1988, Astr. Ap., 198, L17. 34. The Effects of Magnetic Fields on the Growth of Thermal Instabilities In Cooling Flows, L.P. David and Joel N. Bregman, 1989, Ap. J., 337, 97. 35. Alternative Cooling Flow Models, Joel N. Bregman and L.P. David, 1989, Ap. J., 341, 49. 36. The Radiative Signature of the Shock Acceleration Process in Active Galactic Nuclei, Joel N. Bregman and John R. Boisseau 1989, Ap. J., 347, 118. 37. Far Infrared Emission From Dominant Cluster Galaxies, Joel N. Bregman, B.R. McNamara, and R.W. O'Connell 1990, Ap. J., 351, 406. 38. Galactic Fountains in the Lower Halo of the Galaxy, John R. Houck and Joel N. Bregman 1990, Ap. J., 352, 506. 39. Multifrequency Observations Of BL Lacertae, Joel N. Bregman et al. 1990, Ap. J., 352, 574. 40. HI Absorption Toward Cooling Flows In Clusters Of Galaxies, Brian R. McNamara, Joel N. Bregman, and Robert W. O'Connell 1990, Ap. J., 360, 20. 41. HI in the Giant Elliptical Galaxy NGC 4406, Joel N. Bregman and Morton S. Roberts 1990, Ap. J., 362, 468. 42. Continuum Radiation From Active Galactic Nuclei, Joel N. Bregman 1990, Astronomy and Astrophysics Review, 2, 125. 43. Stripped Interstellar Gas in Cluster Cooling Flows, Noam Soker, Joel N. Bregman, and Craig L. Sarazin 1991, Ap. J., 368, 341. 44. Interstellar Matter in Early-Type Galaxies I. The Catalog, Morton S. Roberts, David E. Hogg, Joel N. Bregman, William R. Forman, and Christine Jones, 1991, Ap. J. Sup., 75, 751. 45. Multifrequency Observations of BL Lacertae in 1988, Kawai, N., Matsuoka, M., Bregman, J.N., Aller, H.D., Aller, M.F., Hughes, P.A., Balbus, S.A., Balonek, T.J., Chambers, K.C., Clegg, R.E.S., Clements, S.D., Leacock, R.J., Smith, A.G., Goodrich, R., Miller, J.S., Hereld, M., Hoare, M.G., Hughes, V.A., Miley, G.K., Moriarty-Schieven, G.H., Matthews, K., Neugebauer, G., Ohashi, T., Roche, P.F., Thronson, H.A., Valtaoja, E., Terasranta, H., Webb, J.R., Wills, B.J., and Wills, D. 1991, Ap. J., 382, 508. 46. Variability in Blazars, Hugnagel, B.R., and Bregman, J.N. 1992, Ap. J., 386, 473. 47. Interstellar Matter In Early-Type Galaxies II. The Relationship Between Gaseous Components and Galaxy Types, Bregman, J.N., Hogg, D.E., and Roberts, M.S. 1992, Ap. J., 387, 484. 48. X-Ray Emission From SN1986J In NGC 891, Bregman, J.N., and Pildis, R.A. 1992, Ap. J. (Letters), 398, L107. 49. Far-Infrared Emission From The Intracluster Medium, Wise, M.W., O'Connell, R.W., Bregman, J.N., and Roberts, M.S. 1993, Ap. J., 405, 94. 50. Modeling The Structure Of HI In The Galactic Disk, Bregman, J.N., Kelson, D.D., and Ashe, G.A. 1992, Ap. J., 409, 682. 51. Extended Hot Gas Halos Around Starburst Galaxies, Tomisaka, K., and Bregman, J.N. 1993, Publ. Astron. Soc. Japan, 45, 513. 52. Hydrodynamical Simulations of Star-Gas Interactions in the Interstellar Medium With an External Gravitational Potential; Rosen, A., Bregman, J.N., and Norman, M.L. 1993, ApJ, 413, 137. 53. Multiwavelength Monitoring of the BL Lac Object PKS 2155-304. I. The IUE Campaign; Urry, C.M., Maraschi, L., Edelson, R., et al., where J.N. Bregman is a co-author; 1993, Ap.J., 411, 614.
Recommended publications
  • JOHN R. THORSTENSEN Address
    CURRICULUM VITAE: JOHN R. THORSTENSEN Address: Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755-3528; (603)-646-2869 [email protected] Undergraduate Studies: Haverford College, B. A. 1974 Astronomy and Physics double major, High Honors in both. Graduate Studies: Ph. D., 1980, University of California, Berkeley Astronomy Department Dissertation : \Optical Studies of Faint Blue X-ray Stars" Graduate Advisor: Professor C. Stuart Bowyer Employment History: Department of Physics and Astronomy, Dartmouth College: { Professor, July 1991 { present { Associate Professor, July 1986 { July 1991 { Assistant Professor, September 1980 { June 1986 Research Assistant, Space Sciences Lab., U.C. Berkeley, 1975 { 1980. Summer Student, National Radio Astronomy Observatory, 1974. Summer Student, Bartol Research Foundation, 1973. Consultant, IBM Corporation, 1973. (STARMAP program). Honors and Awards: Phi Beta Kappa, 1974. National Science Foundation Graduate Fellow, 1974 { 1977. Dorothea Klumpke Roberts Award of the Berkeley Astronomy Dept., 1978. Professional Societies: American Astronomical Society Astronomical Society of the Pacific International Astronomical Union Lifetime Publication List * \Can Collapsed Stars Close the Universe?" Thorstensen, J. R., and Partridge, R. B. 1975, Ap. J., 200, 527. \Optical Identification of Nova Scuti 1975." Raff, M. I., and Thorstensen, J. 1975, P. A. S. P., 87, 593. \Photometry of Slow X-ray Pulsars II: The 13.9 Minute Period of X Persei." Margon, B., Thorstensen, J., Bowyer, S., Mason, K. O., White, N. E., Sanford, P. W., Parkes, G., Stone, R. P. S., and Bailey, J. 1977, Ap. J., 218, 504. \A Spectrophotometric Survey of the A 0535+26 Field." Margon, B., Thorstensen, J., Nelson, J., Chanan, G., and Bowyer, S.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • On the Nature of Filaments of the Large-Scale Structure of the Universe Irina Rozgacheva, I Kuvshinova
    On the nature of filaments of the large-scale structure of the Universe Irina Rozgacheva, I Kuvshinova To cite this version: Irina Rozgacheva, I Kuvshinova. On the nature of filaments of the large-scale structure of the Universe. 2018. hal-01962100 HAL Id: hal-01962100 https://hal.archives-ouvertes.fr/hal-01962100 Preprint submitted on 20 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the nature of filaments of the large-scale structure of the Universe I. K. Rozgachevaa, I. B. Kuvshinovab All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences (VINITI RAS), Moscow, Russia e-mail: [email protected], [email protected] Abstract Observed properties of filaments which dominate in large-scale structure of the Universe are considered. A part from these properties isn’t described within the standard ΛCDM cosmological model. The “toy” model of forma- tion of primary filaments owing to the primary scalar and vector gravitational perturbations in the uniform and isotropic cosmological model which is filled with matter with negligible pressure, without use of a hypothesis of tidal interaction of dark matter halos is offered.
    [Show full text]
  • Interstellarum 45 1 Zeitschrift Für Praktische Astronomie
    fokussiert Liebe Leserinnen, liebe Leser, die Sonnenfi nsternis am 29. März steht ganz im Fokus dieser Ausgabe. Während wir Daten, Karten und Beobachtungshinweise bereits im letzten Heft vorgestellt hatten (nachzubestellen über www.interstellarum.de), gehen wir in dieser Ausgabe auf einzelne As- pekte der Finsternisbeobachtung näher ein. Astro-Neulinge erhalten in unserer Einsteiger-Serie Grundwissen über die Sonne und ihre gefahrlose Beobachtung (Seite 28). Für Astro-Experten gibt Wolf- gang Strickling ausführliche Tipps zur Beobachtung der fl üchtigen Fliegenden Schatten, die kurz vor und nach der totalen Phase einer Sonnenfi nsternis auftreten (Seite 36). Über interessante Beobach- tungen am Rand der Finsterniszone vom 3. Oktober des vergangenen Jahres berichtet außerdem Dirk Ewers (Seite 32). Das Titelbild dieser Ausgabe gelang Stefan Binnewies am 26.2.1998 auf Aruba mit einem 93/840mm-Refraktor mit 1,4fach-Konverter; das Bild ist ein digitales Komposit aus einer 1/2s und einer 2s belichteten Aufnahme auf Fuji Velvia 50 ASA (Rollfi lm). Leider abgesagt werden musste die interstellarum-Leserreise zur Finsternis nach Ägypten. Der Bonner Firma Eclipse-Reisen.de gelang es nicht, die Reise wie vereinbart in ihr Online-Angebot aufzuneh- men. Dadurch war es Interessenten nicht möglich, sich wie geplant im Internet für die Leserreise anzumelden, sodass nach Auskunft des Anbieters die Mindestteilnehmerzahl nicht erreicht wurde – wäh- renddessen die Aufmerksamkeit auf eine nahezu identische Reise ohne Beteiligung durch interstellarum gelenkt wurde. Auch nach mehrfacher Bitte um Einhaltung der Vereinbarung änderte sich dar- an nichts. Stefan Binnewies Wie sicher sind Sonnenfi lter? Augenschäden werden nach Finsternis- Beobachtungen immer wieder gemeldet. Mit einer aufwändigen Messung ist Peter Höbel der Frage nachgegangen, ob die im Ama- teurbereich verbreiteten Objektivsonnenfi lter aus Glas und Folie die geltenden Sicherheitsnormen einhalten (Seite 63).
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • From Messier to Abell: 200 Years of Science with Galaxy Clusters
    Constructing the Universe with Clusters of Galaxies, IAP 2000 meeting, Paris (France) July 2000 Florence Durret & Daniel Gerbal eds. FROM MESSIER TO ABELL: 200 YEARS OF SCIENCE WITH GALAXY CLUSTERS Andrea BIVIANO Osservatorio Astronomico di Trieste via G.B. Tiepolo 11 – I-34131 Trieste, Italy [email protected] 1 Introduction The history of the scientific investigation of galaxy clusters starts with the XVIII century, when Charles Messier and F. Wilhelm Herschel independently produced the first catalogues of nebulæ, and noticed remarkable concentrations of nebulæ on the sky. Many astronomers of the XIX and early XX century investigated the distribution of nebulæ in order to understand their relation to the local “sidereal system”, the Milky Way. The question they were trying to answer was whether or not the nebulæ are external to our own galaxy. The answer came at the beginning of the XX century, mainly through the works of V.M. Slipher and E. Hubble (see, e.g., Smith424). The extragalactic nature of nebulæ being established, astronomers started to consider clus- ters of galaxies as physical systems. The issue of how clusters form attracted the attention of K. Lundmark287 as early as in 1927. Six years later, F. Zwicky512 first estimated the mass of a galaxy cluster, thus establishing the need for dark matter. The role of clusters as laboratories for studying the evolution of galaxies was also soon realized (notably with the collisional stripping theory of Spitzer & Baade430). In the 50’s the investigation of galaxy clusters started to cover all aspects, from the distri- bution and properties of galaxies in clusters, to the existence of sub- and super-clustering, from the origin and evolution of clusters, to their dynamical status, and the nature of dark matter (or “positive energy”, see e.g., Ambartsumian29).
    [Show full text]
  • Arxiv:Astro-Ph/0007126V1 11 Jul 2000
    The Infall Region of Abell 576: Independent Mass and Light Profiles Kenneth Rines and Margaret J. Geller Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 krines, [email protected] Antonaldo Diaferio Universit`adegli Studi di Torino, Dipartimento di Fisica Generale “Amedeo Avogadro”, Torino, Italy Joseph J. Mohr1 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 Gary A. Wegner Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 ABSTRACT We describe observations of the nearby (cz = 11, 487 km s−1) cluster of galaxies Abell 576 beyond the virial radius and into the infall region where galaxies are on their first or second pass through the cluster. Using 1057 redshifts, we use the infall pattern in redshift space to determine the mass profile of A576 to a radius of ∼ 4 h−1Mpc. This mass estimation technique makes no assumptions about the equilibrium state of the cluster. Within ∼ 1 h−1Mpc, the mass profile we derive exceeds that determined from X-ray observations by arXiv:astro-ph/0007126v1 11 Jul 2000 a factor of ∼ 2.5. At ∼ 2.5 h−1Mpc, however, the mass profile agrees with virial mass estimates. Our mass profile is consistent with a Navarro, Frenk, & White (1997) or Hernquist (1990) profile, but it is inconsistent with an isothermal sphere. R-band images of a 3◦ × 3◦ region centered on the cluster allow an independent determination of the cluster light profile. We calculate the integrated mass-to-light ratio as a function of cluster radius; it decreases −1 smoothly from the core to M/LR ∼ 300h at ∼ 4 h Mpc.
    [Show full text]
  • A Catalogue of Zeldovich Pancakes
    A Catalogue of Zeldovich Pancakes Mikkel O. Lindholmer Supervisor: Steen H. Hansen Master’s thesis, submitted on October 18, 2015 Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark Abstract Using the standard cold dark matter model ΛCDM, it is predicted that there will be small fluctuations in the primordial energy density. These fluctuations are expected to lead to a cosmic web [1] under the influence of gravity and time. This web will consist of dense galaxy clusters interlinked by less dense two-dimensional walls, so called Zeldovich pancakes [2], and one-dimensional filaments. Galaxy clusters and filaments have been observed for a long time, but only recently have Zeldovich pancakes been observed outside of simulations [6]. The reason these have only recently been observed is because they are much less dense than filaments and clusters, to the point of being hard to differentiate from the average density of their environs [4,5]. Using the method we invented in Falco et. al [6] to find 2 pancakes as a basis, I create a fully automatic program capable of finding pancakes without human input, in galaxy cluster widely different from each other. I apply this program to the Abell galaxy clusters and using the SDSS catalogue I check for potential pancakes in the galaxy clusters. While most of the cluster are contained in the SDSS many of the clusters are only partially covered. I try to make the program compensate for this and manage to create the first catalogue of Zeldovich pancakes by finding 197 of them in 113 different clusters.
    [Show full text]
  • New Evidence for Dark Matter
    New evidence for dark matter A. Boyarsky1,2, O. Ruchayskiy1, D. Iakubovskyi2, A.V. Macci`o3, D. Malyshev4 1Ecole Polytechnique F´ed´erale de Lausanne, FSB/ITP/LPPC, BSP CH-1015, Lausanne, Switzerland 2Bogolyubov Institute for Theoretical Physics, Metrologichna str., 14-b, Kiev 03680, Ukraine 3Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland Observations of star motion, emissions from hot ionized gas, gravitational lensing and other tracers demonstrate that the dynamics of galaxies and galaxy clusters cannot be explained by the Newtonian potential produced by visible matter only [1–4]. The simplest resolution assumes that a significant fraction of matter in the Universe, dominating the dynamics of objects from dwarf galaxies to galaxy clusters, does not interact with electromagnetic radiation (hence the name dark matter). This elegant hypothesis poses, however, a major challenge to the highly successful Standard Model of particle physics, as it was realized that dark matter cannot be made of known elementary particles [4]. The quest for direct evidence of the presence of dark matter and for its properties thus becomes of crucial importance for building a fundamental theory of nature. Here we present a new universal relation, satisfied by matter distributions at all observed scales, and show its amaz- ingly good and detailed agreement with the predictions of the most up-to-date pure dark matter simulations of structure formation in the Universe [5–7]. This behaviour seems to be insensitive to the complicated feedback of ordinary matter on dark matter.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Magnetic Field Amplification in Galaxy Clusters and Its Simulation
    Noname manuscript No. (will be inserted by the editor) Magnetic Field Amplification in Galaxy Clusters and its Simulation Donnert J. · Vazza F. · Bruggen¨ M. · ZuHone J. Received: date / Accepted: date Abstract We review the present theoretical and numerical understanding of mag- netic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbu- lence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field ampli- fication in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges. Keywords galaxy clusters; Magnetic Fields; Simulations; Magnetic Dynamo J. Donnert via P.Gobetti 101 40129 Bologna, Italy E-mail: [email protected] F. Vazza Dipartimento di Fisica e Astronomia via Gobetti 93/2 40129 Bologna, Italy E-mail: [email protected] M. Bruggen¨ Hamburg Observatory, Gojenbergsweg 112, 21029 Hamburg, Germany, E-mail: [email protected] J. ZuHone Smithsonian Astrophysical Observatory 60 Garden St. Cambridge, MA 02138 USA E-mail: [email protected] arXiv:1810.09783v1 [astro-ph.CO] 23 Oct 2018 2 Donnert J. et al. 1 Introduction Magnetic fields permeate our Universe, which is filled with ionized gas from the scales of our solar system up to filaments and voids in the large-scale structure (Klein and Fletcher, 2015).
    [Show full text]
  • Alma Mater Studiorum Universit`A Degli Studi Di Bologna
    Alma Mater Studiorum Universit`adegli Studi di Bologna Facolt`adi Scienze Matematiche, Fisiche e Naturali Dipartimento di Astronomia DOTTORATO DI RICERCA IN ASTRONOMIA Ciclo XXII ANALYSIS OF THE NUCLEAR PROPERTIES OF BRIGHTEST CLUSTER GALAXIES AND COMPARISON WITH “NORMAL” RADIO GALAXIES. Dottoranda: ELISABETTA LIUZZO Coordinatore: Relatore: Chiar.mo Prof. Chiar.mo Prof. LAURO MOSCARDINI GABRIELE GIOVANNINI Co-relatore: Dr. MARCELLO GIROLETTI Settore Scientifico Disciplinare: Area 02 - Scienze Fisiche FIS/05 Astronomia e Astrofisica Esame Finale Anno 2010 QUESTA TESI E’ STATA SVOLTA NELL’AMBITO DELLE ATTIVITA’ DI RICERCA DELL’ ISTITUTO DI RADIOASTRONOMIA DELL’ ISTITUTO NAZIONALE DI ASTROFISICA (BOLOGNA) Contents Abstract i 1 General properties of BCGs 1 1.1 Observational properties. 1 1.1.1 Morphological types. 1 1.1.2 Position in the cluster. 5 1.1.3 Radii and Surface brightness. 5 1.1.4 Size-luminosity relation. 7 1.1.5 Ellipticity. 9 1.1.6 Dynamical mass. 9 1.1.7 The Fundamental Plane. 10 1.1.8 Faber−Jackson relation. 12 1.1.9 Stellar populations. 14 1.1.10 Emission line properties. 16 1.2 Theories on the origin of BCGs. 20 1.2.1 Cooling Flow. 20 1.2.2 Galactic cannibalism. 22 1.2.3 Galaxy merging. 23 1.3 Radio loud BCGs. 28 1.3.1 The cooling flow problem. 31 2 Pc scale properties of BCGs 37 2.1 The definition of a complete sample of BCGs. 37 2.2 The data set. 40 2.2.1 The data reduction. 40 2.3 Notes on Individual Sources. 42 i ii CONTENTS 2.3.1 NGC708 (B2 0149+35) in Abell 262.
    [Show full text]