(Mdma) on Mnemonic and Executive Measures and Serotonergic Neurotoxicity Using Interspecies Effects Scaling

Total Page:16

File Type:pdf, Size:1020Kb

(Mdma) on Mnemonic and Executive Measures and Serotonergic Neurotoxicity Using Interspecies Effects Scaling THE EFFECTS OF 3,4-METHYLENEDIOXYMETHAMPHETAMINE (MDMA) ON MNEMONIC AND EXECUTIVE MEASURES AND SEROTONERGIC NEUROTOXICITY USING INTERSPECIES EFFECTS SCALING by Stephanie Brooke Linley A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2011 Copyright by Stephanie Brooke Linley 2011 ii THE EFFECTS OF 3,4-METHYLENEDIOXYMETHAMPHETAMIN (MDMA) ON MNEMONIC AND EXECUTIVE MEASURES AND SEROTONERGIC NEUROTOXICITY USING INTERSPECIES EFFECTS SCALING by Stephanie Brooke Linley This dissertation was prepared under the directions of the candidate's dissertation advisor, Dr. Katherine M. Hughes, Department ofPsychology, and has been approved by the members of her supervisory committee. It was submitted to the faculty of the Charles E. Schmidt College of Science and was accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. SUPERVISORY COMMITTEE: ~~ Katherine M. HUghe~~Ji. Dissertation Advisor ~~~. Robert W. Stacldiian Jr., Ph.D. ~/~~tA..~L~LJl.!:7---L~ i David L. Wolgin, Ph.D. tft-'--- l e-o Rui Tao, Ph.D. Barry T. Ross n? Ph.D. Date Dean, Graduate Studies iii ACKNOWLEDGEMENTS I would like to thank my dissertation advisor, Dr. Katherine M. Hughes, for her wisdom, support, and guidance. I would like to thank Dr. Robert W. Stackman Jr for serving as a core committee member, and for his support in the set up, development, and execution of Experiment 2. I would like to thank Dr. David L. Wolgin, for serving as my third core committee member, and for generously allowing me the use of his laboratory space for behavioral testing. I would like to thank my two additional committee members, Dr. Michael A. King, Associate Scientist at the University of Florida Department of Pharmacology, and Dr. Rui Tao for their time and insightful comments. I am also grateful to Dr. Robert P. Vertes, for sharing his laboratory space and equipment during the completion of the experiments. I would like to share my genuine appreciation to the graduate students, postdoctoral fellows, and undergraduate DIS students who played a critical role in assisting me with several aspects of graduate student life and research: Dr. Walter B. Hoover, III, Eric D. Buerger, Michael Guidi, Amy B. Peebles, Michelle L. Steigerwald, and Courtney Graham. This dissertation would not be possible without the fiscal and emotional support of my parents, George and Anna Linley. I am grateful to my family and friends who stood by me through this process, especially my grandparents Dee and Rita Goodman, my brother George W. Linley III, and Jeffrey Douglass Pereboom. iv ABSTRACT Author: Stephanie Brooke Linley Title: The effects of 3,4-methylenedioxymethamphetamine (MDMA) on mnemonic and executive measures and serotonergic neurotoxicity using interspecies effects scaling. Institution: Florida Atlantic University Dissertation Advisor: Dr. Katherine M. Hughes Degree: Doctor of Philosophy Year: 2011 3,4-methlenedioxymethamphetamine (MDMA), the main constituent of Ecstasy, is a ring-substituted amphetamine commonly abused in recreational users. High doses of MDMA determined by allometric scaling produce serotonin (5-HT) axon deneveration. Studies suggest that this interspecies scaling does not reflect human use. An ‘effects’ scale comparing similar behavioral and physiological effects between species has been postulated as more accurate for translational studies. Experiment 1 examined the effects of MDMA on serotonergic forebrain innervation using immunohistochemical labeling targeting the serotonin transporter protein (SERT). Experiments 2 and 3 examined low and high doses of MDMA on spatial memory, prefrontal functioning, and serotonergic v neurotoxicity using ‘effects’ scaling. Long Evans rats were given MDMA regimens of: chronic low dose (daily injections of 1.5 mg/kg for 10 days); binge low dose (2 days of 4 x 1.5 mg/kg spaced 2 hours apart), binge high dose (2 x 7.5 mg/kg spaced 2 hours apart). Acquisition, retention, and spatial reversal (SR) were measured in a water maze task. A 2.0 mg/kg MDMA drug challenge was then given prior to a serial spatial reversal (SSR) task to assess performance while under the effect of the drug. Attentional set shifting and behavioral flexibility were assessed in an intradimensional extradimensionl (IED) task using odor/texture discriminations. MDMA chronic and binge low doses did not impair water maze or IED performance and produced no reductions in SERT expression. MDMA binge high dose resulted in significant reductions of SERT density in the prefrontal cortex, striatum, cortical mantle, hippocampus, amygdala, and many thalamic nuclei. Despite prominent 5-HT denervation, water maze performance was unaffected. Selective impairment in behavioral flexibility on the IED test was found. This suggests that low doses of MDMA do not produce long-term deleterious effects. But, high doses of MDMA taken in ‘binges’ produces widespread loss of forebrain SERT fiber innervation and significant impairments in reversal learning, while leaving attentional set shifting and spatial navigation unscathed. vi TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………...x LIST OF FIGURES..........................................................................................................xiii LIST OF ABBREVIATIONS ..........................................................................................xix GENERAL INTRODUCTION……….……………………………………………….......1 Anatomy of the serotonergic innervation of the forebrain.....................................4 Serotonergic modulation of emotion .....................................................................8 Serotonin’s role in executive and mnemonic processes ....……..........................11 Pharmacokinetics and acute effects of MDMA and its metabolites in rats….....16 Behavioral effects of MDMA and its metabolites in rats………………………19 Effects of MDMA on cognition and emotion…………………………………..20 MDMA neurotoxicity……………………………………………………..……31 Rationale………………………………………………………………………..37 EXPERIMENT 1………………………………………………………………………...40 Introduction……………………………………………………………................40 Materials and Methods……………………………………………...…………...51 Subjects……………………………………………………………..…....51 Drugs……………………………………………………………………..52 Histology ……………………………………………………………..….52 SERT immunohistochemistry………………………..……..……52 TH immunohistochemistry ………………….….…...……..……54 Photomicroscopy and data analysis ….……………………………..…...55 Results………………………………….……………………………………….56 Serotonergic innervation of the forebrain……….…………………..... ...57 Prefrontal cortex…………………………………………..…... ...57 Piriform cortex, endopiriform nucleus, and olfactory tubercule…66 Remaining cortical mantle………………….………..……..…....71 Dorsal and ventral striatum and globus pallidus……………...….74 Basal forebrain and claustrum……………...……...………..…...83 Hippocampal formation and amygdala ……………………….....87 Thalamus……..………………………………………….…….…89 Hypothalamus…………………………………………..………106 Cathecolaminergic innervation…………………………………………107 vii Discussion..……………………………………………………………………..114 EXPERIMENT 2 ……………………............................................................................124 Introduction…..…………………………………………………......................124 Materials and Methods………………………..……………...………………..133 Subjects…………………………………………………………..…......133 Dose regimen ………………………………………………………..…133 Drugs………………………………………………………………..…..134 Apparatus ………………………………………………………………134 Procedure ………………………………………………………………135 Spatial memory ………………………………………………...135 Spatial reversal task ……………………………………………139 Serial Reversal and drug challenge ……………………………139 Histological analysis …………………………………………………...140 Data analysis …………………………………………………………...147 Results…………………………………………………………………………..142 Physiological effect of MDMA ……………………………………..…142 Behavioral Testing …………………………………………………..…143 Acquisition and retention ………………………………………143 Reversal task ………………………………………………...…154 Serial reversal drug challenge ………………………….………162 Immunohistochemistry ………………………………………………...171 Discussion ……………………………………………………………………...171 EXPERIMENT 3 ………………………………………………………………………188 Introduction …………………………………………………………………….188 Materials and Method …………………………………………………….……200 Subjects ……………………………………………………………...…200 Drugs ……………………………………………………...……………201 Apparatus ………………………………………………………………202 Procedure ………………………………………………………………204 Habituation ……………………………………………………..204 IED testing ……………………………………………………..206 Immunohistochemical analysis ………………………………………...211 Data analysis …………………………………………………………...211 Results ………………………………………………………………………….214 Physiological effects of MDMA …………………………………….…214 Behavioral Testing ……………………………………………..………215 Digging establishment/habituation ………………………….…215 Odor texture IED test ………………………………………..…216 Latencies ……………………………………………………….230 Immunohistochemistry ……………………………………………...…232 Discussion…...…………………………………………………………………..239 viii GENERAL DISCUSSION..............................................................................................252 REFERENCES.................................................................................................................266 ix LIST OF TABLES Table 1. Density of fibers expressing the serotonin transporter (SERT) protein in the cortex……………………………………….......................62 Table 2. Density of fibers expressing the serotonin transporter (SERT) protein in the basal forebrain………….………………………………....80 Table 3. Density of fibers expressing the serotonin transporter (SERT)
Recommended publications
  • Investigating Interactions Between Phentermine, Dexfenfluramine, and 5-HT2C Agonists, on Food Intake in the Rat
    Psychopharmacology DOI 10.1007/s00213-014-3829-2 ORIGINAL INVESTIGATION Investigating interactions between phentermine, dexfenfluramine, and 5-HT2C agonists, on food intake in the rat Andrew J. Grottick & Kevin Whelan & Erin K. Sanabria & Dominic P. Behan & Michael Morgan & Carleton Sage Received: 2 October 2014 /Accepted: 20 November 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Conclusions Dex-phen synergy in the rat is caused by a Rationale Synergistic or supra-additive interactions between pharmacokinetic interaction, resulting in increased central the anorectics (dex)fenfluramine and phentermine have been concentrations of phentermine. reported previously in the rat and in the clinic. Studies with 5- HT2C antagonists and 5-HT2C knockouts have demonstrated Keywords Synergy . BELVIQ® . Lorcaserin . Isobologram . dexfenfluramine hypophagia in the rodent to be mediated by Fen-phen actions at the 5-HT2C receptor. Given the recent FDA approv- al of the selective 5-HT2C agonist lorcaserin (BELVIQ®) for weight management, we investigated the interaction between Introduction phentermine and 5-HT2C agonists on food intake. Objectives This study aims to confirm dexfenfluramine- Fenfluramine (Pondimin) and dexfenfluramine (Redux) are phentermine (dex-phen) synergy in a rat food intake assay, anorectic agents which act to enhance serotonergic transmission to extend these findings to other 5-HT2C agonists, and to both through inhibition of 5-HT reuptake by the parent com- determine whether pharmacokinetic interactions could ex- pounds, and through their major circulating des-ethylated me- plain synergistic findings with particular drug combinations. tabolite, (dex)norfenfluramine, which is a 5-HT reuptake inhib- Methods Isobolographic analyses were performed in which itor, a 5-HT and noradrenaline releasing agent, and a potent phentermine was paired with either dexfenfluramine, the 5- agonist at postsynaptic 5-HT2 receptors (Curzon et al.
    [Show full text]
  • The Medical Management of Depression
    The new england journal of medicine review article drug therapy The Medical Management of Depression J. John Mann, M.D. ecurrent episodes of major depression, which is a common From the Department of Neuroscience, and serious illness, are called major depressive disorder; depressive episodes New York State Psychiatric Institute– r Columbia University College of Physicians that occur in conjunction with manic episodes are called bipolar disorder. and Surgeons, New York. Address reprint Major depressive disorder accounts for 4.4 percent of the total overall global disease requests to Dr. Mann at the Department of burden, a contribution similar to that of ischemic heart disease or diarrheal diseases.1 Neuroscience, New York State Psychiatric 2 Institute, 1051 Riverside Dr., Box 42, New The prevalence of major depressive disorder in the United States is 5.4 to 8.9 percent York, NY 10032, or at [email protected]. and of bipolar disorder, 1.7 to 3.7 percent.3 Major depression affects 5 to 13 percent of medical outpatients,4 yet is often undiagnosed and untreated.5,6 Moreover, it is often N Engl J Med 2005;353:1819-34. undertreated when correctly diagnosed.6 Copyright © 2005 Massachusetts Medical Society. The demographics of depression are impressive. Among persons both with major depressive disorder and bipolar disorder, 75 to 85 percent have recurrent episodes.7,8 In addition, 10 to 30 percent of persons with a major depressive episode recover incom- pletely and have persistent, residual depressive symptoms, or dysthymia, a disorder with symptoms
    [Show full text]
  • Polymorphic Regions of the Estrogen Receptor, Androgen Receptor and Serotonin Transporter Genes and Their Association with Mood Variability in Young Women
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Retrospective theses 2006 Polymorphic regions of the estrogen receptor, androgen receptor and serotonin transporter genes and their association with mood variability in young women Richards, Meghan A. http://knowledgecommons.lakeheadu.ca/handle/2453/3361 Downloaded from Lakehead University, KnowledgeCommons Polymorphic Regions 1 Ruimmg head: GENETIC POLYMORPHISMS AND MOOD Polymorphic Regions of the Estrogen Receptor, Androgen Receptor and Serotonin Transporter Genes and their Association with Mood Variability in Young Women Meghan A. Richards M.A. Thesis Lakehead University Supervisor: Dr. Kirsten Oinonen copyright © Meghan Richards, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliothèque et 1^1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-21539-5 Our file Notre référence ISBN: 978-0-494-21539-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce,Canada de reproduire, publier, archiver, publish, archive, preserve, conserve,sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet,distribuer et vendre des thèses partout dans loan, distribute and sell theses le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform,et/ou autres formats.
    [Show full text]
  • Selective Labeling of Serotonin Receptors Byd-[3H]Lysergic Acid
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 5783-5787, December 1978 Biochemistry Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate (ergots/hallucinogens/tryptamines/norepinephrine/dopamine) PATRICIA M. WHITAKER AND PHILIP SEEMAN* Department of Pharmacology, University of Toronto, Toronto, Canada M5S 1A8 Communicated by Philip Siekevltz, August 18,1978 ABSTRACT Since it was known that d-lysergic acid di- The objective in this present study was to improve the se- ethylamide (LSD) affected catecholaminergic as well as sero- lectivity of [3H]LSD for serotonin receptors, concomitantly toninergic neurons, the objective in this study was to enhance using other drugs to block a-adrenergic and dopamine receptors the selectivity of [3HJISD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of (cf. refs. 36-38). We then compared the potencies of various a combination of 50 nM each of phentolamine (adde to pre- drugs on this selective [3H]LSD binding and compared these clude the binding of [3HJLSD to a-adrenoceptors), apmo ie, data to those for the high-affinity binding of [3H]serotonin and spiperone (added to preclude the binding of [3H[LSD to (39). dopamine receptors), it was found by Scatchard analysis that the total number of 3H sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catechol- METHODS amine-blocking drugs. The IC50 values (concentrations to inhibit Preparation of Membranes. Calf brains were obtained fresh binding by 50%) for various drugs were tested on the binding of [3HLSD in the presence of 50 nM each of apomorphine (A), from the Canada Packers Hunisett plant (Toronto).
    [Show full text]
  • Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
    Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors.
    [Show full text]
  • Human 5-HT Transporter Availability Predicts Amygdala Reactivityin Vivo
    The Journal of Neuroscience, August 22, 2007 • 27(34):9233–9237 • 9233 Brief Communications Human 5-HT Transporter Availability Predicts Amygdala Reactivity In Vivo Rebecca A. Rhodes,1 Naga Venkatesha Murthy,1,3 M. Alex Dresner,2 Sudhakar Selvaraj,1,4 Nikolaos Stavrakakis,1 Syed Babar,5 Philip J. Cowen,4 and Paul M. Grasby1 1Psychiatry Group, 2Imaging Sciences Department, Medical Research Council (MRC) Clinical Sciences Centre, and 3Experimental Medicine, Psychiatry Clinical Pharmaceology Discovery Medicine, GlaxoSmithKline Clinical Imaging Centre, Imperial College London, London W12 0NN, United Kingdom, 4Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom, and 5Radiology Department, Hammersmith Hospital, London W12 0HS, United Kingdom The amygdala plays a central role in fear conditioning, emotional processing, and memory modulation. A postulated key component of the neurochemical regulation of amygdala function is the neurotransmitter 5-hydroxytryptamine (5-HT), and synaptic levels of 5-HT in the amygdala and elsewhere are critically regulated by the 5-HT transporter (5-HTT). The aim of this study was to directly examine the relationship between 5-HTT availability and amygdala activity using multimodal [positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)] imaging measures in the same individuals. Healthy male volunteers who had previously undergone an[ 11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile([ 11C]-DASB)PETscantodetermine5-HTTavailabilitycom- pleted an fMRI emotion recognition task. [ 11C]-DASB binding potential values were calculated for the amygdala using arterial input function and linear graphical (Logan) analysis. fMRI was performed on a 3T Philips Intera scanner, and data were analyzed using SPM2 (Wellcome Department Imaging Neuroscience, University College London).
    [Show full text]
  • Contents I. Central Nervous System Diseases Ii
    CONTENTS CONTRIBUTORS xi PREFACE xiii CORRIGENDUM xv I. CENTRAL NERVOUS SYSTEM DISEASES Section Editor: David Wustrow, Pfizer Global Research & Development, Ann Arbor, Michigan 1. Neuronal Nicotinic Acetylcholine Receptor Modulators: Recent Advances and Therapeutic Potential 3 Scott R. Breining, Anatoly A. Mazurov and Craig H. Miller, Targacept, Inc., 200 East First Street, Suite 300, Winston-Salem, NC 27101 2. Recent Advances in Selective Serotonergic Agents 17 Wayne E. Childers, Jr. and Albert J. Robichaud, Chemical & Screening Sciences, Wyeth Research, CN 8000, Princeton, NJ 08543 3. BACE Inhibitors for the Treatment of Alzheimer’s Disease 35 Ellen W. Baxter and Allen B. Reitz, Johnson & Johnson Pharmaceutical Research and Development LLC, Spring House, PA 19477-0776 4. Positron Emission Tomography Agents for Central Nervous System Drug Development Applications 49 N. Scott Masona and Chester A. Mathisa,b,c, aDepartments of Radiology, bPharmacology and cPharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA II. CARDIOVASCULAR AND METABOLIC DISEASES Section Editor: Andrew Stamford, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 5. Emerging Topics in Atherosclerosis: HDL Raising Therapies 71 Peter J. Sinclair, Merck Research Laboratories, Rahway, NJ 07065, USA v vi Contents 6. Small Molecule Anticoagulant/Antithrombotic Agents 85 Robert M. Scarborough, Anjali Pandey and Xiaoming Zhang, Portola Pharmaceuticals, Inc., 270 East Grand Ave., Suite 22, South San Francisco, CA 94080, USA 7. CB1 Cannabinoid Receptor Antagonists 103 Francis Barth, Sanofi-aventis, 371 rue du Professeur Blayac 34184 Montpellier Cedex 04, France 8. Melanin-Concentrating Hormone as a Therapeutic Target 119 Mark D. McBriar and Timothy J. Kowalski, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033 9.
    [Show full text]
  • Current Topics in Behavioral Neurosciences
    Current Topics in Behavioral Neurosciences Series Editors Mark A. Geyer, La Jolla, CA, USA Bart A. Ellenbroek, Wellington, New Zealand Charles A. Marsden, Nottingham, UK For further volumes: http://www.springer.com/series/7854 About this Series Current Topics in Behavioral Neurosciences provides critical and comprehensive discussions of the most significant areas of behavioral neuroscience research, written by leading international authorities. Each volume offers an informative and contemporary account of its subject, making it an unrivalled reference source. Titles in this series are available in both print and electronic formats. With the development of new methodologies for brain imaging, genetic and genomic analyses, molecular engineering of mutant animals, novel routes for drug delivery, and sophisticated cross-species behavioral assessments, it is now possible to study behavior relevant to psychiatric and neurological diseases and disorders on the physiological level. The Behavioral Neurosciences series focuses on ‘‘translational medicine’’ and cutting-edge technologies. Preclinical and clinical trials for the development of new diagostics and therapeutics as well as prevention efforts are covered whenever possible. Cameron S. Carter • Jeffrey W. Dalley Editors Brain Imaging in Behavioral Neuroscience 123 Editors Cameron S. Carter Jeffrey W. Dalley Imaging Research Center Department of Experimental Psychology Center for Neuroscience University of Cambridge University of California at Davis Downing Site Sacramento, CA 95817 Cambridge CB2 3EB USA UK ISSN 1866-3370 ISSN 1866-3389 (electronic) ISBN 978-3-642-28710-7 ISBN 978-3-642-28711-4 (eBook) DOI 10.1007/978-3-642-28711-4 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012938202 Ó Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright.
    [Show full text]
  • Amphetamine Derivatives Interact with Both Plasma Membrane and Secretory Vesicle Biogenic Amine Transporters
    '4 0026-895X/93/061227-05503.00/0 Copyright © by The American Society for Pharmacology and Experimental Therapeutics AIl rights of reproduction in any form reserved. MOLECULAR PHARMACOLOGY, 44:1227-1231 Amphetamine Derivatives Interact with Both Plasma Membrane and Secretory Vesicle Biogenic Amine Transporters SHIMON SCHULDINER, SONIA STEINER-MORDOCH, RODRIGO YELIN, STEPHEN C. WALL, and GARY RUDNICK Departmentof Pharmacology,YaleUniversitySchool of Medicine,New Haven,CT 06510 (S.C.W.,G.R.) andAlexanderSilbermanInstituteof Life Sciences,TheHebrew University,GivatRam, Jerusalem,Israel (S.S.,S.S.-M., R.Y.) ReceivedJune 7, 1993; Accepted September 16, 1993 SUMMARY The interaction of fenfluramine, 3,4-methylenedioxymethamphe- porter, fenfiuramine inhibited serotonin transport and dissipated tamine (MDMA), and p-chloroamphetamine (PCA) with the plate- the transmembrane pH difference (ApH) that drives amine up- let plasma membrane serotonin transporter and the vesicular take. The use of [3H]reserpine-binding measurements to deter- amine transporter were studied using both transport and binding mine drug interaction with the vesicular amine transporter al- measurements. Fenfluramine is apparently a substrate for the lowed assessment of the relative ability of MDMA, PCA, and plasma membrane transporter, and consequently inhibits both fenfluramine to bind to the substrate site of the vesicular trans- serotonin transport and imipramine binding. Moreover, fenflura- porter. These measurements permit a distinction between inhi- mine exchanges with internal [3H]serotonin in a plasma mem- bition of vesicular serotonin transport by directly blocking vesic- brane transporter-mediated reaction that requires NaCI and is ular amine transport and by dissipating ApH. The results indicate blocked by imipramine. These properties are similar to those of that MDMA and fenfluramine inhibit by both mechanisms but MDMA and PCA as previously described.
    [Show full text]
  • Synthesis of Novel 6-Nitroquipazine Analogs for Imaging the Serotonin Transporter by Positron Emission Tomography
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2006 Synthesis of novel 6-nitroquipazine analogs for imaging the serotonin transporter by positron emission tomography David B. Bolstad The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bolstad, David B., "Synthesis of novel 6-nitroquipazine analogs for imaging the serotonin transporter by positron emission tomography" (2006). Graduate Student Theses, Dissertations, & Professional Papers. 9590. https://scholarworks.umt.edu/etd/9590 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature** Yes, I grant permission No, I do not grant permission Author's Signature: Date: C n { ( j o j 0 ^ Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • Disproportionate Reduction of Serotonin Transporter May Predict
    International Journal of Neuropsychopharmacology, 2015, 1–12 doi:10.1093/ijnp/pyu120 Research Article article Disproportionate Reduction of Serotonin Transporter May Predict the Response and Adherence to Antidepressants in Patients with Major Depressive Disorder: A Positron Emission Tomography Study with 4-[18F]-ADAM Yi-Wei Yeh, MD; Pei-Shen Ho, MD, MS; Shin-Chang Kuo, MD; Chun-Yen Chen, MD; Chih-Sung Liang, MD; Che-Hung Yen, MD; Chang-Chih Huang, MD; Kuo-Hsing Ma, PhD; Chyng-Yann Shiue, PhD; Wen-Sheng Huang, MD; Jia-Fwu Shyu, MD, PhD; Fang-Jung Wan, MD, PhD; Ru-Band Lu, MD; San-Yuan Huang, MD, PhD Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan (Drs Yeh, Kuo, Chen, Liang, and S-Y Huang); Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (Drs Yeh, Kuo, Chen, Shyu, Wan, and S-Y Huang); Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan (Drs Ho and Liang); Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (Dr Yen); Department of Psychiatry, Taipei Branch, Buddhist Tzu Chi General Hospital, New Taipei, Taiwan (Dr C-C Huang); Department of Biology & Anatomy, National Defense Medical Center, Taipei, Taiwan (Professor Ma and Dr Shyu); Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (Professor Shiue and Dr W-S Huang); Department of Nuclear Medicine, Changhua Christian Hospital, Changhua, Taiwan (Dr W-S Huang); Department of Psychiatry, National Cheng Kung University, Tainan, Taiwan (Dr Lu). Correspondence: San-Yuan Huang, MD, PhD, Professor and Attending Psychiatrist, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No.
    [Show full text]
  • Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
    Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209
    [Show full text]