Chapter Eleven Properties of Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Eleven Properties of Solutions CHAPTER ELEVEN PROPERTIES OF SOLUTIONS For Review 1. Mass percent: the percent by mass of the solute in the solution. Mole fraction: the ratio of the number of moles of a given component to the total number of moles of solution. Molarity: the number of moles of solute per liter of solution. Molality: the number of moles of solute per kilogram of solvent. Volume is temperature dependent, whereas mass and the number of moles are not. Only molarity has a volume term so only molarity is temperature dependent. + − + − + − 2. KF(s) → K (aq) + F (aq) ∆H = ∆Hsoln; K (g) + Cl (g) → K (aq) + F (aq) ∆H = ∆Hhyd + − KF(s) → K (g) + F (g) ∆H1 = !∆HLE + − + − K(g) + F (g) → K (aq) + F (aq) ∆H2 = ∆Hhyd __________________________________________________________ + − KF(s) → K (aq) + F (aq) ∆H = ∆Hsoln = !∆HLE + ∆Hhyd It is true that ∆H1 and ∆H2 have large magnitudes for their values; however, the signs are opposite (∆H1 is large and positive because it is the reverse of the lattice energy and ∆H2, the hydration energy, is large and negative). These two ∆H values basically cancel out each other giving a ∆Hsoln value close to zero. 3. “Like dissolves like” refers to the nature of the intermolecular forces. Polar solutes and ionic solutes dissolve in polar solvents because the types of intermolecular forces present in solute and solvent are similar. When they dissolve, the strength of the intermolecular forces in solution are about the same as in pure solute and pure solvent. The same is true for nonpolar solutes in nonpolar solvents. The strength of the intermolecular forces (London dispersion forces) are about the same in solution as in pure solute and pure solvent. In all cases of like dissolves like, the magnitude of ∆Hsoln is either a small positive number (endothermic) or a small negative number (exothermic). For polar solutes in nonpolar solvents and vice versa, ∆Hsoln is a very large, unfavorable value (very endothermic). Because the energetics are so unfavorable, polar solutes do not dissolve in nonpolar solvents and vice versa. 4. Structure effects refer to solute and solvent having similar polarities in order for solution formation to occur. Hydrophobic solutes are mostly nonpolar substances that are “water- fearing.” Hydrophilic solutes are mostly polar or ionic substances that are “water-loving.” Pressure has little effect on the solubilities of solids or liquids; it does significantly affect the solubility of a gas. Henry’s law states that the amount of a gas dissolved in a solution is directly proportional to the pressure of the gas above the solution (C = kP). The equation for CHAPTER 11 PROPERTIES OF SOLUTIONS 2 Henry’s law works best for dilute solutions of gases that do not dissociate in or react with the solvent. HCl(g) does not follow Henry’s law because it dissociates into H+(aq) and Cl−(aq) in solution (HCl is a strong acid). For O2 and N2, Henry’s law works well since these gases do not react with the water solvent. An increase in temperature can either increase or decrease the solubility of a solid solute in water. It is true that a solute dissolves more rapidly with an increase in temperature, but the amount of solid solute that dissolves to form a saturated solution can either decrease or increase with temperature. The temperature effect is difficult to predict for solid solutes. However, the temperature effect for gas solutes is easier to predict as the solubility of a gas typically decreases with increasing temperature. o 5. Raoult’s law: Psoln = χ solventPsolvent ; When a solute is added to a solvent, the vapor pressure of a solution is lowered from that of the pure solvent. The quantity χsolvent, the mole fraction of solvent, is the fraction that the solution vapor pressure is lowered. For the experiment illustrated in Fig. 11.9, the beaker of water will stop having a net transfer of water molecules out of the beaker when the equilibrium vapor pressure, P o , is reached. H2O This can never happen. The beaker with the solution wants an equilibrium vapor pressure of P , which is less than P o . When the vapor pressure over the solution is above P, a H2O H2O H2O net transfer of water molecules into the solution will occur in order to try to reduce the vapor pressure to P . The two beakers can never obtain the equilibrium vapor pressure they want. H2O The net transfer of water molecules from the beaker of water to the beaker of solution stops after all of the water has evaporated. If the solute is volatile, then we can get a transfer of both the solute and solvent back and forth between the beakers. A state can be reached in this experiment where both beakers have the same solute concentration and hence the same vapor pressure. When this state is reached, no net transfer of solute or water molecules occurs between the beakers so the levels of solution remain constant. When both substances in a solution are volatile, then Raoult’s law applies to both. The total vapor pressure above the solution is the equilibrium vapor pressure of the solvent plus the equilibrium vapor pressure of the solute. Mathematically: o o PTOT = PA + PB = χ APA + χ BPB where A is either the solute or solvent and B is the other one. 6. An ideal liquid-liquid solution follows Raoult’s law: o o PTOT = χ APA + χ BPB A nonideal liquid-liquid solution does not follow Raoult’s law, either giving a total pressure greater than predicted by Raoult’s law (positive deviation) or less than predicted (negative deviation). In an ideal solution, the strength of the intermolecular forces in solution are equal to the strength of the intermolecular forces in pure solute and pure solvent. When this is true, ∆Hsoln CHAPTER 11 PROPERTIES OF SOLUTIONS 3 = 0 and ∆Tsoln = 0. For positive deviations from Raoult’s law, the solution has weaker intermolecular forces in solution than in pure solute and pure solvent. Positive deviations have ∆Hsoln > 0 (are endothermic) and ∆Tsoln < 0. For negative deviations, the solution has stronger intermolecular forces in solution than in pure solute or pure solvent. Negative deviations have ∆Hsoln < 0 (are exothermic) and ∆Tsoln > 0. Examples of each type of solution are: ideal: benzene-toluene positive deviations: ethanol-hexane negative deviations: acetone-water 7. Colligative properties are properties of a solution that depend only on the number, not the identity, of the solute particles. A solution of some concentration of glucose (C6H12O6) has the same colligative properties as a solution of sucrose (C12H22O11) having the same con- centration. A substance freezes when the vapor pressure of the liquid and solid are identical to each other. Adding a solute to a substance lowers the vapor pressure of the liquid. A lower temperature is needed to reach the point where the vapor pressures of the solution and solid are identical. Hence, the freezing point is depressed when a solution forms. A substance boils when the vapor pressure of the liquid equals the external pressure. Because a solute lowers the vapor pressure of the liquid, a higher temperature is needed to reach the point where the vapor pressure of the liquid equals the external pressure. Hence, the boiling point is elevated when a solution forms. The equation to calculate the freezing point depression or boiling point elevation is: ∆T = Km where K is the freezing point or boiling point constant for the solvent and m is the molality of the solute. Table 11.5 lists the K values for several solvents. The solvent which shows the largest change in freezing point for a certain concentration of solute is camphor; it has the largest Kf value. Water, with the smallest Kb value, will show the smallest increase in boiling point for a certain concentration of solute. To calculate molar mass, you need to know the mass of the unknown solute, the mass and identity of solvent used, and the change in temperature (∆T) of the freezing or boiling point of the solution. Since the mass of unknown solute is known, one manipulates the freezing point data to determine the number of moles of solute present. Once the mass and moles of solute are known, one can determine the molar mass of the solute. To determine the moles of solute present, one determines the molality of the solution from the freezing point data and multiplies this by the kilograms of solvent present; this equals the moles of solute present. 8. Osmotic pressure: the pressure that must be applied to a solution to stop osmosis; osmosis is the flow of solvent into the solution through a semipermeable membrane. The equation to calculate osmotic pressure, π, is: π = MRT CHAPTER 11 PROPERTIES OF SOLUTIONS 4 where M is the molarity of the solution, R is the gas constant, and T is the Kelvin temperature. The molarity of a solution approximately equals the molality of the solution when 1 kg solvent ≈ 1 L solution. This occurs for dilute solutions of water since d = 1.00 H2O g/cm3. With addition of salt or sugar, the osmotic pressure inside the fruit cells (and bacteria) is less than outside the cell. Water will leave the cells which will dehydrate bacteria present, causing them to die. Dialysis allows the transfer of solvent and small solute molecules through a membrane. To purify blood, the blood is passed through a cellophane tube (the semipermeable membrane); this cellophane tube is immersed in a dialyzing solution which contains the same concen- trations of ions and small molecules as in blood, but has none of the waste products normally removed by the kidney.
Recommended publications
  • Is Colonic Propionate Delivery a Novel Solution to Improve Metabolism and Inflammation in Overweight Or Obese Subjects?
    Commentary in IgG levels in IPE-treated subjects versus Is colonic propionate delivery a novel those receiving cellulose supplementa- tion. This interesting discovery is the Gut: first published as 10.1136/gutjnl-2019-318776 on 26 April 2019. Downloaded from solution to improve metabolism and first evidence in humans that promoting the delivery of propionate in the colon inflammation in overweight or may affect adaptive immunity. It is worth noting that previous preclinical and clin- obese subjects? ical data have shown that supplementation with inulin-type fructans was associated 1,2 with a lower inflammatory tone and a Patrice D Cani reinforcement of the gut barrier.7 8 Never- theless, it remains unknown if these effects Increased intake of dietary fibre has been was the lack of evidence that the observed are directly linked with the production of linked to beneficial impacts on health for effects were due to the presence of inulin propionate, changes in the proportion of decades. Strikingly, the exact mechanisms itself on IPE or the delivery of propionate the overall levels of SCFAs, or the pres- of action are not yet fully understood. into the colon. ence of any other bacterial metabolites. Among the different families of fibres, In GUT, Chambers and colleagues Alongside the changes in the levels prebiotics have gained attention mainly addressed this gap of knowledge and of SCFAs, plasma metabolome analysis because of their capacity to selectively expanded on their previous findings.6 For revealed that each of the supplementa- modulate the gut microbiota composition 42 days, they investigated the impact of tion periods was correlated with different 1 and promote health benefits.
    [Show full text]
  • The Lower Critical Solution Temperature (LCST) Transition
    Copyright by David Samuel Simmons 2009 The Dissertation Committee for David Samuel Simmons certifies that this is the approved version of the following dissertation: Phase and Conformational Behavior of LCST-Driven Stimuli Responsive Polymers Committee: ______________________________ Isaac Sanchez, Supervisor ______________________________ Nicholas Peppas ______________________________ Krishnendu Roy ______________________________ Venkat Ganesan ______________________________ Thomas Truskett Phase and Conformational Behavior of LCST-Driven Stimuli Responsive Polymers by David Samuel Simmons, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December, 2009 To my grandfather, who made me an engineer before I knew the word and to my wife, Carey, for being my partner on my good days and bad. Acknowledgements I am extraordinarily fortunate in the support I have received on the path to this accomplishment. My adviser, Dr. Isaac Sanchez, has made this publication possible with his advice, support, and willingness to field my ideas at random times in the afternoon; he has my deep appreciation for his outstanding guidance. My thanks also go to the members of my Ph.D. committee for their valuable feedback in improving my research and exploring new directions. I am likewise grateful to the other members of Dr. Sanchez’ research group – Xiaoyan Wang, Yingying Jiang, Xiaochu Wang, and Frank Willmore – who have shared their ideas and provided valuable sounding boards for my mine. I would particularly like to express appreciation for Frank’s donation of his own post-graduation time in assisting my research.
    [Show full text]
  • Chapter 11: Solutions: Properties and Behavior
    Chapter 11: Solutions: Properties and Behavior Learning Objectives 11.1: Interactions between Ions • Be able to estimate changes in lattice energy from the potential energy form of Coulomb’s Law, Q Q Cation Anion , in which is lattice energy, is a proportionality constant, is the charge on E = k E k QCation r the cation, Q is the charge on the anion, and r is the distance between the centers of the ions. Anion 11.2: Energy Changes during Formation and Dissolution of Ionic Compounds • Understand the concept of lattice energy and how it is a quantitative measure of stability for any ionic solid. As lattice energy increases, the stability of the ionic solid increases. • Be able to estimate changes in lattice energy from the potential energy form of Coulomb’s Law, Q Q Cation Anion , in which is lattice energy, is a proportionality constant, is the charge on E = k E k QCation r the cation, Q is the charge on the anion, and r is the distance between the centers of the ions. Anion • Be able to determine lattice energies using a Born-Haber cycle, which is a Hess’s Law process using ionization energies, electron affinities, and enthalpies for other atomic and molecular properties. • Be able to describe a molecular view of the solution process using Hess’s Law: 1. Solvent → Solvent Particles where ∆Hsolvent separation is endothermic. 2. Solute → Solute Particles where ∆Hsolute separation is endothermic. 3. Solvent Particles + Solute Particles → Solution where ∆Hsolvation can be endo- or exothermic. 4. ∆Hsolution = ∆Hsolvent separation + ∆Hsolute separation + ∆Hsolvation This is a Hess’s Law thinking process, and ∆Hsolvation is called the ∆Hhydration when the solvent is water.
    [Show full text]
  • Assembly of Multi-Flavored Two-Dimensional Colloidal Crystals† Cite This: Soft Matter, 2017, 13,5397 Nathan A
    Soft Matter View Article Online PAPER View Journal | View Issue Assembly of multi-flavored two-dimensional colloidal crystals† Cite this: Soft Matter, 2017, 13,5397 Nathan A. Mahynski, *a Hasan Zerze,b Harold W. Hatch, a Vincent K. Shena and Jeetain Mittal *b We systematically investigate the assembly of binary multi-flavored colloidal mixtures in two dimensions. In these mixtures all pairwise interactions between species may be tuned independently. This introduces an additional degree of freedom over more traditional binary mixtures with fixed mixing rules, which is anticipated to open new avenues for directed self-assembly. At present, colloidal self-assembly into non-trivial lattices tends to require either high pressures for isotropically interacting particles, or the introduction of directionally anisotropic interactions. Here we demonstrate tunable assembly into a plethora of structures which requires neither of these conditions. We develop a minimal model that defines a three-dimensional phase space containing one dimension for each pairwise interaction, then employ various computational techniques to map out regions of this phase space in which the system self-assembles into these different morphologies. We then present a mean-field model that is capable of reproducing these results for size-symmetric mixtures, which reveals how to target different structures by tuning pairwise interactions, solution stoichiometry, or both. Concerning particle size asymmetry, we find Received 19th May 2017, that domains in this model’s phase space, corresponding to different morphologies, tend to undergo a Accepted 30th June 2017 continuous ‘‘rotation’’ whose magnitude is proportional to the size asymmetry. Such continuity enables DOI: 10.1039/c7sm01005b one to estimate the relative stability of different lattices for arbitrary size asymmetries.
    [Show full text]
  • CHAPTER 20: Lattice Energy
    CHAPTER 20: Lattice Energy 20.1 Introduction to Lattice Energy 20.2 Born-Haber Cycles 20.3 Ion Polarisation 20.4 Enthalpy Changes in Solutions Learning outcomes: (a) explain and use the term lattice energy (∆H negative, i.e. gaseous ions to solid lattice). (b) explain, in qualitative terms, the effect of ionic charge and of ionic radius on the numerical magnitude of a lattice energy. (c) apply Hess’ Law to construct simple energy cycles, and carry out calculations involving such cycles and relevant energy terms, with particular reference to: (i) the formation of a simple ionic solid and of its aqueous solution. (ii) Born-Haber cycles (including ionisation energy and electron affinity). (d) interpret and explain qualitatively the trend in the thermal stability of the nitrates and carbonates in terms of the charge density of the cation and the polarisability of the large anion. (e) interpret and explain qualitatively the variation in solubility of Group II sulfates in terms of relative magnitudes of the enthalpy change of hydration and the corresponding lattice energy. 20.1 Introduction to Lattice Energy What is lattice energy? 1) In a solid ionic crystal lattice, the ions are bonded by strong ionic bonds between them. These forces are only completely broken when the ions are in gaseous state. 2) Lattice energy(or lattice enthalpy) is the enthalpy change when one mole of solid ionic lattice is formed from its scattered gaseous ions. 3) Lattice energy is always negative. This is because energy is always released when bonds are formed. 4) Use sodium chloride, NaCl as an example.
    [Show full text]
  • Solution Is a Homogeneous Mixture of Two Or More Substances in Same Or Different Physical Phases. the Substances Forming The
    CLASS NOTES Class:12 Topic: Solutions Subject: Chemistry Solution is a homogeneous mixture of two or more substances in same or different physical phases. The substances forming the solution are called components of the solution. On the basis of number of components a solution of two components is called binary solution. Solute and Solvent In a binary solution, solvent is the component which is present in large quantity while the other component is known as solute. Classification of Solutions Solubility The maximum amount of a solute that can be dissolved in a given amount of solvent (generally 100 g) at a given temperature is termed as its solubility at that temperature. The solubility of a solute in a liquid depends upon the following factors: (i) Nature of the solute (ii) Nature of the solvent (iii) Temperature of the solution (iv) Pressure (in case of gases) Henry’s Law The most commonly used form of Henry’s law states “the partial pressure (P) of the gas in vapour phase is proportional to the mole fraction (x) of the gas in the solution” and is expressed as p = KH . x Greater the value of KH, higher the solubility of the gas. The value of KH decreases with increase in the temperature. Thus, aquatic species are more comfortable in cold water [more dissolved O2] rather than Warm water. Applications 1. In manufacture of soft drinks and soda water, CO2 is passed at high pressure to increase its solubility. 2. To minimise the painful effects (bends) accompanying the decompression of deep sea divers. O2 diluted with less soluble.
    [Show full text]
  • Exercise and Cellular Respiration Lab
    California State University of Bakersfield, Department of Chemistry Exercise and Cellular Respiration Lab Standards: MS-LS1-7 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. Introduction: I. Background Information. Cellular respiration (see chemical reaction below) is a chemical reaction that occurs in your cells to create energy; when you are exercising your muscle cells are creating ATP to contract. Cellular respiration requires oxygen (which is breathed in) and creates carbon dioxide (which is breathed out). This lab will address how exercise (increased muscle activity) affects the rate of cellular respiration. You will measure 3 different indicators of cellular respiration: breathing rate, heart rate, and carbon dioxide production. You will measure these indicators at rest (with no exercise) and after 1 and 2 minutes of exercise. Breathing rate is measured in breaths per minute, heart rate in beats per minute, and carbon dioxide in the time it takes bromothymol blue to change color. Carbon dioxide production can be measured by breathing through a straw into a solution of bromothymol blue (BTB). BTB is an acid indicator; when it reacts with acid it turns from blue to yellow. When carbon dioxide reacts with water, a weak acid (carbonic acid) is formed (see chemical reaction below). The more carbon dioxide you breathe into the BTB solution, the faster it will change color to yellow. The purpose of this lab activity is to analyze the effect of exercise on cellular respiration. Background: I.
    [Show full text]
  • Physical Chemistry
    Subject Chemistry Paper No and Title 10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Module No and Title 10, Free energy functions and Partial molar properties Module Tag CHE_P10_M10 CHEMISTRY Paper No. 10: Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Module No. 10: Free energy functions and Partial molar properties TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 3. Free energy functions 4. The effect of temperature and pressure on free energy 5. Maxwell’s Relations 6. Gibbs-Helmholtz equation 7. Partial molar properties 7.1 Partial molar volume 7.2 Partial molar Gibb’s free energy 8. Question 9. Summary CHEMISTRY Paper No. 10: Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Module No. 10: Free energy functions and Partial molar properties 1. Learning outcomes After studying this module you shall be able to: Know about free energy functions i.e. Gibb’s free energy and work function Know the dependence of Gibbs free energy on temperature and pressure Learn about Gibb’s Helmholtz equation Learn different Maxwell relations Derive Gibb’s Duhem equation Determine partial molar volume through intercept method 2. Introduction Thermodynamics is used to determine the feasibility of the reaction, that is , whether the process is spontaneous or not. It is used to predict the direction in which the process will be spontaneous. Sign of internal energy alone cannot determine the spontaneity of a reaction. The concept of entropy was introduced in second law of thermodynamics. Whenever a process occurs spontaneously, then it is considered as an irreversible process.
    [Show full text]
  • Brownie's THIRD LUNG
    BrMARINEownie GROUP’s Owner’s Manual Variable Speed Hand Carry Hookah Diving System ADVENTURE IS ALWAYS ON THE LINE! VSHCDC Systems This manual is also available online 3001 NW 25th Avenue, Pompano Beach, FL 33069 USA Ph +1.954.462.5570 Fx +1.954.462.6115 www.BrowniesMarineGroup.com CONGRATULATIONS ON YOUR PURCHASE OF A BROWNIE’S SYSTEM You now have in your possession the finest, most reliable, surface supplied breathing air system available. The operation is designed with your safety and convenience in mind, and by carefully reading this brief manual you can be assured of many hours of trouble-free enjoyment. READ ALL SAFETY RULES AND OPERATING INSTRUCTIONS CONTAINED IN THIS MANUAL AND FOLLOW THEM WITH EACH USE OF THIS PRODUCT. MANUAL SAFETY NOTICES Important instructions concerning the endangerment of personnel, technical safety or operator safety will be specially emphasized in this manual by placing the information in the following types of safety notices. DANGER DANGER INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN DEATH OR SERIOUS INJURY. THIS IS LIMITED TO THE MOST EXTREME SITUATIONS. WARNING WARNING INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR INJURY. CAUTION CAUTION INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, MAY RESULT IN MINOR OR MODERATE INJURY. IT MAY ALSO BE USED TO ALERT AGAINST UNSAFE PRACTICES. NOTE NOTE ADVISE OF TECHNICAL REQUIREMENTS THAT REQUIRE PARTICULAR ATTENTION BY THE OPERATOR OR THE MAINTENANCE TECHNICIAN FOR PROPER MAINTENANCE AND UTILIZATION OF THE EQUIPMENT. REGISTER YOUR PRODUCT ONLINE Go to www.BrowniesMarineGroup.com to register your product.
    [Show full text]
  • Calculating Lattice Energies Using the Born-Haber Cycle an Extension Activity for AP Chemistry Students
    Calculating Lattice Energies Using the Born-Haber Cycle An Extension Activity for AP Chemistry Students A particular set of equations known as a Born-Haber cycle demonstrates how chemists are able to use the first law of thermodynamics—that the energy of the universe is conserved in any chemical or physical change—to find an unknown energy value that is difficult or impossible to measure experimentally. Some energy quantities, such as the lattice energy of a mineral or the electron affinity of an atom, can be difficult to measure in the lab. Examining a Born-Haber cycle we see that there is more than one path to the formation of a substance in a particular state, and that if we use consistent definitions, an energy value that we seek can be calculated from energy values that we already know. The following exercise will help us see the way these energy values relate to one another, give us practice with their definitions and symbols, and deepen our insight to their meaning when we see them in other types of problems. Each physical or chemical change represented has: • an equation that represents a clearly defined physical or chemical change; • a definition of the particular type of energy change; • a symbol or abbreviation for the energy change equal to a value for the change in enthalpy (ΔH), the energy that is released or absorbed during the change, expressed in kJ/mol; and • a name by which that change in enthalpy is commonly known. To set up the equations in a Born-Haber cycle, cut out the cards for names, equations, defini- tions, and symbols with energy values.
    [Show full text]
  • Affinity of Small-Molecule Solutes to Hydrophobic, Hydrophilic, and Chemically Patterned Interfaces in Aqueous Solution
    Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution Jacob I. Monroea, Sally Jiaoa, R. Justin Davisb, Dennis Robinson Browna, Lynn E. Katzb, and M. Scott Shella,1 aDepartment of Chemical Engineering, University of California, Santa Barbara, CA 93106; and bDepartment of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 Edited by Peter J. Rossky, Rice University, Houston, TX, and approved November 17, 2020 (received for review September 30, 2020) Performance of membranes for water purification is highly influ- However, a molecular understanding that links membrane enced by the interactions of solvated species with membrane surface chemistry to solute affinity and hence membrane func- surfaces, including surface adsorption of solutes upon fouling. tional properties remains incomplete, due in part to the complex Current efforts toward fouling-resistant membranes often pursue interplay among specific interactions (e.g., hydrogen bonds, surface hydrophilization, frequently motivated by macroscopic electrostatics, dispersion) and molecular morphology (e.g., sur- measures of hydrophilicity, because hydrophobicity is thought to face and polymer configurations) that are difficult to disentangle increase solute–surface affinity. While this heuristic has driven di- (11–14). Chemically heterogeneous surfaces are even less un- verse membrane functionalization strategies, here we build on derstood but can affect fouling in complex ways.
    [Show full text]
  • Simple Mixtures
    Simple mixtures Before dealing with chemical reactions, here we consider mixtures of substances that do not react together. At this stage we deal mainly with binary mixtures (mixtures of two components, A and B). We therefore often be able to simplify equations using the relation xA + xB = 1. A restriction in this chapter – we consider mainly non-electrolyte solutions – the solute is not present as ions. The thermodynamic description of mixtures We already considered the partial pressure – the contribution of one component to the total pressure, when we were dealing with the properties of gas mixtures. Here we introduce other analogous partial properties. Partial molar quantities: describe the contribution (per mole) that a substance makes to an overall property of mixture. The partial molar volume, VJ – the contribution J makes to the total volume of a mixture. Although 1 mol of a substance has a characteristic volume when it is pure, 1 mol of a substance can make different contributions to the total volume of a mixture because molecules pack together in different ways in the pure substances and in mixtures. Imagine a huge volume of pure water. When a further 1 3 mol H2O is added, the volume increases by 18 cm . When we add 1 mol H2O to a huge volume of pure ethanol, the volume increases by only 14 cm3. 18 cm3 – the volume occupied per mole of water molecules in pure water. 14 cm3 – the volume occupied per mole of water molecules in virtually pure ethanol. The partial molar volume of water in pure water is 18 cm3 and the partial molar volume of water in pure ethanol is 14 cm3 – there is so much ethanol present that each H2O molecule is surrounded by ethanol molecules and the packing of the molecules results in the water molecules occupying only 14 cm3.
    [Show full text]