Climatic Oscillations in Quaternary Have Shaped the Co-Evolutionary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fauna of Longicorn Beetles (Coleoptera: Cerambycidae) of Mordovia
Russian Entomol. J. 27(2): 161–177 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2018 Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia Ôàóíà æóêîâ-óñà÷åé (Coleoptera: Cerambycidae) Ìîðäîâèè A.B. Ruchin1, L.V. Egorov1,2 À.Á. Ðó÷èí1, Ë.Â. Åãîðîâ1,2 1 Joint Directorate of the Mordovia State Nature Reserve and National Park «Smolny», Dachny per., 4, Saransk 430011, Russia. 1 ФГБУ «Заповедная Мордовия», Дачный пер., 4, г. Саранск 430011, Россия. E-mail: [email protected] 2 State Nature Reserve «Prisursky», Lesnoi, 9, Cheboksary 428034, Russia. E-mail: [email protected] 2 ФГБУ «Государственный заповедник «Присурский», пос. Лесной, 9, г. Чебоксары 428034, Россия. KEY WORDS: Coleoptera, Cerambycidae, Russia, Mordovia, fauna. КЛЮЧЕВЫЕ СЛОВА: Coleoptera, Cerambycidae, Россия, Мордовия, фауна. ABSTRACT. This paper presents an overview of Tula [Bolshakov, Dorofeev, 2004], Yaroslavl [Vlasov, the Cerambycidae fauna in Mordovia, based on avail- 1999], Kaluga [Aleksanov, Alekseev, 2003], Samara able literature data and our own materials, collected in [Isajev, 2007] regions, Udmurt [Dedyukhin, 2007] and 2002–2017. It provides information on the distribution Chuvash [Egorov, 2005, 2006] Republics. The first in Mordovia, and some biological features for 106 survey work on the fauna of Longicorns in Mordovia species from 67 genera. From the list of fauna are Republic was published by us [Ruchin, 2008a]. There excluded Rhagium bifasciatum, Brachyta variabilis, were indicated 55 species from 37 genera, found in the Stenurella jaegeri, as their habitation in the region is region. At the same time, Ergates faber (Linnaeus, doubtful. Eight species are indicated for the republic for 1760), Anastrangalia dubia (Scopoli, 1763), Stictolep- the first time. -
UNIVERSITY of CALIFORNIA Los Angeles Southern California
UNIVERSITY OF CALIFORNIA Los Angeles Southern California Climate and Vegetation Over the Past 125,000 Years from Lake Sequences in the San Bernardino Mountains A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geography by Katherine Colby Glover 2016 © Copyright by Katherine Colby Glover 2016 ABSTRACT OF THE DISSERTATION Southern California Climate and Vegetation Over the Past 125,000 Years from Lake Sequences in the San Bernardino Mountains by Katherine Colby Glover Doctor of Philosophy in Geography University of California, Los Angeles, 2016 Professor Glen Michael MacDonald, Chair Long sediment records from offshore and terrestrial basins in California show a history of vegetation and climatic change since the last interglacial (130,000 years BP). Vegetation sensitive to temperature and hydroclimatic change tended to be basin-specific, though the expansion of shrubs and herbs universally signalled arid conditions, and landscpe conversion to steppe. Multi-proxy analyses were conducted on two cores from the Big Bear Valley in the San Bernardino Mountains to reconstruct a 125,000-year history for alpine southern California, at the transition between mediterranean alpine forest and Mojave desert. Age control was based upon radiocarbon and luminescence dating. Loss-on-ignition, magnetic susceptibility, grain size, x-ray fluorescence, pollen, biogenic silica, and charcoal analyses showed that the paleoclimate of the San Bernardino Mountains was highly subject to globally pervasive forcing mechanisms that register in northern hemispheric oceans. Primary productivity in Baldwin Lake during most of its ii history showed a strong correlation to historic fluctuations in local summer solar radiation values. -
Outlook on Climate Change Adaptation in the Tropical Andes Mountains
MOUNTAIN ADAPTATION OUTLOOK SERIES Outlook on climate change adaptation in the Tropical Andes mountains 1 Southern Bogota, Colombia photo: cover Front DISCLAIMER The development of this publication has been supported by the United Nations Environment Programme (UNEP) in the context of its inter-regional project “Climate change action in developing countries with fragile mountainous ecosystems from a sub-regional perspective”, which is financially co-supported by the Government Production Team of Austria (Austrian Federal Ministry of Agriculture, Forestry, Tina Schoolmeester, GRID-Arendal Environment and Water Management). Miguel Saravia, CONDESAN Magnus Andresen, GRID-Arendal Julio Postigo, CONDESAN, Universidad del Pacífico Alejandra Valverde, CONDESAN, Pontificia Universidad Católica del Perú Matthias Jurek, GRID-Arendal Björn Alfthan, GRID-Arendal Silvia Giada, UNEP This synthesis publication builds on the main findings and results available on projects and activities that have been conducted. Contributors It is based on available information, such as respective national Angela Soriano, CONDESAN communications by countries to the United Nations Framework Bert de Bievre, CONDESAN Convention on Climate Change (UNFCCC) and peer-reviewed Boris Orlowsky, University of Zurich, Switzerland literature. It is based on review of existing literature and not on new Clever Mafuta, GRID-Arendal scientific results generated through the project. Dirk Hoffmann, Instituto Boliviano de la Montana - BMI Edith Fernandez-Baca, UNDP The contents of this publication do not necessarily reflect the Eva Costas, Ministry of Environment, Ecuador views or policies of UNEP, contributory organizations or any Gabriela Maldonado, CONDESAN governmental authority or institution with which its authors or Harald Egerer, UNEP contributors are affiliated, nor do they imply any endorsement. -
A Check-List of Longicorn Beetles (Coleoptera: Cerambycidae)
Евразиатский энтомол. журнал 18(3): 199–212 © EUROASIAN ENTOMOLOGICAL doi: 10.15298/euroasentj.18.3.10 JOURNAL, 2019 A check-list of longicorn beetles (Coleoptera: Cerambycidae) of Tyumenskaya Oblast of Russia Àííîòèðîâàííûé ñïèñîê æóêîâ-óñà÷åé (Coleoptera: Cerambycidae) Òþìåíñêîé îáëàñòè V.A. Stolbov*, E.V. Sergeeva**, D.E. Lomakin*, S.D. Sheykin* Â.À. Ñòîëáîâ*, Å.Â. Ñåðãååâà**, Ä.Å. Ëîìàêèí*, Ñ.Ä. Øåéêèí* * Tyumen state university, Volodarskogo Str. 6, Tyumen 625003 Russia. E-mail: [email protected]. * Тюменский государственный университет, ул. Володарского 6, Тюмень 625003 Россия. ** Tobolsk complex scientific station of the UB of the RAS, Acad. Yu. Osipova Str. 15, Tobolsk 626152 Russia. E-mail: [email protected]. ** Тобольская комплексная научная станция УрО РАН, ул. акад. Ю. Осипова 15, Тобольск 626152 Россия. Key words: Coleoptera, Cerambycidae, Tyumenskaya Oblast, fauna, West Siberia. Ключевые слова: жесткокрылые, усачи, Тюменская область, фауна, Западная Сибирь. Abstract. A checklist of 99 Longhorn beetle species (Cer- rambycidae of Tomskaya oblast [Kuleshov, Romanen- ambycidae) from 59 genera occurring in Tyumenskaya Oblast ko, 2009]. of Russia, compiled on the basis of author’s material, muse- The data on the fauna of longicorn beetles of the um collections and literature sources, is presented. Eleven Tyumenskaya oblast are fragmentary. Ernest Chiki gave species, Dinoptera collaris (Linnaeus, 1758), Pachytodes the first references of the Cerambycidae of Tyumen erraticus (Dalman, 1817), Stenurella bifasciata (Müller, 1776), Tetropium gracilicorne Reitter, 1889, Spondylis bu- oblast at the beginning of the XX century. He indicated prestoides (Linnaeus, 1758), Pronocera sibirica (Gebler, 11 species and noted in general the northern character 1848), Semanotus undatus (Linnaeus, 1758), Monochamus of the enthomofauna of the region [Csíki, 1901]. -
Raznolikost Kornjaša (Insecta: Coleoptera) Zagreba U Zbirkama Hrvatskog Prirodoslovnog Muzeja
Raznolikost kornjaša (Insecta: Coleoptera) Zagreba u zbirkama Hrvatskog prirodoslovnog muzeja Ružanović, Lea Master's thesis / Diplomski rad 2021 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:731446 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-29 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Biološki odsjek Lea Ružanović Raznolikost kornjaša (Insecta: Coleoptera) Zagreba u zbirkama Hrvatskog prirodoslovnog muzeja Diplomski rad Zagreb, 2021. University of Zagreb Faculty of Science Department of Biology Lea Ružanović Diversity of beetles (Insecta: Coleoptera) of Zagreb in the collections of the Croatian Natural History Museum Master thesis Zagreb, 2021. Ovaj rad je izrađen u Zoološkom odjelu Hrvatskog prirodoslovnog muzeja u Zagrebu, pod voditeljstvom prof. dr. sc. Mladena Kučinića. Rad je predan na ocjenu Biološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja zvanja magistra struke znanosti o okolišu. Iskrene zahvale dr. sc. Vlatki Mičetić Stanković, voditeljici zbirki kornjaša Hrvatskog prirodoslovnog muzeja, na pomoći pri izradi ovog diplomskog rada, na savjetima i strpljenju. Hvala ostalim djelatnicima HPM-a koji su mi uljepšali boravak na muzeju prilikom izrade diplomskog rada. Hvala i mentoru prof. dr. sc. Mladenu Kučiniću na korisnim savjetima. Zahvaljujem roditeljima na velikoj potpori kroz cijelo obrazovanje, Sebastianu na tehničkoj i mentalnoj podršci, cijeloj obitelji i prijateljima koji su u bilo kojem trenutku morali slušati o detaljima izrade ovog diplomskog rada. Zahvaljujem i psu Artiju koji me neumorno podsjećao kad je vrijeme za napraviti pauzu. -
Ice Cores: Unlocking Past Climates Module 1: Climate and Ice
Ice Cores: Unlocking Past Climates Module 1: Climate and Ice Overview Part I of this lesson begins with a video that explains the difference between weather and climate, describes glacier formation, and identifies the types of information that can be found in the glacial record. The video is followed by an exploration of current weather conditions at various locations around the world. The locations represent a variety of climate types and each is located near a glacier or ice sheet. Students then differentiate between weather and climate and examine climate data for their location. In Part II students visit websites to learn what glaciers are and how they are formed. Students conduct additional internet research in Part III to discover what types of substances can be trapped in glaciers. In the final activity students locate a glacier or ice sheet closest to the city they collected weather data for and create a model that tells the story of several years in the life of their glacier. The story includes weather information and information about any natural or human-induced events that contributed materials to the glacier’s record. Content Objectives Students will Differentiate between weather and climate Investigate how glaciers are formed and where they are found Build a glacier model that illustrates several years of the glacial record Grade Level: 5-8 Suggested Time: 2-3 class periods Multimedia Resources [link to video] http://www.wunderground.com/ http://www.weatherbase.com The Life Cycle of a Glacier, http://www.pbs.org/wgbh/nova/vinson/glac-flash.html How Glaciers Work, http://science.howstuffworks.com/glacier.htm Glacier Formation, http://science.howstuffworks.com/glacier1.htm. -
Assessment of Climate Change Effects on Mountain Ecosystems Through a Cross-Site Analysis in the Alps and Apennines
Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Rogora M.1*a, Frate L.2a, Carranza M.L.2a, Freppaz M.3a, Stanisci A.2a, Bertani I.4, Bottarin R.5, Brambilla A.6, Canullo R.7, Carbognani M.8, Cerrato C.9, Chelli S.7, Cremonese E.10, Cutini M.11, Di Musciano M.12, Erschbamer B.13, Godone D.14, Iocchi M.11, Isabellon M.3,10, Magnani A.15, Mazzola L.16, Morra di Cella U.17, Pauli H.18, Petey M.17, Petriccione B.19, Porro F.20, Psenner R.5, 21, Rossetti G.22, Scotti A.5, Sommaruga R.21, Tappeiner U.5, Theurillat J.-P.23, Tomaselli M.8, Viglietti D.3, Viterbi R.9, Vittoz P.24, Winkler M.18 Matteucci G.25a *Corresponding author: e-mail address: [email protected] (M. Rogora) a joint first authors 1 CNR Institute of Ecosystem Study, Verbania Pallanza, Italy 2 DIBT, Envix-Lab, University of Molise, Pesche (IS), Italy 3 DISAFA, NatRisk, University of Turin, Grugliasco (TO), Turin, Italy 4 Graham Sustainability Institute, University of Michigan, 625 E. Liberty St., Ann Arbor, MI 48104, USA 5 Eurac Research, Institute for Alpine Environment, Bolzano (BZ), Italy 6 Alpine Wilidlife Research Centre, Gran Paradiso National Park, Degioz (AO) 11 Valsavarenche, Italy; Department of Evolutionary Biology and Environmental Studies, University of Zurich. Winterthurerstrasse 190, 8057 Zurich, Switzerland 7 School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino (MC) Italy 8 Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Parma, Italy 9 Alpine Wilidlife Research Centre, Gran Paradiso National Park, Degioz (AO) 11 Valsavarenche, Italy 10 Environmental Protection Agency of Aosta Valley, ARPA VdA, Climate Change Unit, Aosta, Italy 11 Department of Biology, University of Roma Tre, Viale G. -
Alpine Tundra Zone
Chapter 18: Alpine Tundra Zone by J. Pojar and A.C. Stewart LOCATION AND DISTRIBUTION .......................................... 264 ECOLOGICAL CONDITIONS .............................................. 264 SUBZONES ............................................................... 268 SOME REPRESENTATIVE SITE ASSOCIATIONS ........................... 268 Dwarf willow Ð Small-awned sedge ..................................... 268 Entire-leaved mountain-avens Ð Blackish locoweed ...................... 270 Altai fescue Ð Mountain sagewort Ð Cetraria ........................... 270 Barratt's willow Ð Sweet coltsfoot ...................................... 271 WILDLIFE HABITATS ..................................................... 271 RESOURCE VALUES ...................................................... 273 LITERATURE CITED ...................................................... 274 263 LOCATION AND DISTRIBUTION The Alpine Tundra zone (AT) occurs on high mountains throughout the province (Figure 65). In southeastern British Columbia, the AT occurs at elevations above approximately 2250 m; in the southwest, above 1650 m; in the northeast, above 1400 m; in the northwest, above 1000 m. The zone is concentrated along the coastal mountains and in the northern and southeastern parts of the province and occurs above all three subalpine zones. The AT extends beyond British Columbia on the high mountains to the north, east, and south. ECOLOGICAL CONDITIONS The harsh alpine climate is cold, windy, and snowy, and characterized by low growing season temperatures and a very short frost-free period (Table 4). British Columbia has only two long-term, alpine climate stations: Old Glory Mountain, near Trail (Figure 66) and Mt. Fidelity in Glacier National Park. Available short- and long-term data indicate that the mean annual temperature ranges from -4 to 0°C. The average temperature remains below 0°C for 7-11 months. Frost can occur at any time. The AT is the only zone in the province where the mean temperature of the warmest month is less than 10°C. -
Climatic Records and Linkage Along an Altitudinal Gradient in the Southern
Journal of Nepal Geological Society, 2017, Vol. 53, pp. 47-56. Climatic records and linkage along an altitudinal gradient in the southern slope of Nepal Himalaya Climatic records and linkage along an altitudinal gradient in the southern slope of Nepal Himalaya Binod Dawadi Kathmandu Center for Research and Education (KCRE) Chinese Academy of Sciences-Tribhuvan University, Kathmandu Nepal Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu 44613, Nepal (Email: [email protected]; [email protected]) ABSTRACT To validate the climatic linkages under different topographic conditions, observational climate data at four automated weather stations (AWS) in different elevations, ranging from 130 m asl. to 5050 m asl., on the southern slope of the Nepal Himalayas was examined. the variation of means and distribution of daily, 5-days, 10-days, and monthly average/sum of temperature/ precipitation between the stations in the different elevation was observed. Despite these differences, the temperatures records are consistent in different altitudes, and highly correlated to each other while the precipitation data shows comparatively weaker correlation. The slopes (0.79-1.18) with (R2 >0.64) in the regression models for high Mountain to high Himalaya except in November and 0.56-1.14 (R2 >0.50) for mid-hill and high Mountain except January, December, June indicate the similar rate of fluctuation of temperature between the stations in the respective region. These strong linkages and the similar range of fluctuation of temperature in the different elevation indicate the possibilities of their use of lower elevation temperature data to represent the higher elevation sites for paleoclimatic calibration. -
Climate and Forest Ecosystems
Santa Ana Basin Climate and Forest Newsletter Date Ecosystems Results Projected climate change impacts on forest ecosystems: While there is significant variability between climate change scenarios, all projections include increased temperature and increased levels of atmospheric carbon dioxide. As a result, the following general trends are predicted: Warmer temperatures will cause trees to Key Findings move northward and to higher elevations Changes in total forest cover for California Warmer temperatures will likely are projected by one study to range from a cause Jeffrey pines to move to 25% decrease to a 23% increase by 2100 higher elevations and may de- crease their total habitat. (Lenihan et al., 2008) Species with the smallest geographical and Forest health my also be influ- climate ranges are expected to be the most enced by changes in the magni- vulnerable to change tude and frequency of wildfires or Extended droughts and earlier snowmelt infestations. could cause fire season to start earlier and Alpine ecosystems are vulnerable last longer (California, 2010) to climate change because they Temperature increases may change the Figure 1 - Fig. 4 from Lenihan et al. 2008. Percent change in total land cover have little ability to expand to frequency and magnitude of pest infesta- for vegetation classes by 2010 for three climate change scenarios predicted using the MC1 Dynamic Vegetation Model. higher elevations. tions such as the pine beetle Across the state it is projected How will the Jeffrey Pine ecosystem be impacted? that alpine forests will decrease in area by 50-70% by 2100. The Jeffery Pine is a high altitude Coniferous evergreen tree that can occupy a range of sites and cli- mate conditions (Moore, 2006). -
Monitoring Alpine Plants for Climate Change: the North American GLORIA Project
Monitoring Alpine Plants for Climate Change: The North American GLORIA Project Connie Millar (USFS, Sierra Nevada Research Center, Albany, CA) and Dan Fagre (USGS, Glacier Field Station, W Glacier, MT) Alpine Environments Figure 1. Laying out standard 3 m x 3 m grids. Globally, alpine environments are hotspots of biodiversity, often harboring higher diversity of plant species than corresponding areas at lower elevations. These regions are also likely to experience more severe and rapid change in climate than lowlands under conditions of anthropogenic warming (Theurillat & Guisan 2001; Halloy & Mark 2003; Pickering & Armstrong 2003). Such climatic effects are already being documented by instrumental monitoring in the few places in western North America where long-term climate stations are available at high elevations. New sites are being planned (see GCOS article, pg 15). Climate Change is augmenting concern for alpine vegetation because available habitat diminishes at increasingly higher elevations. This creates an “elevational squeeze,” whereby the geometry of mountain peaks means that escape routes to cooler environments uphill are dead ends for migrating alpine spe- cies. While monitoring and modeling efforts have begun to elucidate climate of alpine a. Seward Mountain summit (2717 m), Glacier National Park, MT Target environments in North America, very little is known about corresponding responses Region; 39 species were tallied on of alpine plant species to changing climate. Indeed, for many mountain regions in the this summit. West, little information exists even about alpine plant distribution and abundance. Monitoring Alpine Plants; the GLORIA Approach The Global Observation Initiative in Alpine Environments (GLORIA; http://www. gloria.ac.at/) is an international science program based in Vienna, Austria that pro- motes monitoring responses of high-elevation plants to long-term climate change worldwide. -
Rare Plants and Establishing the GLORIA Long-Term Climate Change Monitoring Protocol in the Alpine Sweetwater
Rare Plants and Establishing the GLORIA Long-Term Climate Change Monitoring Protocol in the Alpine Sweetwater Mountains of Mono County, California Mark Darrach1, Adelia Barber2, Elizabeth Bergstrom3, Constance Millar4 1Corydalis Consulting, Pendleton, OR, 2University of California, Santa Cruz, CA 3USDA Forest Service, Humboldt-Toiyabe N.F., Carson City, NV, 4USDA Forest Service, Sierra Nevada Research Center, Albany, CA Abstract The GLORIA alpine climate monitoring program is a worldwide effort aimed at documenting precise vegetation changes - both compositional and as a function of cover - over time in alpine settings using a set protocol with permanent monumented multi-summit plots across a low to high alpine elevational gradient below the nival zone. While the program is still in its nascent stages in North America, several permanent GLORIA stations are now established in the California Sierra Nevada target region, including the White Mountains, Mt. Dunderberg, and Freel Peak south of Lake Tahoe. The GLORIA effort now includes a newly-established station in the Sweetwater Mountains of Mono County, California as of mid-July 2012. The Sweetwater Mountains comprise a spectacular suite of summits above timberline that offer the opportunity to observe the temporal and spatial progression of climate-induced modifications to vegetation on a unique geological substrate. Above timberline the Sweetwater Mountains displays one of the most botanically diverse and significant concentrations of rare vascular plants in an alpine setting in the continental United States, if not all of North America. The novel geologic setting of highly geothermally argillized acidic volcanic rocks at high elevation has allowed for the presence of a robust clay component in soils throughout the alpine portion of the range.