Mechanism of Na+-K+ Atpase Is As Follows

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism of Na+-K+ Atpase Is As Follows Input Template for Content Writers (e-Text and Learn More) 1. Details of Module and its Structure Module Detail Subject Name Botany Paper Name Cell Biology Module Name/Title Cell membrane and Cellular transport III Module Id <Module Id> Pre-requisites Objectives To understand principle and mechanism of primary active transport Keywords Active transport, Electochemical gradient Primary active transport, Facilitated Diffusion, Carrier proteins for primary active Structure of Module / Syllabus of a module (Define Topic / Sub-topic of module ) Passive transport <Definition>, <Types>, <Mechanism> Passive transport < Introduction > < Active transport>, < Electochemical gradient> < primary active transport> < Facilitated Diffusion > < carrier proteins for primary active transport > Management of Library and Information Network Library Science Network 2. 2. Development Team Role Name Affiliation National Coordinator <National Coordinator Name> Subject Coordinator Dr Sujata Bhargava Paper Coordinator Dr Nutan Malpathak Content Writer/Author (CW) Dr Pradnya Kedari Content Reviewer (CR) <CR Name> Language Editor (LE) <LE Name> Management of Library and Information Network Library Science Network TABLE OF CONTENTS (for textual content) 1 Introduction 2 Active transport 3 Electrochemical gradient 4 Primary active transport 5 Carrier Proteins or pumps for Active Transport Management of Library and Information Network Library Science Network Cell membrane and cellular transport III 1. Introduction Active transport is a transport of molecules against its concentration gradient. Molecules are carried from region of lower concentration to region of higher concentration. This process face resistance and so it has to utilise energy to overcome this resistance and carryout this transport. Therefore it is called as active transport. The process is also known as uphill transport. This energy is usually in the form of adenosine triphosphate (ATP). This ATP is utilized directly/ indirectly. Cell need to move molecule - against concentration gradient too. Active transport is a transport of a molecule which requires expenditure of energy to move solute against conc. gradient, using energy. Active transport mechanisms use cell’s energy, usually in the form of Adenosine triphosphate (ATP). In case of primary active transport ATP is utilized directly. It is an uphill transport. Let’s revise the difference between passive transport and active transport? Active and passive transport are terms that are utilized in terms of plant, animals as well as human body. 2 Active transport Active transport involves carrying a molecule against the concentration gradient, and it utilizes energy, whereas passive transport occurs according to concentration gradient and therefore it does not require any energy. During active transport, as resistance is more it is called as uphill process, whereas passive transport face no resistance and therefore is referred as downhill process. Some active transport mechanisms move small-molecular weight materials, such as ions, through the membrane. Other mechanisms transport much larger molecules. An example of active transport is - uptake of salt by cells through a sodium pump 3 Electrochemical Gradient? living systems, concentration gradients are more complex. In a cell, ions are constantly moving in and out of cells. They posses either positive or negative cgarge. Cell also contains proteins which do not move across the membrane. These proteins are Management of Library and Information Network Library Science Network mostly negatively charged. This creates an electrical gradient i.e difference of charge, across the plasma membrane. Interior of a living cell is electrically negative W. R. t. extracellular fluid. At the same time, cells possess higher concentrations of potassium (K+) and lower concentrations of sodium (Na+) than the extracellular fluid. Therefore in a living cell, the concentration gradient of Na+ tends to drive it into the cell, and the electrical gradient of Na+ (a positive ion) also tends to drive it inward to the negatively charged interior. This makes the situation more complex for other elements such as potassium. As a living cell is electrically negative, electrical gradient of K+, a positive ion, also tends to drive it into the cell, but concentration of K+ ions is greater into the cell as compare to extracellular fluids. Therefore the concentration gradient of K+ tends to drive K+ out of the cell. Such combined gradient of concentration and electrical charge affects an ion and is called its electrochemical gradient. If it’s a Fact that Potassium solution Injection is lethal. My question is - Why do you think a potassium solution injection is lethal? Answer to this question is that + + • Cell- have high K conc. In the cytoplasm, and it has high conc. of Na outside, + • Due to K Injection,thete is high conce of K+ ions outside the cell which cahnges electrochemical gradient. • Sodium/potassium potential from heart muscle, play important role in transmitting muscle contraction signal. • Due to change in this electrochemical gradient, heart fails to send the beating signal, and therefore person dies. • That is the reason why a potassium solution injection is lethal, but during heart surgeries, This K+ injections are used during in appropriate amount to stop the heart from beating during surgery. Moving Against a Gradient For a cell, it needs to spend an energy to move a substances against a concentration or electrochemical gradient. This energy is gained from hydrolysis of ATP which is generated through the cell’s metabolism. Small substances are constantly passing through plasma membranes. It keeps on fluctuating the electrochemical gradient of a cell. There is special active transport mechanism followed by a cell to carry outs active transport process, which is known as pumps. Pumps work against this electrochemical gradient. Active transport maintains concentrations of ions and other substances needed by living cells in response to these passive movements. Cell needs to spend much of its supply of metabolic energy to maintain these processes. (Most of a red blood cell’s metabolic energy is used to maintain the imbalance between exterior and interior sodium and potassium levels required by the cell.) Management of Library and Information Network Library Science Network Because active transport mechanisms depend on a cell’s metabolism for energy, they are sensitive to many metabolic poisons that interfere with the supply of ATP. Primary active transport There exist two mechanisms for the transport of small-molecular weight material and small molecules. 1. Primary active transport which moves ions across a membrane and creates a difference in charge across that membrane. This is directly dependent on ATP. 2. Secondary active transport which describes the movement of material that is due to the electrochemical gradient established by primary active transport that does not directly require ATP. The cell makes use of membrane pumps to accomplish active transport. Pumps can convert free energy into different forms, depending on which form is required by the cell at a given time. This property makes membrane pumps a convenient choice for mediating active transport as they can provide the energy needed to initiate the transport. The two main types of pumps employed by the cell are P-type ATPases and ATP-binding cassette transporters (eg-ABCs). Both of these pumps are powered by ATP. One method by which these pumps can perform active transport is by binding to ATP. This binding, followed by hydrolysis which induces a conformational change in the pump that allows bound ions to be transported across the cell membrane. These pumps can also use active transport to establish favorable concentration gradients for separate transport processes. For example, one pump can create a given concentration gradient by performing active transport on a certain ion, and then another pump can make use of this new concentration gradient and facilitat ion diffusion down the concentration gradient. Thus the cell can couple active transport with passive transport in order to efficiently use the results of one process to drive another process to completion. 4 Carrier Proteins for Active Transport Membrane show certain mechanisms to adapt the process of transport against the concentration gradient. An important membrane adaption for active transport is the presence of specific carrier proteins or pumps. They facilitate this movement. Management of Library and Information Network Library Science Network There are three types of these proteins or transporters present on a membrane. Uniporter which carries one specific ion or molecule at a time. Symporter which carries two different ions or molecules at a time. Both the molecules move in the same direction. And Antiporter, which also carries two different ions or molecules ata time, but in different directions. All of these transporters can also transport small, uncharged organic molecules like glucose. These three types of carrier proteins are also found in facilitated diffusion, but they do not require ATP to work in that process. Some examples of pumps for active transport are Na+–K+ ATPase, which carries sodium and potassium ions, and H+–K+ ATPase, which carries hydrogen and potassium ions. Both of these are antiporter carrier proteins. Two other carrier proteins are Ca2+ ATPase and H+ ATPase, which carry only calcium and only hydrogen ions, respectively. Both are pumps. Sodium-potassium
Recommended publications
  • ATP and Cellular Work | Principles of Biology from Nature Education
    contents Principles of Biology 23 ATP and Cellular Work ATP provides the energy that powers cells. Magnetic resonance images of three different areas in the rat brain show blood flow and the biochemical measurements of ATP, pH, and glucose, which are all measures of energy use and production in brain tissue. The image is color-coded to show spatial differences in the concentration of these energy-related variables in brain tissue. © 1997 Nature Publishing Group Hoehn-Berlage, M., et al. Inhibition of nonselective cation channels reduces focal ischemic injury of rat brain. Journal of Cerebral Blood Flow and Metabolism 17, 534–542 (1997) doi: 10.1097/00004647-199705000-00007. Used with permission. Topics Covered in this Module Using Energy Resources For Work ATP-Driven Work Major Objectives of this Module Describe the role of ATP in energy-coupling reactions. Explain how ATP hydrolysis performs cellular work. Recognize chemical reactions that require ATP hydrolysis. page 116 of 989 4 pages left in this module contents Principles of Biology 23 ATP and Cellular Work Energy is a fundamental necessity for all of life's processes. Without energy, flagella cannot move, DNA cannot be unwound or separated for replication or gene expression, cells cannot divide, plants cannot grow and animals cannot reproduce. Energy is vital, but where does it come from? Plants and photosynthetic microbes capture light energy and convert it into chemical energy for their own use. Organisms that cannot produce their own food, such as fungi and animals, feed upon this captured energy. However, the chemical energy produced by photosynthesizers needs to be converted into a usable form.
    [Show full text]
  • Structural Insight Into Signal Conversion and Inactivation by Ntpdase2 in Purinergic Signaling
    Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling Matthias Zebisch and Norbert Stra¨ ter* Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany Communicated by William N. Lipscomb, Harvard University, Cambridge, MA, March 13, 2008 (received for review January 4, 2008) Cell surface-located nucleoside triphosphate diphosphohydrolases prominent DXG motif and correspond to the ␤- and ␥-phos- (NTPDase1, -2, -3, and -8) are oligomeric integral membrane pro- phate binding loops of soluble members of the actin/hsp70/sugar teins responsible for signal conversion and inactivation in extra- kinase superfamily (17). cellular nucleotide-mediated ‘‘purinergic’’ signaling. They catalyze NTPDases differ significantly in product formation. This is of the sequential hydrolysis of the signaling molecule ATP via ADP to considerable relevance for the regulation of nucleotide signaling. AMP. Here we present the structure of the extracellular domain of NTPDase1, which corresponds to the lymphoid cell activation Rattus norvegicus NTPDase2 in an active state at resolutions antigen CD39, hydrolyzes ATP processively to AMP [i.e., without between 1.7 Å and 2.1 Å in four different forms: (i) apo form, (ii) release of the intermediate ADP from the active site (18, 19)]. The ternary complex with the nonhydrolyzable ATP analog AMPPNP ectoenzyme is expressed by cells of the immune system, quiescent and cofactor Ca2؉,(iii) quaternary complex with Ca2؉ and bound endothelial cells, vascular smooth muscle cells, and others. Because products AMP and phosphate, and (iv) binary product complex of its ability to hydrolyze both ATP and the platelet activator ADP with AMP only.
    [Show full text]
  • The Hydrolysis of ATP and Related Nucleotides by Ehrlich Ascites Carcinoma Cells*
    The Hydrolysis of ATP and Related Nucleotides by Ehrlich Ascites Carcinoma Cells* DONALD F. HOELZL WALLACH AND DONNA ULLREY (Department of Biological Chemistry, Harvard Medical School, and Protein Foundation, Boston, Mass.) SUMMARY The ATPase of Ehrlich ascites carcinoma cells has been examined. The evidence presented indicates the following: (a) ATP hydrolysis occurs at the cell surface, (b) the cell membrane goes into the microsomal fraction upon cell rupture and differ ential centrifugation, (c) ATP hydrolysis depends upon the nature and concentration of external activator ions, (d) hydrolysis is not limited to ATP; other nucleoside tn phosphates are attacked with equal vigor, and ADP and AMP are also hydrolyzed, (e) ATP hydrolysis appears to proceed in stepwise fashion via ADP and AMP to ade nine and inorganic phosphorus, (J) ATP, but not ADP or ITP hydrolysis, is stimulated by 92,4-dinitrophenol, but this effect is reversed by glucose. The presence on the surface of a variety of phate by Ehrlich ascites carcinoma cells was first cells of enzymes capable of hydrolyzing adenosine recorded by Acs et at. (92). triphosphate has been reported by several workers. The above studies suggest the possibility that Rothstein et al have presented evidence for the adenosine tniphosphate-hydrolyzing enzymes may localization of an adenosine tniphosphatase on the exist as an integral part of the lipoprotein matrix surface of yeast (920) and of intestinal epithelium of cell membranes. In the course of examining (921). Libet (13) and Abood et a! (1) have shown this hypothesis for the case of the Ehrlich ascites that the adenosine triphosphatase of the giant carcinoma, we have studied in some detail the axon of the squid lies in the axon sheath rather cleavage of adenosine triphosphate and related than in the axoplasm.
    [Show full text]
  • High Microfilament Concentration Results in Barbed-End ADP Caps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 65 November 1993 1757-1766 1 757 High Microfilament Concentration Results in Barbed-end ADP Caps Paul A. Dufort and Charles J. Lumsden* Membrane Biology Group and Department of Medicine, University of Toronto, Toronto, Canada M5S 1A8 ABSTRACT Current theory and experiments describing actin polymerization suggest that site-specific cleavage of bound nucleotide following F-actin filament formation causes the barbed ends of microfilaments to be capped first with ATP subunits, then with ADP bound to inorganic phosphate (ADP.Pi) at steady-state. The barbed ends of depolymerizing filaments consist of ADP subunits. The decrease in stability of the barbed-end cap accompanying the transition from ADP*Pi to ADP allows nucleotide hydrolysis and subsequent loss of Pi to regulate F-actin filament dynamics. We describe a novel computational model of nucleotide capping that simulates both the spatial and temporal properties of actin polymerization. This model has been used to test the effects of high filament concentration on the behavior of the ATP hydrolysis cycle observed during polymerization. The model predicts that under conditions of high microfilament concentration an ADP cap can appear during steady-state at the barbed ends of filaments. We show that the presence of the cap can be accounted for by a kinetic model and predict the relationship between the nucleotide concentration ratio [ATP]/[ADP], the F-actin filament concentration, and the steady-state distribution of barbed-end ADP cap lengths. The possible consequences of this previously unreported phenomenon as a regulator of cytoskeletal behavior are discussed.
    [Show full text]
  • The Connection Between Actin Atpase and Polymerization
    Chapter 3 The Connection Between Actin ATPase and Polymerization Herwig Schu¨ler,1 Roger Karlsson,2 Clarence E. Schutt,3 and Uno Lindberg2 1Max Delbrueck Center for Molecular Medicine Neuroproteomics, D‐13125, Berlin‐Buch, Germany 2Department of Cell Biology, The Wenner‐Gren Institute, Stockholm University, SE‐106 91 Stockholm, Sweden 3Department of Chemistry, Princeton University, Princeton, New Jersey 08544 I. Actin Microfilament System II. Atomic Structure of the Actin Monomer III. Profilin: ‐Actin Crystal IV. Interdomain Connectivity in Actin V. Actin ATPASE A. Monomeric Actin Hydrolyzes ATP B. Polymer Formation and ATP Hydrolysis C. The Actin–ATP/ADP⋅Pi Cap VI. Mechanism of ATP Hydrolysis on Actin A. Active Site Nucleophile B. Catalytic Base(s) VII. Actin Methylhistidine 73, ATPase, Phosphate Release, and Polymerization VIII. Importance of the Status of the Actin‐Bound Nucleotide References Remodeling of the actin filament system in cells results from strictly regulated polymerization and depolymerization of actin, where hydrolysis of actin‐bound ATP is crucial. Actin–actin interactions are influenced by the state of the bound nucleotide, and many microfilament regulators influence the actin ATPase by binding preferen- tially either to ATP/ADPÁPi‐ or ADP‐bound actin. This chapter summarizes observa- tions made concerning the actin ATPase and its role in the biological activity of actin and actin filaments. I. ACTIN MICROFILAMENT SYSTEM Actin and myosin, organized into supramolecular structures, cooperate to generate the force necessary for many types of dynamic cellular transport processes. As part of the energy‐transducing mechanism in muscle cells, they generate large‐scale movements. Advances in Molecular and Cell Biology, Vol.
    [Show full text]
  • ATP-Driven Active Transport in Right-Side-Out Bacterial Membrane
    Proc. NatL Acad. Sci. USA Vol. 78, No. 6, pp. 3446-3449, June 1981 Biochemistry ATP-driven active transport in right-side-out bacterial membrane vesicles (Salmonella typhimurium/Escherichia coli/phosphoglycerate transport/electrochemical proton gradient/cloning) JEROEN HUGENHOLTZ*, JEN-SHIANG HONGt, AND H. RONALD KABACK*t *lAboratory of Membrane Biochemistry, Roche Institute of Molecular Biology, Nutley, New Jersey 07110; and tGraduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02154 Communicated by Sidney Udenfrtend, March 2, 1981 ABSTRACT Membrane vesicles from Salmonella typhimurium phimurium LT-2 that catalyzes the uptake of2-phosphoglycer- induced for phosphoglycerate transport, were loaded with pyru- ate, 3-phosphoglycerate, and phosphoenolpyruvate, and, sub- vate kinase and ADP by lysing spheroplasts under appropriate sequently, they demonstrated that the transport system allows conditions. Vesicles so prepared catalyze active transport of pro- energy-depleted cells to use external phosphoenolpyruvate line and serine in the presence of phosphoenolpyruvate; this ac- more efficiently for vectorial phosphorylation of methyl a-D- tivity is abolished by the protonophore carbonyl cyanide-m-chlo- glucopyranoside (33). These workers also suggested the possi- rophenylhydrazone and by the HW-ATPase inhibitor NN' bility of using the phosphoglycerate transport system to affect dicyclohexylcarbodiimide but not by anoxia or cyanide. In con- the intravesicular generation ofATP from phosphoenolpyruvate trast, D-lactate-driven
    [Show full text]
  • Hydrolysis of Extracellular ATP by Vascular Smooth Muscle Cells Transdifferentiated Into Chondrocytes Generates Pi but Not Ppi
    International Journal of Molecular Sciences Article Hydrolysis of Extracellular ATP by Vascular Smooth Muscle Cells Transdifferentiated into Chondrocytes Generates Pi but Not PPi Rene Buchet 1,* , Camille Tribes 1, Valentine Rouaix 1, Bastien Doumèche 1 , Michele Fiore 1 , Yuqing Wu 2, David Magne 1 and Saida Mebarek 1 1 Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; [email protected] (C.T.); [email protected] (V.R.); [email protected] (B.D.); michele.fi[email protected] (M.F.); [email protected] (D.M.); [email protected] (S.M.) 2 State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China; [email protected] * Correspondence: [email protected] Abstract: (1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the min- eralization inhibitor inorganic pyrophosphate (PPi). Since atherosclerosis plaques are characterized by the presence of necrotic cells that probably release supraphysiological concentrations of ATP, we explored whether this extracellular adenosine triphosphate (ATP) is hydrolyzed into the mineraliza- Citation: Buchet, R.; Tribes, C.; tion inhibitor PPi or the mineralization stimulator inorganic phosphate (Pi), and whether TNAP is Rouaix, V.; Doumèche, B.; Fiore, M.; involved. (2) Methods: Murine aortic smooth muscle cell line (MOVAS cells) were transdifferentiated Wu, Y.; Magne, D.; Mebarek, S. into chondrocyte-like cells in calcifying medium, containing ascorbic acid and β-glycerophosphate. Hydrolysis of Extracellular ATP by ATP hydrolysis rates were determined in extracellular medium extracted from MOVAS cultures Vascular Smooth Muscle Cells during their transdifferentiation, using 31P-NMR and IR spectroscopy.
    [Show full text]
  • 30 the Technical Assistance of My Wife, Mrs. I. SJ6QUIST and of Miss A
    30 j. SJ(')QUIST ACKNOWLEDGEMENTS The technical assistance of my wife, Mrs. I. SJ6QUIST and of Miss A. WELIN is gratefully acknowledged. This work was supported by grants from "Statens Medicinska ForskningsrSd". REFERENCES 1 p. EDMAN, .4cta Chem. Scan&, 4 (~95 °) 277. 2 p. EDMAN, Acta Chem. Scand., 4 (195 ° ) 283. 3 j. Sj6QUIST, Acla Chem. Scand., 7 (1953) 447. 4 ~p. EDMAN AND J. SJ6QUIST, Acta Chem. Scand., lo (1956) 15o7. 5 j. Sj6QUIST, Biochim. Biophys. ~4cta, 16 (1955) 283. 6 j. SjoQUIST, .drkiv Kemi, ii (I957) ~29, 15l. 7 C. I-[. \V. HIRS, J. Biol. Chenz., 219 (1956) 611. 8 A. L. LEVY AND D. CItUNG, Biochim. Biophys. Acta, 17 (1955) 454. 9 }V. H, STEIN AND S. MOORE, J. Biol. Chem., l 78 (1949) 79. 10 M. V~~. REES, Biochem. dr., 4 ° (1946) 632. n C. I~. \¥. HIRS, \V. N. STEIN AND S. MOORt~, J. Biol. Chem., 211 (1954) 94 I. Biochim. Biophys. Acla, 41 (196o) 20-30 HYDROLYSIS OF NUCLEOSIDE DI-AND TRIPHOSPHATES BY CRYSTALLINE PREPARATIONS OF YEAST INORGANIC PYROPHOSPHATASE MILTON J. SCHLESINGER* AND MINOR J. COON Department o t Biological Chemistry, Medical School, The University o/Michigc~n, Hnn Arbor, Mich. (U.S.A.) (Received October 3ist, 1959) SUMMARY I. Crystalline preparations of yeast inorganic pyrophosphatase catalyze phos- phate liberation from ATP and ADP, as well as from pyrophosphate, in the presence of zinc ions. 2. A variety of other nucleoside di- and triphosphates are hydrolyzed in the presence of zinc ions and pyrophosphatase, and manganous and cobaltous ions can partially substitute for zinc in effecting ATP hydrolysis.
    [Show full text]
  • The Actin-Myosin Interaction in Muscle: Background and Overview
    International Journal of Molecular Sciences Editorial Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview John Squire 1,2 1 Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; [email protected]; Tel.: +44-7706-07-6383 2 Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BZ, UK Received: 11 October 2019; Accepted: 15 October 2019; Published: 14 November 2019 Abstract: Muscular contraction is a fundamental phenomenon in all animals; without it life as we know it would be impossible. The basic mechanism in muscle, including heart muscle, involves the interaction of the protein filaments myosin and actin. Motility in all cells is also partly based on similar interactions of actin filaments with non-muscle myosins. Early studies of muscle contraction have informed later studies of these cellular actin-myosin systems. In muscles, projections on the myosin filaments, the so-called myosin heads or cross-bridges, interact with the nearby actin filaments and, in a mechanism powered by ATP-hydrolysis, they move the actin filaments past them in a kind of cyclic rowing action to produce the macroscopic muscular movements of which we are all aware. In this special issue the papers and reviews address different aspects of the actin-myosin interaction in muscle as studied by a plethora of complementary techniques. The present overview provides a brief and elementary introduction to muscle structure and function and the techniques used to study it. It goes on to give more detailed descriptions of what is known about muscle components and the cross-bridge cycle using structural biology techniques, particularly protein crystallography, electron microscopy and X-ray diffraction.
    [Show full text]
  • Lecture 1- Metabolism: Basic Concepts and Design 1 Introduction
    Lecture 1- Metabolism: Basic Concepts and Design Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire 1 Introduction Questions we will focus on this semester: How does a cell extract energy and reducing power from its environment? How does a cell synthesize the building blocks of its macromolecules and the then the macromolecules themselves? How are these processes integrated and regulated? 2 2 Introduction Living organisms require an input of free energy to meet various needs: For mechanical work For active transport of molecules and ions For synthesis of biomolecules 3 3 Introduction Living organisms require an input of free energy Phototrophs Use energy from the sun to convert energy-poor molecules into energy rich molecules Chemotrophs Obtain energy by oxidizing the energy-rich molecules made by the phototrophs 4 4 Introduction Reduced molecules are energy-rich Oxidized molecules are energy-poor 5 5 Introduction Energy from photosynthesis or the oxidation of fuels can be transformed into an unequal distribution of ions across a biological membrane. The ion gradient can be used for Oxidative phosphorylation to make ATP Active transport across membranes Nerve transmission 6 6 Introductions Ion gradients: See Chapter 2.3.3 7 7 Metabolism Metabolism is composed of many coupled interconnecting reactions 8 8 Metabolism 9 9 Metabolism Classes of metabolic pathways: Catabolic pathways Those that convert energy into biologically useful forms Fuels (carbohydrates, fats) CO2 + H2O + useful energy Anabolic pathways Those that require an input of energy Useful energy + small molecules complex molecules 10 10 Metabolism Basic concepts of metabolism include: Thermodynamically unfavorable reactions can be driven by favorable reactions.
    [Show full text]
  • ATP Analogues for Structural Investigations: Case Studies of a Dnab Helicase and an ABC Transporter
    molecules Review ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter 1,2, 1, , 1 3 Denis Lacabanne y, Thomas Wiegand * y , Nino Wili , Maria I. Kozlova , Riccardo Cadalbert 1, Daniel Klose 1, Armen Y. Mulkidjanian 3,4, Beat H. Meier 1,* and Anja Böckmann 5,* 1 Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; [email protected] (D.L.); [email protected] (N.W.); [email protected] (R.C.); [email protected] (D.K.) 2 Medical Research Council Mitochondrial Biology Unit University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK 3 Department of Physics, Osnabrueck University, 49069 Osnabrueck, Germany; [email protected] (M.I.K.); [email protected] (A.Y.M.) 4 School of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia 5 Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 69367 Lyon, France * Correspondence: [email protected] (T.W.); [email protected] (B.H.M.); [email protected] (A.B.) These authors contributed equally to this work. y Academic Editor: Marilisa Leone Received: 17 October 2020; Accepted: 9 November 2020; Published: 12 November 2020 Abstract: Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states.
    [Show full text]
  • Flagella-Driven Motility of Bacteria
    biomolecules Review Flagella-Driven Motility of Bacteria Shuichi Nakamura 1 and Tohru Minamino 2,* 1 Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan 2 Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan * Correspondence: [email protected]; Tel.: +81-6-6879-4625 Received: 27 June 2019; Accepted: 12 July 2019; Published: 14 July 2019 Abstract: The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
    [Show full text]