Quinstar Catalog

Total Page:16

File Type:pdf, Size:1020Kb

Quinstar Catalog About Our Company QUINSTAR TECHNOLOGY, INC. QuinStar Technology, Inc. is a millimeter-wave technology product delivery and company. Founded in March 1993 by seasoned managers after sales support. from major aerospace companies, QuinStar is dedicated In addition, QuinStar to the development, strives to design and manufacture and mar- produce products keting of millimeter- that meet or exceed wave products serving the performance established as well specifications to as emerging markets which we have and system applica- 3 Axis Optical Measurement System agreed upon and tions in the commer- fully comply with all cial, scientific and applicable quality standards. We are ISO 9001:2008 defense arenas. Our certified in 2004 and our certification number is A2176US. customers span the Our quality standards address commercial through world and our program experience includes Department of military and NASA Hi-Rel Space Flight requirements. Defense research and development, high reliability space As always, we stand behind our commitment to quality and flight, and volume production of products fielded in leading on-time delivery. edge broadband wireless communication networks. QuinStar’s products range from standard catalog components to specialized high-performance RF signal generating, amplifying and conditioning components to fully integrated and customized assemblies and subsystems for digital and analog sensor, communica- tions and test applications. QuinStar’s primary goals are to deliver quality products and services to our Class 10,000 Clean Room for MIC Amplifier Manufacturing customers while maintaining a pleasant work environment for our employees. We are committing our full resources, experiences and talents to achieving these simple yet most important goals. About This Catalog The products offered in this catalog are standard and performance is not necessarily limited to the specifications presented. In addition, this catalog only presents a portion of our total product capability and offerings. Therefore, we encourage you to contact QuinStar to discuss your specific millimeter-wave product needs. Our web site (www.quinstar.com) has latest information on new products Near Field Antenna Test Range and updates to this catalog. Commitment to Quality QuinStar Technology, Inc. is dedicated to providing the best Dual Microscope for Inspection service in the industry from initial inquiry all the way through and Training 1 Made in USA 24085 Garnier Street, Torrance, CA 90505 v (310) 320-1111 Fax: (310) 320-9968 v [email protected] v www.quinstar.com Vision and History QUINSTAR TECHNOLOGY, INC. Our Vision: To be the premier millimeter-wave technology company that provides innovative product solutions to the communications and sensor industries Our Mission: To fulfill our customers’ expectations of performance, delivery, value, quality, and service. To employ superior technologies, responsive engineering, and efficient manufacturing. To create highly rewarding careers for our employees in a stimulating and fun work environment. QuinStar Strategy and Legacy: Throughout the years, QuinStar Technology grew its business and oscillator business. We are the only commercial Silicon by servicing the needs of customers in the millimeter-wave IMPATT diodes supplier in America today. and microwave sensors and communication field. As a key In 2002, we purchased all assets and the name of MPI / growth strategy, QuinStar Technology also developed Millimeter Products, Inc., (www.milpi.com) a millimeter-wave business by acquiring synergistic businesses to further components company in New Hampshire. The company was broaden our products and services to better serve our moved to our Torrance facility in 2003. This purchase customers. expanded our waveguide and test components products We acquired DCL Inc. a small local electronic engineering similar to the TRG product line. firm in 1996. We expanded into the cryogenic amplifier business in 2004, In 1997, we acquired the complete assets of CERNEX Inc, a with the acquisition of Berkshire Technologies, Inc. microwave amplifiers company in Sunnyvale, CA. We (www.berkshiretech.com). This acquisition enables us to continued to operate in Sunnyvale as QuinStar Technology, further support the scientific research customers. Sunnyvale Division. In 2000, the facility was moved to During the recent years, QuinStar has significantly upgraded our Torrance location to effect greater efficiency and its manufacturing and test facilities. In particular, the responsiveness to our customers. machining capability has been significantly upgraded. Other enhancements are in the antenna range and environmental QuinStar acquired the manufacturing rights and all test facility. equipment and inventory of Silicon IMPATT diode product line from Raytheon in 1998. The technology was developed With each acquisition, we increased our capabilities and for Satellite communications and missile seekers in the mid broadened our areas of expertise. QuinStar continues to 70s to 80s by Hughes Aircraft Company and later acquired by grow as a company of diverse abilities to meet the many Raytheon. This was the foundation of our IMPATT amplifier needs of our customers. 2 Made in USA 24085 Garnier Street, Torrance, CA 90505 v (310) 320-1111 Fax: (310) 320-9968 v [email protected] v www.quinstar.com CONTENTS QUINSTAR TECHNOLOGY, INC. Waveguide Products Amplifier Products 1 and Filters 5 Glossary of Terminology for Amplifiers 8 Glossary of Waveguide Products & Filters 102 Microwave Broadband Low Noise Amplifiers QLJ 9 Precision High Directivity Couplers QJR 103 Microwave Broadband General Purpose Amplifiers QGJ 10 Precision Bi- and Dual-Directional Couplers QJB/QJD 105 Microwave Broadband Power Amplifiers QPJ 11 General Purpose Waveguide Directional Coupler QDC 108 Precision Crossguide Couplers QJC 110 Millimeter Wave Full Waveguide Band Power Amplifiers QPI 13 General Purpose Crossguide Couplers QJX 112 Millimeter Wave Broadband Amplifiers QGW 15 Matched Hybrid Tees and Power Dividers QJH 114 Millimeter Wave Broadband Low Noise Amplifiers QLW 18 Short Slot Hybrid Power Divider QSP 116 Millimeter wave Broadband Power Amplifiers QPW 20 Multi-Output Power Dividers QMD 118 Millimeter Wave Low Noise Amplifiers QLN 24 Bandpass Filters QFB 119 Millimeter Wave Power Amplifiers QPN 26 Low Pass Filters QFL 121 Millimeter Wave General Purpose Amplifiers QGN 31 High Pass Filters QFH 123 Instrumentation Amplifiers QAI 34 Band Reject and Notch Filters QNF 125 E and H Plane Waveguide Tees QUH 126 Cryogenic Amplifiers and Systems QCA 36 Waveguide Straight Sections, and Tapered Transitions QWS/QWR/QWP 127 Custom Options and Configurations for Amplifier Products 39 Custom Waveguide Assemblies QAC 129 Amplifier Outlines 40 Waveguide Terminations QWN/QTW/QTZ 130 Waveguide Bends and Twists QWB/QWT 132 Tunable Loads, Tunable Shorts, and E-H Tuners QWG/QAT/QWU 133 Waveguide Flanges, Adapters and Associated Hardware QBA/QFA/QFF/QFS 134 Receiver Products 2 Precision Drill Jig and Waveguide Stands QDJ/QVS 136 Waveguide to Coax Adapters QWA 137 Application Notes & Technical Information 48 Broadband Detectors QEA 49 Balanced Phase Detectors QEP 51 Test Equipment and Harmonic Mixers and Diplexers QMH 53 Instrumentation products 6 Spectrum Analyzer Mixers and Diplexers QMA 55 Balanced Mixers QMB 57 Manual Waveguide Switches QWM 142 Upconverters QMU 59 Electromechanical Waveguide Switches QWZ 143 Subharmonic Mixers QHS 61 Micrometer Type Level Set Attenuators, Variable I-Q Mixer QMI 62 Phase Shifters and Fixed Attenuators QAF/QAL/QAS 145 Dial type Level Set Attenuators and Variable Phase Shifters QDA/QDP 147 Direct Reading Attenuators and Phase Shifters QAD/QPS 149 Motorized, Programmable Attenuators QPA 152 Sources and Frequency Motorized, Programmable Phase Shifters QMP 154 Multipliers 3 Application Notes 64 Antenna Products 7 Mechanically-Tunable Gunn Oscillators QTM 66 Application Notes 158 Varactor-Tunable Gunn Oscillators QTV 68 Standard Gain Horn Antennas QWH 162 Gunn Regulators/Modulators QCR 70 Custom Horn Antennas QRR 165 High Power IMPATT Diodes QID 71 Narrow and Wide Beam Scalar Horn QSH/QSW 167 Stable Millimeter Wave Sources QSO 73 Sectoral Horn Antennas QSF 168 Phase Locked Oscillators QPL 74 Omni-directional Antennas QOD 169 Active Frequency Multipliers QMM 75 Lens Antennas QLA 170 Passive Frequency Multipliers QPM 77 Prime Focus Antenna QRP 172 Cassegrain Reflector Antennas QRC 173 Noise Sources QNS 79 Orthomode Transducers QWO 175 Frequency Extenders QBE 81 Full Waveguide Band Orthomode Transducer QOT 177 Linear to Circular Fixed and Switchable Polarizers QWL/QWQ 178 Circular-to-Rectangular Waveguide Transitions QWC 180 Mode Transition TE01 to TE10 QMT 181 Control Components Mode Filter QMF 182 4 Circular Waveguide (TE11) Sections and Flanges QCW 183 and Ferrite Products Circular Waveguide Termination QTC 185 TE01 Circular Waveguide Sections and Flanges QCL/QCF 186 Glossary of Control Component Terminology 84 Rotary Joints QRJ 188 Precision Junction Circulators and Isolators QJY/QJI 85 Antenna Development Capability & Measurement Facility 189 Fullband Junction Circulators and Isolators QJE/QJF 87 Fullband Isolators QIF 89 Assemblies, Subsystems and Cryogenic Circulators & Isolators QCY/QCI 91 Variable PIN Attenuators QSA 92 Systems 8 Coaxial PIN Attenuators QVA 94 Waveguide PIN Switches QSS/QSD 96 Cryogenically Coolable Products and Capability 194 Subsystem and Assembly Experience 195 Multithrow PIN Switches QSN 98 Block Diagrams and Architectures for
Recommended publications
  • Electronic Spectroscopy of Free Base Porphyrins and Metalloporphyrins
    Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin Introduction The word porphyrin is derived from the Greek porphura meaning purple, and all porphyrins are intensely coloured1. Porphyrins comprise an important class of molecules that serve nature in a variety of ways. The Metalloporphyrin ring is found in a variety of important biological system where it is the active component of the system or in some ways intimately connected with the activity of the system. Many of these porphyrins synthesized are the basic structure of biological porphyrins which are the active sites of numerous proteins, whose functions range from oxygen transfer and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome oxidase) to energy conversion (chlorophyll). They also have been proven to be efficient sensitizers and catalyst in a number of chemical and photochemical processes especially photodynamic therapy (PDT). The diversity of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring system (Fig. 1). Figure 1. Metallated Tetraphenylporphyrin Upon metalation the porphyrin ring system deprotonates, forming a dianionic ligand (Fig. 2). The metal ions behave as Lewis acids, accepting lone pairs of electrons ________________________________ § We all need to thank Jay Stephens for synthesizing the H2TPP 2 from the dianionic porphyrin ligand. Unlike most transition metal complexes, their color is due to absorption(s) within the porphyrin ligand involving the excitation of electrons from π to π* porphyrin ring orbitals. Figure 2. Synthesis of Zn(TPP) The electronic absorption spectrum of a typical porphyrin consists of a strong transition to the second excited state (S0 S2) at about 400 nm (the Soret or B band) and a weak transition to the first excited state (S0 S1) at about 550 nm (the Q band).
    [Show full text]
  • Resolving Interference Issues at Satellite Ground Stations
    Application Note Resolving Interference Issues at Satellite Ground Stations Introduction RF interference represents the single largest impact to robust satellite operation performance. Interference issues result in significant costs for the satellite operator due to loss of income when the signal is interrupted. Additional costs are also encountered to debug and fix communications problems. These issues also exert a price in terms of reputation for the satellite operator. According to an earlier survey by the Satellite Interference Reduction Group (SIRG), 93% of satellite operator respondents suffer from satellite interference at least once a year. More than half experience interference at least once per month, while 17% see interference continuously in their day-to-day operations. Over 500 satellite operators responded to this survey. Satellite Communications Overview Satellite earth stations form the ground segment of satellite communications. They contain one or more satellite antennas tuned to various frequency bands. Satellites are used for telephony, data, backhaul, broadcast, community antenna television (CATV), internet, and other services. Depending on the application, each satellite system may be receive only or constructed for both transmit and receive operations. A typical earth station is shown in figure 1. Figure 1. Satellite Earth Station Each satellite antenna system is composed of the antenna itself (parabola dish) along with various RF components for signal processing. The RF components comprise the satellite feed system. The feed system receives/transmits the signal from the dish to a horn antenna located on the feed network. The location of the receiver feed system can be seen in figure 2. The satellite signal is reflected from the parabolic surface and concentrated at the focus position.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Infrared Astronomy Break: Sara and Rebeka
    Astro 121, Spring 2014 Week 13 (April 24) Topic: Infrared astronomy Break: Sara and Rebeka Reading for this week: As we switch to looking at observing at wavelengths other than visible light, we’re moving beyond what Chromey covers. For this week, I’ve suggested reading from two sources. Glass gives a good introduction to the infrared and covers much of the practical material about filter systems, etc. McLean then fills in more details of practicalities of instrumentation for the infrared and how it is different from the optical. • Chromey briefly discusses the main broadband IR filter system in Section 10.4.3. • Glass, Handbook of Infrared Astronomy. In the same series as the book by Howell, this is a relatively new book with excellent coverage of infrared astronomy. Reading: Chapter 2 (The Infrared Sky); Chapter 3 (Photometry) through 3.2; and Chapter 6 (Instrumentation). You may also want to skim the rest of Chapter 3 and all of Chapter 4; they concentrate on applications of infrared photometry and spectroscopy, respectively. • McLean, Electronic Imaging in Astronomy (second edition). Ian McLean was one of the people most closely involved in the development and use of the early infrared arrays, and this is an area where this book stands out. Read Chapter 11, skipping pp. 400–404 (and in general reading the chapter for understanding of concepts rather than lots of details). One bit of physics that is worth reviewing for this week is the concept from thermodynamics that good absorbers are also good emitters, and correspondingly that the reflectivity R of some object is related to its emissivity ε by ε = 1 – R.
    [Show full text]
  • New Journal of Physics the Open–Access Journal for Physics
    New Journal of Physics The open–access journal for physics On the origin of the fast photoluminescence band in small silicon nanoparticles J Valenta1,6, A Fucikova1, I Pelant2,KKusová˚ 2, K Dohnalová2, A Aleknaviciusˇ 2,5, O Cibulka2, A Fojtík3 and G Kada4 1 Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic 2 Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 53 Prague 6, Czech Republic 3 Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, V Holesoviˇ ckáchˇ 2, 182 00 Praha 8, Czech Republic 4 Agilent Technologies, Mooslackengasse 17, 1190 Vienna, Austria E-mail: [email protected] New Journal of Physics 10 (2008) 073022 (6pp) Received 13 February 2008 Published 11 July 2008 Online at http://www.njp.org/ doi:10.1088/1367-2630/10/7/073022 Abstract. Colloidal suspensions of small silicon nanoparticles (diameter around 2 nm) with fast and efficient ultraviolet–blue photoluminescence (PL) band are fabricated by enhanced electrochemical etching of Si wafers. The detailed study of photoluminescence excitation spectra in a wide range of excitation photon energies (270–420 nm) reveals specific behavior of the Stokes shift of the fast PL band that agrees well with theoretical calculation of optical transitions in small silicon nanocrystals and is distinct from emission of silicon dioxide defects. Efficient photoluminescence (PL) of porous silicon (PSi)—first observed by Canham [1]— provoked intensive research on silicon-based nanocrystalline materials. There are mainly two types of PL emission in Si nanostructures at room temperature.
    [Show full text]
  • Qatar National Frequency Allocation Plan and Specific
    Communications Regulatory Authority 2 Table of Contents Qatar National Frequency Allocation Plan and Specific Assignments Table of Contents Part 01. GENERAL INFORMATION .............................................................................................................. 1. Introduction ...................................................................................................................................................5 2. Principals of Spectrum Management .................................................................................................5 3. Definition of terms used ..........................................................................................................................7 4. How to read the frequency allocation table .................................................................................. 11 5. Radio Wave Spectrum ............................................................................................................................ 12 Part 02. FREQUENCY ALLOCATION PLAN ............................................................................................... Qatar Frequency Allocation Plan ............................................................................................................ 15 Part 03. QATAR’S FOOTNOTES ................................................................................................................... Footnotes Relevant to Qatar.................................................................................................................
    [Show full text]
  • 1 Distinct Band Reconstructions in Kagome Superconductor Csv3sb5
    Distinct band reconstructions in kagome superconductor CsV3Sb5 Yang Luo1,#, Shuting Peng1,#, Samuel M. L. Teicher2,#, Linwei Huai1,#, Yong Hu1,3, Brenden R. Ortiz2, Zhiyuan Wei1, Jianchang Shen1, Zhipeng Ou1, Bingqian Wang1, Yu Miao1, Mingyao Guo1, M. Shi3, Stephen D. Wilson2 and J.-F. He1,* 1Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA 3Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland #These authors contributed equally to this work. *To whom correspondence should be addressed: [email protected] The new two-dimensional (2D) kagome superconductor CsV3Sb5 has attracted much recent attention due to the coexistence of superconductivity, charge order, topology and kagome physics [1- 33]. A key issue in this field is to unveil the unique reconstructed electronic structure, which successfully accommodates different orders and interactions to form a fertile ground for emergent phenomena. Here, we report angle-resolved photoemission spectroscopy (ARPES) evidence for two distinct band reconstructions in CsV3Sb5. The first one is characterized by the appearance of new electron energy band at low temperature. The new band is theoretically reproduced when the three dimensionality of the charge order [21-23] is considered for a band-folding along the out-of-plane direction. The second reconstruction is identified as a surface induced orbital-selective shift of the electron energy band. Our results provide the first evidence for the three dimensionality of the charge order in single-particle spectral function, highlighting the importance of long-range out-of-plane electronic correlations in this layered kagome superconductor.
    [Show full text]
  • Design of an Orthomode Transducer in Gap Waveguide Technology Master of Science Thesis in the Program Communication Engineering
    Design of an Orthomode Transducer in Gap Waveguide Technology Master of Science Thesis in the program Communication Engineering ALI IMRAN SANDHU Antenn Group, Department of Signals & Systems Chalmers University of Technology Göteborg, Sweden, September 2010 The Author grants to Chalmers University of Technology the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology store the Work electronically and make it accessible on the Internet. Design of an Orthomode Transducer in Gap Waveguide Technology ALI IMRAN SANDHU c ALI IMRAN SANDHU, 2010 Examinar: Prof. Per-Simon Kildal Technical report no 2010:xx Antenna Group, Department of Signals & Systems Chalmers University of Technology SE-41296 Gteborg Sweden Telephone +46 (0) 31-772 1000 Cover: Picture shows the 3D OMT strucuture with magnitude E field inside, simu- lated in HFSS Antenna Group, Department of Signals & Systems Gteborg, Sweden September 2010 I would like to dedicate my work to my family. I believe that I have made it possible merely due to the prayers and great moral support from my parents throughout my stud- ies.
    [Show full text]
  • Assessment of Spatial and Temporal Properties of Ka/Q Band Earth-Space Radio Channel Across Europe Using Alphasat Aldo Paraboni
    Received: 28 February 2018 Revised: 19 April 2019 Accepted: 27 April 2019 DOI: 10.1002/sat.1313 SPECIAL ISSUE PAPER Assessment of spatial and temporal properties of Ka/Q band earth‐space radio channel across Europe using Alphasat Aldo Paraboni payload Spiros Ventouras1 | Antonio Martellucci11 | Richard Reeves1 | Emal Rumi1 | Fernando P. Fontan2 | Fernando Machado2 | Vicente Pastoriza2 | Armando Rocha3 | Susana Mota3 | Flavio Jorge3 | Athanasios D. Panagopoulos4 | Apostolos Z. Papafragkakis4 | Charilaos I. Kourogiorgas4 | Ondrej Fiser5 | Viktor Pek5 | Petr Pesice5 | Martin Grabner6 | Andrej Vilhar7 | Arsim Kelmendi7 | Andrej Hrovat7 | Danielle Vanhoenacker‐Janvier8 | Laurent Quibus8 | George Goussetis9 | Alexios Costouri9 | James Nessel10 1 STFC Rutherford Appleton Laboratory, RAL Space, Oxford, UK Summary 2 Escola de Enxeñaría de Telecomunicación, The upcoming migration of satellite services to higher bands, namely, the Ka‐ and University of Vigo, Vigo, Spain Q/V‐bands, offers many advantages in terms of bandwidth and system capacity. 3 Dep. Elect. Telec. e Informática, Instituto de However, it poses challenges as propagation effects introduced by the various atmo- Telecomunicações, Aveiro, Portugal 4 School of Electrical and Computer spheric phenomena are particularly pronounced in these bands and can become a Engineering, National Technical University of serious constraint in terms of system reliability and performance. This paper presents Athens, Athens, Greece the goals, organisation, and preliminary results of an ongoing large‐scale European 5 Meteorological Department, Institute of Atmospheric Physics ASCR, Prague, Czech coordinated propagation campaign using the Alphasat Aldo Paraboni Ka/Q band sig- Republic nal payload on satellite, performed by a wide scientific consortium in the framework 6 TESTCOM, Czech Metrology Institute, Prague, Czech Republic of a European Space Agency (ESA) project.
    [Show full text]
  • Full Waveguide Q-Band Low Noise Amplifier AFB-Q20LN-0X
    www.ducommun.com Full Waveguide Q-Band Low Noise Amplifier AFB-Q20LN-0X The AFB series low noise amplifiers are constructed with MMICWT-A-7 PHEMT devices and provide state-of-the-art broadbandWT -A-8 performances. 0.096 DIA x THRU WR-28 W/UG599/U FLANGE 4PLS OR WR-42 W/UG595/U FLANGE 1 PLS Application • Telecommunication D M S D/ M S / /C / N N: / / N: C: N: : : X X X X X X X X X X X XX X / X XX • Test instrumentation X / X X X X X X X X X X • Transceiver subassemblies Specifications SIZE L W LM 0.096 DIA x THRU WR-28 W/UG599/U FLANGE SMALL 1.73 1.20 1.63 OUTPUT CONNECTOR CAN BE VARIED ON CUSTOMER'S REQUEST • Frequency: 33.0 -4 PL45.0S GHz OR WR-42 W/UG595/U FLANGE LARGE 2.53 1.30 2.43 K BAND ONLY APPLY TO SMALL SIZE SIZE L WLM • Gain:SMAL L 201.73 dB nominal1.20 1.63 LARGE 2.53 1.30 2.43 Dimensions are in inches Dimensions are in inches • Gain flatness: +/- 2.0 dB WT-A-9 WT-A-10 • Noise figure: 3.5 dB (typ) / 5.0 dB (max) WR-28 W/UG599/U FLANGE • I/O VSWR: 2.0:1 (typ) 2 PLS Features • DC bias: 8-12 V / 100 mA nominal • Broadband performance across entire Q-band • I/O connectors: 2.4mm(F) or WR-22 with UG383/U flange • Ultra-low noise with gain choice • Operating temperature: -40˚C to +50˚C M/N: XXXXX S/N: XXXXX • Single DC power supply/internal regulated D/C: XX/XX sequential biasing • Compact size and light weight WR-15 W/UG385/U FLANGE 4-40 x 0.20 DP OR WR-10 W/UG387/U MOD FLANGE 2 PLS 2 PLS • Variable I/O interface options 0.096 DIA x THRU 8 PLS Outline Drawings Dimensions are in inches Dimensions are in inches WT-A-1 WT-A-2 WT-A-11 WT-A-12 0.089 DIA X THRU 4 PLS M/N: XXXXX 4-40 x 0.20 DP S/N: XXXXX WR-10 W/UG 387/U-MOD FLANGE M/N: XXXXX D/C: XX/XX S/N: XXXXX 4 PLS OR WR-15 W/UG 385/U FLANGE D/C: XX/XX 4-40 x 0.20 DP 2 PLS 4 PLS M/N: XXXXX S/N: XXXXX D/C: XX/XX BAND L HW V,E, & W 1.50 1.00 0.75 M/N: XXXXX Q & U 1.80 1.13 1.13 S/N: XXXXX D/C: XX/XX Dimensions are in inches Dimensions areDimensions in inches are in inches Dimensions are in inches AllWT specifications-A-3 are subject to change without notice.
    [Show full text]
  • Design and Feasibility Study of an Orthomode Transducer for the FAST Experiment
    Design and Feasibility Study of an Orthomode Transducer for the FAST Experiment Thesis submitted to The University of Manchester for the Degree of Masters of Astrophysics Jodrell Bank Centre for Astronomy. September 2012 Louis Smith School of Physics and Astronomy 2 Design and Feasibility Study of an Orthomode Transducer for the FAST Experiment Contents List of Figures 7 List of Tables 9 Abstract . 11 Declaration . 12 Copyright Statement . 13 Dedication . 14 1 Introduction 17 1.1 Overview . 17 1.2 Design Requirements . 18 1.3 Basic Theory . 19 1.3.1 Maxwell’s Equations . 19 1.3.2 Electromagnetic Spectrum . 19 1.3.3 Plane Waves and Polarization . 21 1.3.4 Linear Polarization . 21 1.3.5 Circular Polarization . 22 1.3.6 Isolation . 23 1.3.7 Cross Polarization . 23 1.3.8 Return Loss . 24 1.4 Waveguides . 24 1.4.1 Boundary Conditions . 27 1.4.2 Coordinate Systems and Dominant Modes . 28 Louis Smith 3 CONTENTS 1.4.3 Cut-off Frequency (Fc).......................... 30 1.4.4 Operating Bandwidth . 31 1.4.5 Binomial Rule . 32 1.4.6 Reflection and Scattering Parameters . 32 1.5 Computational Electromagnetism . 33 I Research and Development 39 2 Current state of OMT Research 41 2.1 Overview . 41 2.2 OMT Typologies . 44 2.3 Planar OMTs . 44 2.4 Waveguide OMTs . 48 2.4.1 B;ifot Classification, Class I . 50 2.4.2 B;ifot Classification, Class II . 51 2.4.3 B;ifot Classification, Class III . 56 2.5 Finline . 63 3 Detailed Development of a Turnstile Junction, appropriate for the FAST Experi- ment 67 3.1 The Turnstile Junction Waveguide OMT .
    [Show full text]
  • Simulteneous Transmit and Receive (Star) Antennas for Geo- Satellites and Shared-Antenna Platforms
    SIMULTENEOUS TRANSMIT AND RECEIVE (STAR) ANTENNAS FOR GEO- SATELLITES AND SHARED-ANTENNA PLATFORMS by Elie Germain Tianang B.S., Yaoundé Advanced School of Engineering, 2007 M.S., University of Colorado, Boulder, 2017 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Electrical, Computer, and Energy Engineering 2019 This thesis entitled: Simultaneous Transmit and Receive (STAR) Antennas for Geo-Satellites and Shared-Antenna Platforms written by Elie Germain Tianang has been approved for the Department of Electrical, Computer, and Energy Engineering Dejan S. Filipovic Mohamed A. Elmansouri Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Elie Germain Tianang (Ph.D., Electrical, Computer, and Energy Engineering) Simultaneous Transmit and Receive (STAR) Antennas for Geo-Satellites and Shared-Antenna Platforms Thesis directed by Professor Dejan S. Filipovic This thesis presents the analysis, design, and experimental characterization of antenna systems considered for shipborne, airborne, and space platforms. These antennas are innovated to enable Simultaneous Transmit and Receive (STAR) at same time and polarization, either at the same, or duplex frequencies. In airborne and shipborne platforms, developed antenna architectures may enhance the capabilities of modern electronic warfare systems by enabling concurrent electronic attack and electronic support operations. In space, and more precisely at geostationary orbit, designed antennas aim to decrease the complexity of conventional phased array systems, thereby increasing their capabilities and attractiveness.
    [Show full text]