Qatar National Frequency Allocation Plan and Specific

Total Page:16

File Type:pdf, Size:1020Kb

Qatar National Frequency Allocation Plan and Specific Communications Regulatory Authority 2 Table of Contents Qatar National Frequency Allocation Plan and Specific Assignments Table of Contents Part 01. GENERAL INFORMATION .............................................................................................................. 1. Introduction ...................................................................................................................................................5 2. Principals of Spectrum Management .................................................................................................5 3. Definition of terms used ..........................................................................................................................7 4. How to read the frequency allocation table .................................................................................. 11 5. Radio Wave Spectrum ............................................................................................................................ 12 Part 02. FREQUENCY ALLOCATION PLAN ............................................................................................... Qatar Frequency Allocation Plan ............................................................................................................ 15 Part 03. QATAR’S FOOTNOTES ................................................................................................................... Footnotes Relevant to Qatar.................................................................................................................. 99 Part 04. Appendices and Annexes ............................................................................................................... Appendix 1: List of Specific Assignments.......................................................................................... 117 Appendix 2: List of frequency bands for SRD applications .........................................................118 Appendix 3: Harmonized frequency ranges / frequency spots ...............................................120 Appendix 4: Frequency Allotment Plan .............................................................................................. 122 Annex 1: List of Spectrum Regulations ..............................................................................................128 Annex 2: International Agreement .......................................................................................................130 Annex 3: Useful Abbreviations...............................................................................................................134 3 PART 01. GENERAL INFORMATION General Information Qatar National Frequency Allocation Plan and Specific Assignments Part 01. General Information limited to civil frequency use. Discussion of military requirements does not take place 1. Introduction within the bodies in question. To record the needs of military and civil defense, The National Frequency Allocation Plan CRA convened a permanent coordination (NFAP) serves as a binding basis for the committee. This committee deals with the organizational units of the Administration coordination of frequency use in bands, responsible for frequency assignment so which are currently subject to joint, use that they can fulfil their responsibilities according to the NFAP though which in in relation to frequency assignment. future will also be subject to joint use. The Frequency allocation in the NFAP includes aforementioned activities are ultimately the allocation of the frequency spectrum reflected in the NFAP, which as mentioned to the various radio services categories above, must be considered as a legal basis in accordance with the Radio Regulations document for the assignment of individual of the International Telecommunication frequency rights by the relevant authorities. Union (ITU). The processes and mechanisms relevant to the preparation of the NFAP are As radio signals propagate across presented and explained in the following international borders, cross-border chapters. agreements regarding frequency use are vital both between neighboring countries and between economic interest blocks on 2. Principals of Spectrum a global scale. The use of all frequency resources is harmonized at the international Management level at the ITU World Radiocommunication Conferences in order to ensure efficient 2.1 National level and interference-free use of the frequency As radio frequencies are limited resource, spectrum. The respective decisions of the efficient use of this resource is essential for World Radiocommunication Conferences the functioning of modern communication are stipulated in the Radio Regulations of societies. The Emiree Decree No. (42) of 2014 17 November 1995, specifically in Article 5 and the Telecommunications Law No. (34) of “Frequency allocations”. 2006 include a direct mandate for the body responsible for frequency management to 2.2 International level act appropriately in order to ensure efficient CRA analyses the spectrum requirements and interference-free use of frequency. for existing and planned radio services in Regulation is fundamentally concerned Qatar. This is necessary for efficient and with combining the various interests of equitable planning and coordination of frequency users and manufacturers within frequencies in order to avoid interference. It the aforementioned legal mandate. is also necessary because CRA represents In order for frequency regulation to Qatar in regional and international bodies be as target-oriented as possible, the in the frequency sector, where it safeguards sometimes-conflicting interests of the Qatar interests in order to promote them on various frequency users must be recorded an international (regional and global) level. as accurately as possible and weighed The Qatar strategy aims to regulate against each other. The requirements of access to the frequency spectrum (for industry and the associated civil uses are both commercial and non-commercial radio largely tabled via the international working services) on a national and international groups of the ITU. Individual project groups level in a coordinated manner. It aims to then examine the tabled requirements; the ensure that Qatar rights are respected relevant bodies then draw up and adopt in accordance with international law. appropriate basic documentation. These International bodies aim to harmonize the jointly developed principles then serve use of the spectrum by the various radio to allow regionally and internationally services. Any international decisions taken harmonized use of frequency resources. The therefore play a part in national spectrum activity of these working groups is usually management. 5 Communications Regulatory Authority The regional contact for harmonization World Radiocommunication Conferences of the frequency spectrum in the region (WRC) to adapt the existing framework to is the Telecommunication Bureau of Gulf spectrum requirements in order to refine Countries Council. The Telecommunications existing applications or facilitate the Bureau provides a framework within introduction of new applications. administrations can develop provisions according to which the conditions for The NFAP assumes and supplements the spectrum use can be harmonized with relevant provisions of the RR for Qatar. regard to market demand and technological International planning and harmonization developments. work within the ITU results in “resolutions” and “recommendations”. The results of ITU The International Telecommunication World Conferences are set forth in “final Union Radiocommunication Sector acts”. With the adoption of the final acts, (ITU-R) allocates worldwide frequencies Qatar commits itself to comply with the to radio services in accordance with the new provisions of international law. Radio Regulations (RR). The RR is an international agreement, which regulates For the allocation of frequencies, the use of frequency resources for all radio International Telecommunication Union applications, as well as the orbital positions (ITU), a subsidiary of the United Nations, of geostationary and non-geostationary which deals with the Telecommunication satellites. This agreement is binding for ITU sector, has divided the world into three member states. The RR are revised in the Regions as shown on the following map: The State of Qatar is signatory to Russian Federation which lies between lines International Telecommunication Union A and C. Whereas the lines A, B and C are (ITU) convention and situated in Region 1. defined as follows: Region 1 includes the area limited on the east by line A (lines A, B and C are defined Line A: Line A extends from the North Pole below) and on the west by line B, excluding along meridian 40° East of Greenwich to any of the territory of the Islamic Republic parallel 40° North; thence by great circle of Iran which lies between these limits. It arc to the intersection of meridian 60° East also includes the whole of the territory of and the Tropic of Cancer; thence along the Armenia, Azerbaijan, the Russian Federation, meridian 60° East to the South Pole. Georgia, Kazakhstan, Mongolia, Uzbekistan, Line B: Line B extends from the North Pole Kyrgyzstan, Tajikistan, Turkmenistan, Turkey along meridian 10° West of Greenwich to its and Ukraine and the area to the north of intersection with parallel 72° North; thence 6 General Information Qatar National Frequency Allocation Plan and Specific Assignments by great circle arc to the intersection of Allocation
Recommended publications
  • RTT TECHNOLOGY TOPIC January 2015 Defence Spectrum – the New Battleground?
    RTT TECHNOLOGY TOPIC January 2015 Defence Spectrum – the new battleground? In this month’s technology topic we look at contemporary military radio developments, the integration of LTE user devices into defence communication systems, the relevance of military research to 5 G deployment efficiency and related spectral utilisation and regulatory issues. Defence communication systems are deployed across the whole radio spectrum from long wave to light. This includes mobile communication systems at VHF and UHF and L Band and S band, LEO, MEO and GSO satellite systems (VHF to E band) and mobile and fixed radar (VHF to E band). Legacy defence systems are being upgraded to provide additional functionality. This requires more rather than less spectrum. Increased radar resolution requires wider channel bandwidths; longer range requires more power and improved sensitivity. Improved sensitivity increases the risk of inter system interference. Emerging application requirements including unmanned aerial vehicles require a mix of additional terrestrial, satellite and radar bandwidth. These requirements are geographically and spectrally diverse rather than battlefield and spectrally specific. The assumption in many markets is that the defence industry will be willing and able to surrender spectrum for mobile broadband consumer and civilian use. The AWS 3 auction in the US is a contemporary example with a $5 billion transition budget to cover legacy military system decommissioning in the DOD coordination zone between 1755 and 1780 MHz This transition strategy assumes an increased use of LTE network hardware and user hardware in battlefield systems. While this might imply an opportunity for closer coordination and cooperation between the mobile broadband and defence community it seems likely that an increase in the amount of defence bandwidth needed to support a broadening range of RF dependent systems could be a problematic component in the global spectral allocation and auction process.
    [Show full text]
  • Wireless Backhaul Evolution Delivering Next-Generation Connectivity
    Wireless Backhaul Evolution Delivering next-generation connectivity February 2021 Copyright © 2021 GSMA The GSMA represents the interests of mobile operators ABI Research provides strategic guidance to visionaries, worldwide, uniting more than 750 operators and nearly delivering actionable intelligence on the transformative 400 companies in the broader mobile ecosystem, including technologies that are dramatically reshaping industries, handset and device makers, software companies, equipment economies, and workforces across the world. ABI Research’s providers and internet companies, as well as organisations global team of analysts publish groundbreaking studies often in adjacent industry sectors. The GSMA also produces the years ahead of other technology advisory firms, empowering our industry-leading MWC events held annually in Barcelona, Los clients to stay ahead of their markets and their competitors. Angeles and Shanghai, as well as the Mobile 360 Series of For more information about ABI Research’s services, regional conferences. contact us at +1.516.624.2500 in the Americas, For more information, please visit the GSMA corporate +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific or website at www.gsma.com. visit www.abiresearch.com. Follow the GSMA on Twitter: @GSMA. Published February 2021 WIRELESS BACKHAUL EVOLUTION TABLE OF CONTENTS 1. EXECUTIVE SUMMARY ................................................................................................................................................................................5
    [Show full text]
  • ATHENA NGSO SATELLITE EXHIBIT 1 Technical Information To
    REDACTED FOR PUBLIC INSPECTION ATHENA NGSO SATELLITE EXHIBIT 1 Technical Information to Supplement Form 442 and Application Narrative A.1 Scope and Purpose This exhibit supplements FCC Form 442 and contains the technical information referenced in the application narrative that is required by Parts 5 and 25 of the Commission’s rules. A.2 Radio Frequency Plan (§25.114(c)(4)) The Athena satellite will have two E-band uplinks and two E-band downlinks. The downlink emissions are nominally centered at 72 GHz and 75 GHz and the uplink emissions are nominally centered at 82 GHz and 85 GHz1. The bandwidth for both the uplinks and downlinks is 2.1852 GHz. The TT&C uplink will be conducted at 2082 MHz with an occupied bandwidth of 1.5 MHz. The TT&C downlink will be conducted at 8496.25 MHz with an occupied bandwidth of 2.3 MHz. Table A.2-1 shows the frequency ranges to be used by the Athena satellite. 1 There is the possibility that mild tuning may be performed from the planned 72, 75, 82 and 85 GHz centered carriers (e.g., 74.8 and 82.2 GHz may be used for example to mitigate any potential, mild “inter-channel interference” due to spectral regrowth issues and limited transmit- to-receive isolation). In addition, a limited number of tests, estimated at one to two dozen, may be performed with continuous wave (CW), unmodulated carriers as far out as the band edges (i.e., 71-76 GHz and 81-82 GHz) to measure the atmospheric attenuation characteristics.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Monopatch Antenna
    MONOPATCH ANTENNA High efficiency, hemispherical antenna L3Harris Monopatch Antennas are designed with a unique, patent- BENEFITS pending architecture that provides greater geographical coverage The increased geographical coverage than is possible with common communications antennas. of the L3Harris Monopatch Antennas provides today’s warfighters with CLEAR LINE-OF-SIGHT SUCCESSFUL TRACK RECORD greater capabilities on the battlefield. COMMUNICATION The Monopatch Antenna has been success- > Extended range The unique design of the antenna creates fully deployed on light aircraft, helicopters > Passive operation a three-dimensional hemispherical pattern and ground vehicles with two of the most > Single radio frequency with full 360-degree azimuthal and commonly utilized commercially available (RF) interconnect 180-degree elevation coverage. MANET radios. > Lightweight The Monopatch Antenna is well suited for a Future developments for the antenna variety of missions and applications, espe- include additional L and S band versions, cially for use with relay or terminal nodes in MIMO and TSMx compatibility. mobile ad hoc network (MANET) systems. The Monopatch Antenna is currently avail- With full azimuthal and elevation coverage, able in two frequency ranges for use with the warfighter can maintain clear line-of- commercially available MANET radios: 1) sight communication in challenging terrain a dual frequency version in the L/S bands environments. In addition, loitering aircraft (NATO D/E) and 2) a wider S band version or unmanned aerial vehicles can operate at (NATO E band). greater standoff distances when deployed The antenna uses a common aluminum as air relay assets. housing and dome cover with two options for location of the TNC(F) connector.
    [Show full text]
  • Terahertz Band: the Last Piece of RF Spectrum Puzzle for Communication Systems Hadeel Elayan, Osama Amin, Basem Shihada, Raed M
    1 Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems Hadeel Elayan, Osama Amin, Basem Shihada, Raed M. Shubair, and Mohamed-Slim Alouini Abstract—Ultra-high bandwidth, negligible latency and seamless communication for devices and applications are envisioned as major milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless data traffic that we are witnessing recently has advocated the investigation of suitable regimes in the radio spectrum to satisfy users’ escalating requirements and allow the development and exploitation of both massive capacity and massive connectivity of heterogeneous infrastructures. To this end, the Terahertz (THz) frequency band (0.1-10 THz) has received noticeable attention in the research community as an ideal choice for scenarios involving high-speed transmission. Particularly, with the evolution of technologies and devices, advancements in THz communication is bridging the gap between the millimeter wave (mmW) and optical frequency ranges. Moreover, the IEEE 802.15 suite of standards has been issued to shape regulatory frameworks that will enable innovation and provide a complete solution that crosses between wired and wireless boundaries at 100 Gbps. Nonetheless, despite the expediting progress witnessed in THz Fig. 1. Wireless Roadmap Outlook up to the year 2035. wireless research, the THz band is still considered one of the least probed frequency bands. As such, in this work, we present an up-to-date review paper to analyze the fundamental elements I. INTRODUCTION and mechanisms associated with the THz system architecture. THz generation methods are first addressed by highlighting The race towards improving human life via developing the recent progress in the electronics, photonics as well as different technologies is witnessing a rapid pace in diverse plasmonics technology.
    [Show full text]
  • The Need for E-Band
    Sky Light Research Mobile World Congress 2013 Mobile Data Backhaul: The Need For E‐Band by Emmy Johnson We’ve been hearing about the bandwidth bottleneck for years, and as LTE and more broadband intensive applications are rolled out, rapidly increasing mobile data traffic will continue to threaten the stability of the network. This is especially a critical issue in urban centers where subscribers and mobile data traffic are the most concentrated. Thanks to the increasing popularity of smart phones from the likes of Apple and Samsung, mobile data is expected to continue to grow unabated the foreseeable future. Cisco’s most recent mobile data forecast predicted that mobile data will grow 13x over the next five years, from 0.9 Exabytes per month in 2012 to 11.2 Exabytes in 2017. Thus the question becomes, how do operators keep up with this level of exponential growth while keeping mobile services on par with customers’ expectations? There are several ways that operators are combatting this growth, through innovation in both the RAN and backhaul segments of the networks. The concept of small cells through heterogeneous networks is undoubtedly the most touted modernization, and although this is new, and very promising, there are still regulatory and cost details that need to be worked out to create cost-effective ROIs, especially in the outdoor model. In the interim, another, but not as sexy, solution exists in the backhaul - replacing legacy SDH microwave links with faster, packet based millimeterwave radio links. While it’s true that fiber is the preferred mode of backhauling traffic, it is not always available and cost effective.
    [Show full text]
  • UV-Vis) Absorption Vs
    授課教師: Professor 吳逸謨 教授 Warning: Copyrighted by textbook publisher. Do not use outside class. Principles of Instrumental Analysis Section III – Molecular Spectroscopy Chapter 13 Introduction to Ultraviolet-Visible Absorption Spectrometry + Chapter 14 Applications of Ultraviolet-Visible Absorption Spectrometry Reference: p. 423, Visible and UV spectra, in “Organic Chemistry” textbook – Solomons, 3rd Ed] 1 Molecular Spectroscopy Ultraviolet–visible (UV-Vis) absorption vs. fluorescence Spectroscopy Ultraviolet–visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral region. This means it uses light in the visible and adjacent (near-UV and near- infrared [NIR]) ranges. The absorption or reflectance in the visible range directly affects the perceived color of the chemicals involved. In this region of the electromagnetic spectrum, molecules undergo electronic transitions. Fluorescence spectroscopy is based on molecular emission: The “UV-Vis” technique is complementary to fluorescence spectroscopy, in that fluorescence deals with transitions from the excited state to the ground state, while UV-Vis absorption measures transitions from the ground state to the excited state.[1] 2 (2007/3) UV-Vis Spec 儀器 -實驗課 3 FIGURE 6-3 Regions of the electromagnetic spectrum. (For UV-Vis, λ = 100~500 nm, 500~1000 nm) 4 Ch6 An Introduction to Spectrometric Methods P.135 Apendix: Chap. 7E - Radiation Transducers p. 191 Read the texts in Chap. 7 7E-2 Photon Transducers for optical spectroscopy – Barrier-Layer Photovoltaic Cells – Vacuum Phototubes – Photomultiplier tubes (PMT), picture on p. 195 – Silicon Photodiodes (Fig. 7-32) [semiconductor type] [A silicon photodiode transducer consists of a reverse- biased p-n junction.] (The latter two types of transducers are more commonly used in UV-Vis.) – We will discuss more details later.
    [Show full text]
  • A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering
    applied sciences Article A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering Álvaro J. Pascual-Gracia 1, Muhsin Ali 2 , Guillermo Carpintero Del Barrio 2 , Fabien Ferrero 3, Laurent Brochier 3, Ronan Sauleau 1, Luis Enrique García-Muñoz 2,* and David González-Ovejero 1,* 1 Univ Rennes, CNRS, IETR (Institut d’Electronique et de Télécommunications de Rennes)–UMR 6164, F-35000 Rennes, France; [email protected] (Á.J.P.-G.); [email protected] (R.S.) 2 Universidad Carlos III de Madrid, 28911 Leganés, Spain; [email protected] (M.A.); [email protected] (G.C.D.B.) 3 Université Côte d’Azur, CNRS, LEAT (Laboratory of Electronics Antennas and Telecommunications)–UMR 7248, 06903 Sophia Antipolis, France; [email protected] (F.F.); [email protected] (L.B.) * Correspondence: [email protected] (L.E.G.-M.); [email protected] (D.G.-O.) Received: 30 March 2020; Accepted: 14 May 2020; Published: 18 May 2020 Abstract: This manuscript reports the first leaky-wave antenna (LWA) array excited by a photomixer as well as its potential application for alignment in wireless links. The designed array is manufactured in printed circuit board (PCB) technology, works at the E-band (from 75 to 85 GHz), and provides a directive beam of about 18 dBi with a frequency scanning span of 22◦. The antenna element consists of a microstrip line periodically loaded with stubs, and it has been designed employing a hybrid approach combining full-wave simulations and transmission line theory.
    [Show full text]
  • Color Centers in Additively Colored Csbr David W
    Physics and Astronomy Publications Physics and Astronomy 9-1962 Color Centers in Additively Colored CsBr David W. Lynch Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/physastro_pubs Part of the Atomic, Molecular and Optical Physics Commons, and the Optics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/physastro_pubs/8. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html. This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Color Centers in Additively Colored CsBr Abstract Color centers have been studied in CsBr single crystals additively colored with potassium or cesium. More than ten absorption bands were produced, most of which had previously been found in crystals colored by ionizing radiation. All bands produced by irradiation at or above liquid nitrogen temperature appear to arise from trapped electrons. The most prominent bands in the additively colored crystals are the F band at 642 mμ (liquid nitrogen temperature) and a band at 243 mμ which appears to be due to an impurity. Optically bleaching the F band at 200°K produces bands analogous to the M and R bands in other alkali halides while bleaching at liquid nitrogen temperature yields a broad band identified as the F′ band.
    [Show full text]
  • Far Infrared Vibration-Rotation-Tunneling Spectroscopy and Internal Dynamics of Methane-Water: a Prototypical Hydrophobic System L
    Far infrared vibration-rotation-tunneling spectroscopy and internal dynamics of methane-water: A prototypical hydrophobic system L. Dore,a) R. C. Cohen,b) C. A. Schmuttenmaer,c) K. L. Busarow, M. J. Elrod, J. G. Loeser, and R. J. Saykally Department of Chemistry, University of California, Berkeley, California 94720 (Received 26 March 1993; accepted 1 October 1993) Thirteen vibration-rotation-tunneling (VRT) bands of the CH4-H,O complex have been mea- sured in the range from 18 to 35.5 cm-’ using tunable far infrared laser spectroscopy. The ground state has an average center of mass separation of 3.70 A and a stretching force constant of 1.52 N/m, indicating that this complex is more strongly bound than Ar-H,O. The eigenvalue spectrum has been calculated with a variational procedure using a spherical expansion of a site-site ab i&o intermolecular potential energy surface [J. Chem. Phys. 93, 7808 ( 1991)]. The computed eigenvalues exhibit a similar pattern to the observed spectra but are not in quantita- tive agreement. These observations suggest that both monomers undergo nearly free internal rotation within the complex. I. INTRODUCTION order terms in the IPS, whereas they are usually neglected when the more typical low order terms are present. Water-hydrophobe interactions govern essential fea- This study and the accompanying microwave (MW) tures of many chemical and biochemical processes. Con- work’ constitute the first spectroscopic studies of this clus- siderable controversy exists in the literature concerning the ter; in fact it is only within the last 3 years that any high correct molecular description of the macroscopic phenom- resolution spectra for methane containing complexes have ena commonly associated with hydrophobic interactions been reported.
    [Show full text]
  • A Review of Advanced CMOS RF Power Amplifier Architecture Trends
    electronics Review A Review of Advanced CMOS RF Power Amplifier Architecture Trends for Low Power 5G Wireless Networks Aleksandr Vasjanov 1,2,* and Vaidotas Barzdenas 1,2 1 Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; [email protected] 2 Micro and Nanoelectronics Systems Design and Research Laboratory, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania * Correspondence: [email protected]; Tel.: +370-5-274-4769 Received: 15 September 2018; Accepted: 19 October 2018; Published: 23 October 2018 Abstract: The structure of the modern wireless network evolves rapidly and maturing 4G networks pave the way to next generation 5G communication. A tendency of shifting from traditional high-power tower-mounted base stations towards heterogeneous elements can be spotted, which is mainly caused by the increase of annual wireless users and devices connected to the network. The radio frequency (RF) power amplifier (PA) performance directly affects the efficiency of any transmitter, therefore, the emerging 5G cellular network requires new PA architectures with improved efficiency without sacrificing linearity. A review of the most promising reported RF PA architectures is presented in this article, emphasizing advantages, disadvantages and concluding with a quantitative comparison. The main scope of reviewed papers are PAs implemented in scalable complementary metal–oxide–semiconductor (CMOS) and SiGe BiCMOS processes with output powers suitable for portable wireless devices under 32 dBm (1.5 W) in the low- and high- 5G network frequency ranges. Keywords: power amplifier; architecture; radio frequency; wireless; network; 5G; trends 1. Introduction The first most primitive radio transmitter that was used for telegraphy was developed in the early 1890s by Guglielmo Marconi.
    [Show full text]