SCIENTIFIC PUBLICATIONS 43 Overview of the Articles 45

Total Page:16

File Type:pdf, Size:1020Kb

SCIENTIFIC PUBLICATIONS 43 Overview of the Articles 45 Head Office: Università degli Studi di Padova Department of Chemical Sciences ___________________________________________________________________ Ph.D. COURSE IN: Molecular Sciences CURRICULUM: Pharmaceutical Sciences SERIES XXX EXPLORING PROTEIN FLEXIBILITY DURING DOCKING TO INVESTIGATE LIGAND-TARGET RECOGNITION Coordinator: Ch. mo Prof. Leonard Jan Prins Supervisor : Ch. mo Prof. Stefano Moro Ph.D. student : Veronica Salmaso A mia mamma, mio papà e mia sorella ABSTRACT Abstract Ligand-protein binding models have experienced an evolution during time: from the lock-key model to induced-fit and conformational selection, the role of protein flexibility has become more and more relevant. Understanding binding mechanism is of great importance in drug-discovery, because it could help to rationalize the activity of known binders and to optimize them. The application of computational techniques to drug-discovery has been reported since the 1980s, with the advent computer-aided drug design. During the years several techniques have been developed to address the protein flexibility issue. The present work proposes a strategy to consider protein structure variability in molecular docking, through a ligand-based/structure-based integrated approach and through the development of a fully automatic cross- docking benchmark pipeline. Moreover, a full exploration of protein flexibility during the binding process is proposed through the Supervised Molecular Dynamics. The application of a tabu-like algorithm to classical molecular dynamics accelerates the binding process from the micro-millisecond to the nanosecond timescales. In the present work, an implementation of this algorithm has been performed to study peptide-protein recognition processes. 3 ABSTRACT Sommario I modelli di riconoscimento ligando-proteina si sono evoluti nel corso degli anni: dal modello chiave-serratura a quello di fit-indotto e selezione conformazionale, il ruolo della flessibilità proteica è diventato via via più importante. Capire il meccanismo di riconoscimento è di grande importanza nella progettazione di nuovi farmaci, perchè può dare la possibilità di razionalizzare l’attività di ligandi noti e di ottimizzarli. L’applicazione di tecniche computazionali alla scoperta di nuovi farmaci risale agli anni ‘80, con l’avvento del cosiddetto “Computer-Aided Drug Design”, o, tradotto, progettazione di farmaci aiutata dal computer. Negli anni sono state sviluppate molte tecniche che hanno affrontato il problema della flessibilità proteica. Questo lavoro propone una strategia per considerare la variabilità delle strutture proteiche nel docking, attraverso un approccio combinato ligand-based/structure-based e attraverso lo sviluppo di una procedura completamente automatizzata di docking incrociato. In aggiunta, viene proposta una piena esplorazione della flessibilità proteica durante il processo di legame attraverso la Dinamica Molecolare Supervisionata. L’applicazione di un algoritmo simil-tabu alla dinamica molecolare classica accelera il processo di riconoscimento dalla scala dei micro-millisecondi a quella dei nanosecondi. Nel presente lavoro è stata fatta un’implementazione di questa algoritmica per studiare il processo di riconoscimento peptide-proteina. 4 TABLE OF CONTENTS INTRODUCTION 7 1. Ligand-protein binding models 9 2. Computational methods to study ligand-protein binding 11 2.1 Molecular Docking 12 2.1.1 Scoring functions 12 2.1.2 Sampling 15 2.1.3 Semi-flexible docking 16 2.1.4 Flexible docking 19 2.2 Molecular Dynamics 21 2.2.1 Molecular Dynamics and exploration of the phase space 22 2.2.2 Advances in classical MD simulations 23 2.2.3 Enhanced sampling techniques 25 2.2.3.1 Collective Variables-free methods 25 Replica Exchange Molecular Dynamics (REMD) 25 Accelerated Molecular Dynamics (aMD) 26 2.2.3.2 Collective Variables-dependent methods 27 Steered Molecular Dynamics (SMD) 27 Random Acceleration Molecular Dynamics (RAMD) 27 Umbrella Sampling (US) 28 Metadynamics 28 5 TABLE OF CONTENTS References 30 AIM OF THE WORK 39 SCIENTIFIC PUBLICATIONS 43 Overview of the articles 45 DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015 47 Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2 73 Sulfonamido-derivatives of unsubstituted carbazole as BACE1 Inhibitors 95 Synthesis, structure-activity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents 105 The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles 141 Deciphering the Complexity of Ligand–Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations 175 Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach 205 New Trends in Inspecting GPCR-ligand Recognition Process: the Contribution of the Molecular Modeling Section (MMS) at the University of Padova 221 CONCLUSIONS 237 6 INTRODUCTION Introduction 7 INTRODUCTION 8 INTRODUCTION 1. Ligand-protein binding models No protein is an island, but exerts its function through recognition with other molecular partners. Ligand- protein interactions are involved in many biological processes, so understanding binding mechanism has been occupying scientists for a long time. Several theories have been developed during the years, with an increasing emphasis on the degree of flexibility of the ligand and protein counterparts. The first explanation of binding was provided by Emil Fischer in 1894 [1], who firstly proposed the “lock-key” model to explain enzyme specificity: in this model the ligand is natively complementary in shape to its protein binding site, which it recognizes and occupies rigidly as a key to its lock. However, this model could explain neither the behaviour of enzyme noncompetitive inhibition nor allosteric modulation. A modification of the “lock-key” theory was introduced by Koshland [2], who proposed the “induced-fit” theory starting from his observations on enzyme-substrate interactions: according to this binding model, the ligand is able to induce conformational changes to the protein, optimizing their interactions. Later works suggested that many conformational states of the same protein can exist before binding [3, 4], and a ligand can bind preferentially to one of these conformations; this laid the basis for the “conformational selection” model. Protein-ligand binding is better explained in terms of protein energy landscape, a concept originated to explain protein folding. The free energy landscape model describes the whole conformational space accessible to a system: it consists of the free energy of the system as a function of its conformations (i. e. coordinates of its atoms), resulting in a hypersurface [5]. At a given instant, a protein exists as a single conformational state, but it explores different conformations in time. The probability to occupy a particular region of the phase space is correlated with the energy of that state. In other terms, the energy landscape is conceived as the probability distributions of all conformational states of a protein. The shape of the surface is made of hills and valleys, which respectively stands for low and high probability states. The global minimum and local minima respectively represents native state and metastable states, which are separated by energy barriers (transition states). The folding energy surface answered to the Levinthal’s paradox [6], which wondered about how protein could fold rapidly given the vastness of the search space. The folding landscape has the shape of a funnel, with the bottom occupied by the folded state; the funnel means that multiple parallel pathways could lead from the multitude of unfolded states to the stable native state [7–11]. The shape of the funnel bottom represents the flexibility of the folded protein: if it is smooth, the protein is rigid, while if it is rugged, with numerous valleys separated by low energy barriers, the protein is flexible. On this basis, the binding process could be explained in terms of binding energy landscape [5, 12]. Binding can be interpreted as a folding without chain connectivity, and thus with a greater number of degrees of 9 INTRODUCTION freedom; this makes the binding energy landscape even more complicated than the folding one. Starting from the simpler example, where both the binding counterparts are rigid (i. e. smooth folding-funnel), recognition process can be conceived as the search for the global minimum of the free energy surface described by the three translational and rotational degrees of freedom of the ligand and the protein. If the interacting counterparts are both flexible (i. e. rugged folding-funnel bottom), they exist as an ensemble of different conformations, and each conformation of the ligand may in principle interact with each conformation of the protein, making the binding landscape really complex [13]. The binding event can stabilize one of the conformations of the protein, either the native or a different one; in the second case, a shift is induced in the equilibrium of protein populations [14]. “Population-shift” (“conformational selection”) differs from “induced-fit” in the chronological sequence of events that bring to binding, and have different ranges of applicability [15–17]; according to the first, the ligand picks one of the already available conformations of the
Recommended publications
  • Rdock Reference Guide Rdock Development Team August 27, 2015 Contents
    rDock Reference Guide rDock Development Team August 27, 2015 Contents 1 Preface 4 2 Acknowledgements 4 3 Introduction 4 4 Configuration 4 5 Cavity mapping 6 5.1 Two sphere method . 6 5.2 Reference ligand method . 8 6 Scoring function reference 11 6.1 Component Scoring Functions . 11 6.1.1 van der Waals potential . 11 6.1.2 Empirical attractive and repulsive polar potentials . 11 6.1.3 Solvation potential . 12 6.1.4 Dihedral potential . 13 6.2 Intermolecular scoring functions under evaluation . 13 6.2.1 Training sets . 13 6.2.2 Scoring Functions Design . 13 6.2.3 Scoring Functions Validation . 14 6.3 Code Implementation . 15 7 Docking protocol 17 7.1 Protocol Summary . 17 7.1.1 Pose Generation . 17 7.1.2 Genetic Algorithm . 17 7.1.3 Monte Carlo . 17 7.1.4 Simplex . 18 7.2 Code Implementation . 18 7.3 Standard rDock docking protocol (dock.prm) . 18 8 System definition file reference 22 8.1 Receptor definition . 22 8.2 Ligand definition . 23 8.3 Solvent definition . 24 8.4 Cavity mapping . 25 8.5 Cavity restraint . 27 8.6 Pharmacophore restraints . 27 8.7 NMR restraints . 28 8.8 Example system definition files . 28 9 Molecular files and atoms typing 30 9.1 Atomic properties. 30 9.2 Difference between formal charge and distributed formal charge . 30 9.3 Parsing a MOL2 file . 31 9.4 Parsing an SD file . 31 9.5 Assigning distributed formal charges to the receptor . 31 10 rDock file formats 32 10.1 .prm file format .
    [Show full text]
  • Evaluation of Protein-Ligand Docking Methods on Peptide-Ligand
    bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides Sandeep Singh1#, Hemant Kumar Srivastava1#, Gaurav Kishor1#, Harinder Singh1, Piyush Agrawal1 and G.P.S. Raghava1,2* 1CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India. 2Indraprastha Institute of Information Technology, Okhla Phase III, Delhi India #Authors Contributed Equally Emails of Authors: SS: [email protected] HKS: [email protected] GK: [email protected] HS: [email protected] PA: [email protected] * Corresponding author Professor of Center for Computation Biology, Indraprastha Institute of Information Technology (IIIT Delhi), Okhla Phase III, New Delhi-110020, India Phone: +91-172-26907444 Fax: +91-172-26907410 E-mail: [email protected] Running Title: Benchmarking of docking methods 1 bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In the past, many benchmarking studies have been performed on protein-protein and protein-ligand docking however there is no study on peptide-ligand docking.
    [Show full text]
  • Ftitr Tutirgr Held Thuraday
    San Jon, Cal. fhit 31nsr Pasffie Game Subs Rate, $1.00 Rally to be Per Quarter ftitr Tutirgr Held Thuraday 2 2 X! I . J1,1-1 11.1FURNiA, WED \ I --1).\1., (2LI OBER II, 19i; r_12 Attractive Program for NOTICE Concert Series Tickets Placed on In order to choose a yell leader Pre-game Rally Planned; for the coming year, an election Sale Today, Committee Announces; will be held in front of the Morris Dailey auditorium all dily today, Parade Will Climax Fun Wednesday, October II. Presi- Naom Blinder, Violinist, Here Nov. 7 dent Covello asks every tudent Wildest Event of Evening Will to cooperate by voting. The Car.- Probably Be Parade Thru Leads Rally Famous Violinist To Appear Concert Series Tickets Sale didate re Howard Burns and Enthusiasm Downtown San Jose 7 (,hairman Shown Jim Hamilton. At S. J. State Nov. 'psis By Students Will In Music Program Dud DeGroot and Team - - -- Speeches During Alice Dixon Heads Conimittee Give \ the initial concert in the IO33- +4 Rally In Auditorium E. Higgins Of Music Department _ _ Plans rie, San Jose State music 'rivers will Concert &ries iniee the opportunity to bear Naom di,. ,rantest pre -game rally in the Radio Pep Rally Blinder. famous violinist, N9V. 7. ot San Jose State will be held in The tickets tor 'la Blinder is now concert master of th, series go on sal,- today '. Morris Dailey auditorium thit ir. qa. -peed san Francisco Symphony orchestra, and The!. may also be ! mening at 7:30, according to At Station KQW porch:, .
    [Show full text]
  • What Is Discovery Studio?
    Discovery Studio 2.0 Accelrys Life Science Tool 林進中 分子視算 What is Discovery Studio? • Discovery Studio is a complete modelling and simulations environment for Life Science researchers – Interactive, visual and integrated software – Consistent, contemporary user interface for added ease-of-use – Tools for visualisation, protein modeling, simulations, docking, pharmacophore analysis, QSAR and library design – Access computational servers and tools, share data, monitor jobs, and prepare and communicate their project progress – Windows and Linux clients and servers Accelrys Discovery Studio Application Discovery Studio Pipeline ISV Materials Discovery Accord WeWebbPPortort Pipeline ISV Materials Discovery Accord (web Studio Studio (web PilotPilot ClientClient Studio Studio ClientsClients access) (Pro or Lite ) (e.g., Client Client access) (Pro or Lite ) (e.g., Client Client Spotfire) Spotfire) Client Integration Layer SS c c i iT T e e g g i ic c P P l la a t t f f o o r r m m Tool Integration Layer Data Access Layer Cmd-Line Isentris Chemistry Biology Materials Accord Accord IDBS Oracle ISIS Reporting Statistics ISV Tools Databases Pipeline Pilot - Data Processing and Integration • Integration of data from multiple disparate data sources • Integration of disparate applications – Third party vendors and in- house developed codes under the same environment Pipeline Pilot - Data Processing and Integration • Automated execution of routine processes • Standardised data management • Capture of workflows and deployment of best practice Interoperability
    [Show full text]
  • Getting Started with Rdock Dr
    Getting Started with rDock Dr. David Morley Getting Started with rDock Dr. David Morley Copyright © 2006 Vernalis Table of Contents Overview ............................................................................................................ vi 1. Prerequisites ..................................................................................................... 1 2. Unpacking the distribution files ............................................................................ 2 3. Building rDock .................................................................................................. 4 4. Running a short validation experiment ................................................................... 6 iv List of Tables 1.1. Required packages for building and running rDock ................................................ 1 2.1. rDock distribution files ..................................................................................... 2 3.1. Standard tmake build targets provided ............................................................... 4 4.1. Complexes included in the cpu_benchmark experiment ...................................... 6 4.2. rDock score components output as SD data fields .................................................. 7 v Overview rDock is a high-throughput molecular docking platform for protein and RNA targets. Under devel- opment at Vernalis (formerly RiboTargets) since 1998, the software (formerly known as RiboDock1), scoring functions, and search protocols have been refined continuously to meet the de-
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]
  • Protein-Protein Docking and Molecular Dynamics Simulations Elucidated Binding Modes of FUBI-P62 UBA Complex
    Chongruchiroj et al., 2015 Original Article TJPS The Thai Journal of Pharmaceutical Sciences 39 (4), October - December 2015: 171-179 Protein-Protein Docking and Molecular Dynamics Simulations Elucidated Binding Modes of FUBI-p62 UBA Complex Sumet Chongruchiroj1, Panida Kongsawadworakul 2, Veena Nukoolkarn3, Montree Jaturanpinyo4, 5 6 1,* Wichit Nosoong-noen , Jiraporn Chingunpitak , Jaturong Pratuangdejkul 1Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 2Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand 3Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 4Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 5Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 6School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand Abstract The cytosolic Fau protein, a precursor of antimicrobial peptide, composes of ubiquitin-like domain FUBI at N- terminus and ribosomal protein rpS30 at C-terminus. Fau has been important in killing of intracellular Mycobacterium tuberculosis infection through autophagy-targeting p62 mechanism. The p62 adapter protein delivered microbicidal protein rpS30 to autolysosome where it was converted into antimicrobial peptides capable of killing M. tuberculosis in mycobacterial phagosome. Recently, direct interaction of FUBI and p62 UBA domain has been established using immunoprecipitation. In the absence of experimental complex structure of FUBI and p62 UBA, understanding of binding interaction could be extensively characterized using molecular modeling techniques. The aim of this study was to elucidate the binding mode of interaction between FUBI and p62 UBA. Based on the conserved hydrophobic binding regions of FUBI and p62 UBA domain, 334 docked poses were predicted using the ZDOCK and RDOCK protein-protein docking algorithms.
    [Show full text]
  • Molecular Modeling in Drug Design
    molecules Molecular Modeling in Drug Design Edited by Rebecca C. Wade and Outi M. H. Salo-Ahen Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Molecular Modeling in Drug Design Molecular Modeling in Drug Design Special Issue Editors Rebecca C. Wade Outi M. H. Salo-Ahen MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rebecca C. Wade Outi M. H. Salo-Ahen HITS gGmbH/Heidelberg University Abo˚ Akademi University Germany Finland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Molecules (ISSN 1420-3049) from 2018 to 2019 (available at: https://www.mdpi.com/journal/molecules/ special issues/MMDD) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-614-1 (Pbk) ISBN 978-3-03897-615-8 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Molecular Modeling in Drug Design” ..........................
    [Show full text]
  • Computational Modeling of Rna-Small Molecule and Rna-Protein Interactions
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2015 COMPUTATIONAL MODELING OF RNA-SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS Lu Chen Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Biophysics Commons, Medicinal-Pharmaceutical Chemistry Commons, Pharmaceutics and Drug Design Commons, Statistical Models Commons, and the Structural Biology Commons Recommended Citation Chen, Lu, "COMPUTATIONAL MODELING OF RNA-SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 626. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/626 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Title page COMPUTATIONAL MODELING OF RNA- SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS A DISSERTATION Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas M.D. Anderson Cancer Center Graduate School of Biomedical Sciences In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Lu Chen, B.S.
    [Show full text]
  • A Review on Applications of Molecular Docking in Drug Designing
    Indo American Journal of Pharmaceutical Research, 2017 ISSN NO: 2231-6876 A REVIEW ON APPLICATIONS OF MOLECULAR DOCKING IN DRUG DESIGNING 1* 2 1 M. Venkata Saileela , Dr. M. Venkateswar Rao , Venkata Rao Vutla 1Department of Pharmaceutical Analysis, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur. 2 Department of Pharmacology, Guntur Medical College, Guntur. ARTICLE INFO ABSTRACT Article history Molecular docking is a computational modelling of structure of complexes formed by two or Received 11/04/2017 more interacting molecules. In the field of molecular modelling, docking is a method which Available online predicts the preferred orientation of one molecule to a second when bound to each other to 30/04/2017 form a stable complex. Knowledge of the preferred orientation in turn may be used to predict the strength of association or binding affinity between two molecules using scoring functions. Keywords Molecular docking is one of the most frequently used in structure based drug design due to its Molecular Modelling, ability to predict the binding-conformation of small molecules ligands to the appropriate Scoring Functions. target binding site. Corresponding author M. Venkata Saileela Department Pharmaceutical Analysis, Chalapathi institute of Pharmaceutical Sciences, Lam, Guntur [email protected] Please cite this article in press as M. Venkata Saileela et al. A Review on Applications of Molecular Docking in Drug Designing. Indo American Journal of Pharmaceutical Research.2017:7(04). C opy right © 2017 This is an Open Access article distributed under the terms of the Indo American journal of Pharmaceutical 8391 Research, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Intuitive, Reproducible High-Throughput Molecular Dynamics in Galaxy: a Tutorial
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084780; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Intuitive, reproducible high-throughput molecular dynamics in Galaxy: a tutorial Simon A. Bray1, Tharindu Senapathi2, Christopher B. Barnett2, , and Björn A. Grüning1, 1Department of Computer Science, University of Freiburg, Georges-Kohler-Allee 106, Freiburg, Germany 2Scientific Computing Research Unit, University of Cape Town, 7700 Cape Town, South Africa This paper is a tutorial developed for the data analysis platform references for further reading. It presumes that the user has Galaxy. The purpose of Galaxy is to make high-throughput a basic understanding of the Galaxy platform. The aim is computational data analysis, such as molecular dynamics, a to guide the user through the various steps of a molecular dy- structured, reproducible and transparent process. In this tu- namics study, from accessing publicly available crystal struc- torial we focus on 3 questions: How are protein-ligand systems tures, to performing MD simulation (leveraging the popular parameterized for molecular dynamics simulation? What kind GROMACS (6, 7) engine), to analysis of the results. of analysis can be carried out on molecular trajectories? How can high-throughput MD be used to study multiple ligands? Af- The entire analysis described in this article can be con- ter finishing you will have learned about force-fields and MD pa- ducted efficiently on any Galaxy server which has the rameterization, how to conduct MD simulation and analysis for needed tools.
    [Show full text]
  • A Multidisciplinary Approach to Coronavirus Disease (COVID-19)
    molecules Review A Multidisciplinary Approach to Coronavirus Disease (COVID-19) Aliye Gediz Erturk 1, Arzu Sahin 2, Ebru Bati Ay 3, Emel Pelit 4, Emine Bagdatli 1,*, Irem Kulu 5, Melek Gul 6,*, Seda Mesci 7, Serpil Eryilmaz 8 , Sirin Oba Ilter 9 and Tuba Yildirim 10 1 Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey; [email protected] 2 Department of Basic Medical Sciences—Physiology, Faculty of Medicine, U¸sakUniversity, 1-EylulU¸sak64000, Turkey; [email protected] 3 Department of Plant and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey; [email protected] 4 Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli 39000, Turkey; [email protected] 5 Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli 41400, Turkey; [email protected] 6 Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey 7 Scientific Technical Application and Research Center, Hitit University, Çorum 19030, Turkey; [email protected] 8 Department of Physics, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey; [email protected] 9 Food Processing Department, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey; [email protected] Citation: Gediz Erturk, A.; Sahin, A.; 10 Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey; Bati Ay, E.; Pelit, E.; Bagdatli, E.; Kulu, [email protected] I.; Gul, M.; Mesci, S.; Eryilmaz, S.; * Correspondence: [email protected] (E.B.); [email protected] (M.G.); Tel.: +90-358-2421613 (M.G.) Oba Ilter, S.; et al.
    [Show full text]