A Review on Applications of Molecular Docking in Drug Designing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rdock Reference Guide Rdock Development Team August 27, 2015 Contents
rDock Reference Guide rDock Development Team August 27, 2015 Contents 1 Preface 4 2 Acknowledgements 4 3 Introduction 4 4 Configuration 4 5 Cavity mapping 6 5.1 Two sphere method . 6 5.2 Reference ligand method . 8 6 Scoring function reference 11 6.1 Component Scoring Functions . 11 6.1.1 van der Waals potential . 11 6.1.2 Empirical attractive and repulsive polar potentials . 11 6.1.3 Solvation potential . 12 6.1.4 Dihedral potential . 13 6.2 Intermolecular scoring functions under evaluation . 13 6.2.1 Training sets . 13 6.2.2 Scoring Functions Design . 13 6.2.3 Scoring Functions Validation . 14 6.3 Code Implementation . 15 7 Docking protocol 17 7.1 Protocol Summary . 17 7.1.1 Pose Generation . 17 7.1.2 Genetic Algorithm . 17 7.1.3 Monte Carlo . 17 7.1.4 Simplex . 18 7.2 Code Implementation . 18 7.3 Standard rDock docking protocol (dock.prm) . 18 8 System definition file reference 22 8.1 Receptor definition . 22 8.2 Ligand definition . 23 8.3 Solvent definition . 24 8.4 Cavity mapping . 25 8.5 Cavity restraint . 27 8.6 Pharmacophore restraints . 27 8.7 NMR restraints . 28 8.8 Example system definition files . 28 9 Molecular files and atoms typing 30 9.1 Atomic properties. 30 9.2 Difference between formal charge and distributed formal charge . 30 9.3 Parsing a MOL2 file . 31 9.4 Parsing an SD file . 31 9.5 Assigning distributed formal charges to the receptor . 31 10 rDock file formats 32 10.1 .prm file format . -
Binding Kinetics Calculations of the Inclusion of Some Benzoic Acid Derivatives and Paracetamol in Β CD Djamel Khatmi, Belgacem Bezzina, Stéphane Humbel
Binding kinetics calculations of the inclusion of some benzoic acid derivatives and paracetamol in β CD Djamel Khatmi, Belgacem Bezzina, Stéphane Humbel To cite this version: Djamel Khatmi, Belgacem Bezzina, Stéphane Humbel. Binding kinetics calculations of the inclusion of some benzoic acid derivatives and paracetamol in β CD. Journal of Inclusion Phenomena and Macrocyclic Chemistry, Springer Verlag, 2020, 96 (3-4), pp.373-379. 10.1007/s10847-020-00976-1. hal-02922032 HAL Id: hal-02922032 https://hal.archives-ouvertes.fr/hal-02922032 Submitted on 25 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Binding kinetics calculations of the inclusion of some benzoic acid derivatives and paracetamol in β CD. Djamel Eddine Khatmi,a, b* Belgacem Bezzina, b, c Stéphane Humbel,a a- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France b- Laboratory of Computational Chemistry and Nanostructures, University of 08 May 45 Guelma, Algeria c- Research Center in Industrial Technology (CRTI), P.O.BOX 64, Chéraga 16014, Algiers, Algeria *corresponding author: [email protected] KEYWORDS: Cyclodextrin. Inclusion complexes. Molecular dynamic simulation. Binding Kinetics. Benzoic acid derivatives. Paracetamol. ABSTRACT This theoretical study is designed to identify the main driving forces of the inclusion of some benzoic acid (BA) derivatives as well as Paracetamol (ParCM) with β-cyclodextrin (β-CD) by computing the kinetics of binding. -
Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi -
Evaluation of Protein-Ligand Docking Methods on Peptide-Ligand
bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides Sandeep Singh1#, Hemant Kumar Srivastava1#, Gaurav Kishor1#, Harinder Singh1, Piyush Agrawal1 and G.P.S. Raghava1,2* 1CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India. 2Indraprastha Institute of Information Technology, Okhla Phase III, Delhi India #Authors Contributed Equally Emails of Authors: SS: [email protected] HKS: [email protected] GK: [email protected] HS: [email protected] PA: [email protected] * Corresponding author Professor of Center for Computation Biology, Indraprastha Institute of Information Technology (IIIT Delhi), Okhla Phase III, New Delhi-110020, India Phone: +91-172-26907444 Fax: +91-172-26907410 E-mail: [email protected] Running Title: Benchmarking of docking methods 1 bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In the past, many benchmarking studies have been performed on protein-protein and protein-ligand docking however there is no study on peptide-ligand docking. -
Preorganization of Molecular Binding Sites in Designed Diiron Proteins
Preorganization of molecular binding sites in designed diiron proteins Ornella Maglio*, Flavia Nastri*, Vincenzo Pavone*, Angela Lombardi*†, and William F. DeGrado†‡ *Department of Chemistry, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, I-80126 Napoli, Italy; and ‡Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059 Contributed by William F. DeGrado, February 6, 2003 De novo protein design provides an attractive approach to criti- (Dueferri 1) (7–10). This protein is a small, 48-residue ho- cally test the features that are required for metalloprotein struc- modimeric model for the family of O2-using diiron proteins ture and function. Previously we designed and crystallographi- that includes methane monooxygenase and the radical-form- cally characterized an idealized dimeric model for the four-helix ing R2 subunit of the ribonucleotide reductase from Esche- bundle class of diiron and dimanganese proteins [Dueferri 1 richia coli (11–14). The DF1 dimer comprises two nonco- (DF1)]. Although the protein bound metal ions in the expected valently associated helix–loop–helix motifs that bind the manner, access to its active site was blocked by large bulky hy- diiron cofactor near the center of the protein (8). The crystal- drophobic residues. Subsequently, a substrate-access channel lographic structures of di-Zn(II) (8) and di-Mn(II) DF1 (un- was introduced proximal to the metal-binding center, resulting published results) are very similar to the di-Mn(II) and di- in a protein with properties more closely resembling those of Fe(II) forms of other natural diiron proteins (15–18). -
Ftitr Tutirgr Held Thuraday
San Jon, Cal. fhit 31nsr Pasffie Game Subs Rate, $1.00 Rally to be Per Quarter ftitr Tutirgr Held Thuraday 2 2 X! I . J1,1-1 11.1FURNiA, WED \ I --1).\1., (2LI OBER II, 19i; r_12 Attractive Program for NOTICE Concert Series Tickets Placed on In order to choose a yell leader Pre-game Rally Planned; for the coming year, an election Sale Today, Committee Announces; will be held in front of the Morris Dailey auditorium all dily today, Parade Will Climax Fun Wednesday, October II. Presi- Naom Blinder, Violinist, Here Nov. 7 dent Covello asks every tudent Wildest Event of Evening Will to cooperate by voting. The Car.- Probably Be Parade Thru Leads Rally Famous Violinist To Appear Concert Series Tickets Sale didate re Howard Burns and Enthusiasm Downtown San Jose 7 (,hairman Shown Jim Hamilton. At S. J. State Nov. 'psis By Students Will In Music Program Dud DeGroot and Team - - -- Speeches During Alice Dixon Heads Conimittee Give \ the initial concert in the IO33- +4 Rally In Auditorium E. Higgins Of Music Department _ _ Plans rie, San Jose State music 'rivers will Concert &ries iniee the opportunity to bear Naom di,. ,rantest pre -game rally in the Radio Pep Rally Blinder. famous violinist, N9V. 7. ot San Jose State will be held in The tickets tor 'la Blinder is now concert master of th, series go on sal,- today '. Morris Dailey auditorium thit ir. qa. -peed san Francisco Symphony orchestra, and The!. may also be ! mening at 7:30, according to At Station KQW porch:, . -
What Is Discovery Studio?
Discovery Studio 2.0 Accelrys Life Science Tool 林進中 分子視算 What is Discovery Studio? • Discovery Studio is a complete modelling and simulations environment for Life Science researchers – Interactive, visual and integrated software – Consistent, contemporary user interface for added ease-of-use – Tools for visualisation, protein modeling, simulations, docking, pharmacophore analysis, QSAR and library design – Access computational servers and tools, share data, monitor jobs, and prepare and communicate their project progress – Windows and Linux clients and servers Accelrys Discovery Studio Application Discovery Studio Pipeline ISV Materials Discovery Accord WeWebbPPortort Pipeline ISV Materials Discovery Accord (web Studio Studio (web PilotPilot ClientClient Studio Studio ClientsClients access) (Pro or Lite ) (e.g., Client Client access) (Pro or Lite ) (e.g., Client Client Spotfire) Spotfire) Client Integration Layer SS c c i iT T e e g g i ic c P P l la a t t f f o o r r m m Tool Integration Layer Data Access Layer Cmd-Line Isentris Chemistry Biology Materials Accord Accord IDBS Oracle ISIS Reporting Statistics ISV Tools Databases Pipeline Pilot - Data Processing and Integration • Integration of data from multiple disparate data sources • Integration of disparate applications – Third party vendors and in- house developed codes under the same environment Pipeline Pilot - Data Processing and Integration • Automated execution of routine processes • Standardised data management • Capture of workflows and deployment of best practice Interoperability -
Educational Priorities Panel Capital Promises
EDUCATIONAL PRIORITIES PANEL CAPITAL PROMISES: WHY NYC CHILDREN DON’T HAVE THE SCHOOL BUILDINGS THEY NEED July 2007 This report was made possible by grants to the Educational Priorities Panel from The New York Community Trust and The Scherman Foundation and additional funding from the Schott Foundation for Public Education. Printing assistance for review copies of this report was provided by the office of NYC Councilmember Robert Jackson. Author: Noreen Connell SUMMARY AND INTRODUCTION The objective of this report is to answer the big questions about whether in the foreseeable future most school overcrowding in New York City will be eliminated and all city children will have class sizes and access to school libraries, science labs, art/music rooms, and physical fitness activities that are the norm for students in the rest of the state. The short answer is maybe, but not within the next few years. The Educational Priorities Panel (EPP) tackled these questions in the wake of a state budget agreement in the spring of 2006 to provide more school facilities funding to New York City. Instead of adopting a more ambitious BRICKS facilities plan fashioned by plaintiffs in a 14- year Campaign for Fiscal Equity (CFE) lawsuit, the NYS Legislature and the Governor created an EXCEL plan. This plan essentially met the Mayor’s demand that the financing of the city’s $13.1 billion Children First 2005-09 capital plan be restructured to ensure that at least half the funding be provided by the state. If the BRICKS plan had prevailed, the state would have provided the city school system with an additional $9.2 billion above the state’s $6.5 billion commitment for half of the city’s capital plan funding. -
Antibiotic Resistance: Bioinformatics-Based Understanding As a Functional Strategy for Drug Cite This: RSC Adv., 2020, 10, 18451 Design
RSC Advances View Article Online REVIEW View Journal | View Issue Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug Cite this: RSC Adv., 2020, 10, 18451 design Umar Ndagi, *a Abubakar A. Falaki,b Maryam Abdullahi,c Monsurat M. Lawald and Mahmoud E. Soliman e The use of antibiotics to manage infectious diseases dates back to ancient civilization, but the lack of a clear distinction between the therapeutic and toxic dose has been a major challenge. This precipitates the notion that antibiotic resistance was from time immemorial, principally because of a lack of adequate knowledge of therapeutic doses and continuous exposure of these bacteria to suboptimal plasma concentration of antibiotics. With the discovery of penicillin by Alexander Fleming in 1924, a milestone in bacterial infections' treatment was achieved. This forms the foundation for the modern era of antibiotic drugs. Antibiotics such as penicillins, cephalosporins, quinolones, tetracycline, macrolides, sulphonamides, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. aminoglycosides and glycopeptides are the mainstay in managing severe bacterial infections, but resistant strains of bacteria have emerged and hampered the progress of research in this field. Recently, new approaches to research involving bacteria resistance to antibiotics have appeared; these involve combining the molecular understanding of bacteria systems with the knowledge of bioinformatics. Consequently, many molecules have been developed to curb resistance associated with different bacterial infections. However, because of increased emphasis on the clinical relevance of antibiotics, the Received 15th February 2020 synergy between in silico study and in vivo study is well cemented and this facilitates the discovery of Accepted 1st May 2020 potent antibiotics. -
Getting Started with Rdock Dr
Getting Started with rDock Dr. David Morley Getting Started with rDock Dr. David Morley Copyright © 2006 Vernalis Table of Contents Overview ............................................................................................................ vi 1. Prerequisites ..................................................................................................... 1 2. Unpacking the distribution files ............................................................................ 2 3. Building rDock .................................................................................................. 4 4. Running a short validation experiment ................................................................... 6 iv List of Tables 1.1. Required packages for building and running rDock ................................................ 1 2.1. rDock distribution files ..................................................................................... 2 3.1. Standard tmake build targets provided ............................................................... 4 4.1. Complexes included in the cpu_benchmark experiment ...................................... 6 4.2. rDock score components output as SD data fields .................................................. 7 v Overview rDock is a high-throughput molecular docking platform for protein and RNA targets. Under devel- opment at Vernalis (formerly RiboTargets) since 1998, the software (formerly known as RiboDock1), scoring functions, and search protocols have been refined continuously to meet the de- -
Improving Protein-Small Molecule Structure Predictions with Ensemble Methods, Or
Improving Protein-Small Molecule Structure Predictions with Ensemble Methods, or Using Computers to Guess How Tiny Things Fit Together By Darwin Yu Fu Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August 31, 2018 Nashville, Tennessee Approved: Professor Jens Meiler Professor Terry Lybrand Professor Andes Hess Professor Tony Capra DEDICATIONS I would like to dedicate this work to my family for providing me with this opportunity to delve into a fascinating world of science. To my parents, Cary and Yao, without whose sacrifices and risk-taking I would not be here in this country. To my brother, Daniel, for challenging me and giving me the chance to pass on the lessons I have learned. The three of you have been incredible supportive and keep me reminded of where I came from and who I am. ii ACKNOWLEDGMENTS Research is a team effort both inside and outside of the lab. Though my name is on the front page of this dissertation, the research presented here would not be possible without the help of a significant number of people. To start, I would like to thank my advisor, Dr. Jens Meiler, for his mentorship over the course of my graduate career. I remember the first day in lab when he offered me the choice of working on ”small molecule docking” or ”protein secondary structure modeling”, and I just picked one and ran with it for six years. I admire his ability to make deep insightful comments on a project while maintaining the overall wide picture of research goals. -
Hypotheses for Drug Repurposing and Understanding Side-Effects Matthieu Chartier1, Louis-Philippe Morency1, María Inés Zylber1,2 and Rafael J
Chartier et al. BMC Pharmacology and Toxicology (2017) 18:18 DOI 10.1186/s40360-017-0128-7 RESEARCH ARTICLE Open Access Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects Matthieu Chartier1, Louis-Philippe Morency1, María Inés Zylber1,2 and Rafael J. Najmanovich1,2* Abstract Background: Promiscuity in molecular interactions between small-molecules, including drugs, and proteins is widespread. Such unintended interactions can be exploited to suggest drug repurposing possibilities as well as to identify potential molecular mechanisms responsible for observed side-effects. Methods: We perform a large-scale analysis to detect binding-site molecular interaction field similarities between the binding-sites of the primary target of 400 drugs against a dataset of 14082 cavities within 7895 different proteins representing a non-redundant dataset of all proteins with known structure. Statistically-significant cases with high levels of similarities represent potential cases where the drugs that bind the original target may in principle bind the suggested off-target. Such cases are further analysed with docking simulations to verify if indeed thedrugcould,inprinciple,bindtheoff-target.Diversesources of data are integrated to associated potential cross-reactivity targets with side-effects. Results: We observe that promiscuous binding-sites tend to display higher levels of hydrophobic and aromatic similarities. Focusing on the most statistically significant similarities (Z-score ≥ 3.0) and corroborating docking results (RMSD < 2.0 Å), we find 2923 cases involving 140 unique drugs and 1216 unique potential cross-reactivity protein targets. We highlight a few cases with a potential for drug repurposing (acetazolamide as a chorismate pyruvate lyase inhibitor, raloxifene as a bacterial quorum sensing inhibitor) as well as to explain the side-effects of zanamivir and captopril.