Antibiotic Resistance: Bioinformatics-Based Understanding As a Functional Strategy for Drug Cite This: RSC Adv., 2020, 10, 18451 Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Binding Kinetics Calculations of the Inclusion of Some Benzoic Acid Derivatives and Paracetamol in Β CD Djamel Khatmi, Belgacem Bezzina, Stéphane Humbel
Binding kinetics calculations of the inclusion of some benzoic acid derivatives and paracetamol in β CD Djamel Khatmi, Belgacem Bezzina, Stéphane Humbel To cite this version: Djamel Khatmi, Belgacem Bezzina, Stéphane Humbel. Binding kinetics calculations of the inclusion of some benzoic acid derivatives and paracetamol in β CD. Journal of Inclusion Phenomena and Macrocyclic Chemistry, Springer Verlag, 2020, 96 (3-4), pp.373-379. 10.1007/s10847-020-00976-1. hal-02922032 HAL Id: hal-02922032 https://hal.archives-ouvertes.fr/hal-02922032 Submitted on 25 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Binding kinetics calculations of the inclusion of some benzoic acid derivatives and paracetamol in β CD. Djamel Eddine Khatmi,a, b* Belgacem Bezzina, b, c Stéphane Humbel,a a- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France b- Laboratory of Computational Chemistry and Nanostructures, University of 08 May 45 Guelma, Algeria c- Research Center in Industrial Technology (CRTI), P.O.BOX 64, Chéraga 16014, Algiers, Algeria *corresponding author: [email protected] KEYWORDS: Cyclodextrin. Inclusion complexes. Molecular dynamic simulation. Binding Kinetics. Benzoic acid derivatives. Paracetamol. ABSTRACT This theoretical study is designed to identify the main driving forces of the inclusion of some benzoic acid (BA) derivatives as well as Paracetamol (ParCM) with β-cyclodextrin (β-CD) by computing the kinetics of binding. -
28912 Oxoid FDA Cartridge Tables:1
* Adapted in part from CLSI document M100-S23 (M02-A11) : “Disc diffusion supplemental tablesʼʼ Performance standards for antimicrobial susceptibility testing. The complete standard may be obtained from the Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, PA 19807. Test Cultures (zone diameters in mm) Antimicrobial Agent Disc Code Potency Resistant Intermediate Susceptible Amikacin AK 30 μg EnterobacteriaceaeK, P. aeruginosa, Acinetobacter spp., and Staphylococcus spp. ≤14 15-16 ≥17 Amoxycillin - Clavulanic Acid AMC 20/10 μg EnterobacteriaceaeE ≤13 14-17 ≥18 Staphylococcus spp.A,Q ≤19 — ≥20 Haemophilus spp.A,Y ≤19 — ≥20 AmpicillinC,n AMP 10 μg EnterobacteriaceaeE and Vibrio choleraef ≤13 14-16 ≥17 Staphylococcus spp.A,Q ≤28 — ≥29 Enterococcus spp.A,V,W,k,m ≤16 — ≥17 Haemophilus spp.Y ≤18 19-21 ≥22 Streptococcus spp. ß-Hemolytic GroupA,d — — ≥24 Ampicillin – Sulbactam SAM 10/10 μg EnterobacteriaceaeE, Acinetobacter spp., and Staphylococcus spp. ≤11 12-14 ≥15 Haemophilus spp.A,Y ≤19 — ≥20 Azithromycin AZM 15 μg Staphylococcus spp., Streptococcus spp Viridans Groupn, ß-Hemolytic Group, and S. pneumoniae) ≤13 14-17 ≥18 Neisseria meningitidisA,i — — ≥20 Haemophilus spp.A — — ≥12 Aztreonam ATM 30 μg EnterobacteriaceaeE ≤17 18-20 ≤21 P. aeruginosa ≤15 16-21 ≥22 Haemophilus spp.A — — ≥26 CAR 100 μg Carbenicillin Enterobacteriaceae ≤19 20-22 ≥23 Pseudomonas aeruginosaP ≤13 14-16 ≥17 CEC 30 μg Cefaclor Enterobacteriaceae and Staphylococcus spp. ≤14 15-17 ≥18 Haemophilus spp.Y ≤16 17-19 ≥20 MA 30 μg Cefamandole EnterobacteriaceaeD,E and Staphylococcus spp. ≤14 15-17 ≥18 CefazolinG KZ 30 μg Staphylococcus spp. -
Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi -
12. What's Really New in Antibiotic Therapy Print
What’s really new in antibiotic therapy? Martin J. Hug Freiburg University Medical Center EAHP Academy Seminars 20-21 September 2019 Newsweek, May 24-31 2019 Disclosures There are no conflicts of interest to declare EAHP Academy Seminars 20-21 September 2019 Antiinfectives and Resistance EAHP Academy Seminars 20-21 September 2019 Resistance of Klebsiella pneumoniae to Pip.-Taz. olates) EAHP Academy Seminars 20-21 September 2019 https://resistancemap.cddep.org/AntibioticResistance.php Multiresistant Pseudomonas Aeruginosa Combined resistance against at least three different types of antibiotics, 2017 EAHP Academy Seminars 20-21 September 2019 https://atlas.ecdc.europa.eu/public/index.aspx Distribution of ESBL producing Enterobacteriaceae EAHP Academy Seminars 20-21 September 2019 Rossolini GM. Global threat of Gram-negative antimicrobial resistance. 27th ECCMID, Vienna, 2017, IS07 Priority Pathogens Defined by the World Health Organisation Critical Priority High Priority Medium Priority Acinetobacter baumanii Enterococcus faecium Streptococcus pneumoniae carbapenem-resistant vancomycin-resistant penicillin-non-susceptible Pseudomonas aeruginosa Helicobacter pylori Haemophilus influenzae carbapenem-resistant clarithromycin-resistant ampicillin-resistant Enterobacteriaceae Salmonella species Shigella species carbapenem-resistant fluoroquinolone-resistant fluoroquinolone-resistant Staphylococcus aureus vancomycin or methicillin -resistant Campylobacter species fluoroquinolone-resistant Neisseria gonorrhoae 3rd gen. cephalosporin-resistant -
Preorganization of Molecular Binding Sites in Designed Diiron Proteins
Preorganization of molecular binding sites in designed diiron proteins Ornella Maglio*, Flavia Nastri*, Vincenzo Pavone*, Angela Lombardi*†, and William F. DeGrado†‡ *Department of Chemistry, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, I-80126 Napoli, Italy; and ‡Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059 Contributed by William F. DeGrado, February 6, 2003 De novo protein design provides an attractive approach to criti- (Dueferri 1) (7–10). This protein is a small, 48-residue ho- cally test the features that are required for metalloprotein struc- modimeric model for the family of O2-using diiron proteins ture and function. Previously we designed and crystallographi- that includes methane monooxygenase and the radical-form- cally characterized an idealized dimeric model for the four-helix ing R2 subunit of the ribonucleotide reductase from Esche- bundle class of diiron and dimanganese proteins [Dueferri 1 richia coli (11–14). The DF1 dimer comprises two nonco- (DF1)]. Although the protein bound metal ions in the expected valently associated helix–loop–helix motifs that bind the manner, access to its active site was blocked by large bulky hy- diiron cofactor near the center of the protein (8). The crystal- drophobic residues. Subsequently, a substrate-access channel lographic structures of di-Zn(II) (8) and di-Mn(II) DF1 (un- was introduced proximal to the metal-binding center, resulting published results) are very similar to the di-Mn(II) and di- in a protein with properties more closely resembling those of Fe(II) forms of other natural diiron proteins (15–18). -
595 PART 441—PENEM ANTIBIOTIC DRUGS Subpart A—Bulk Drugs
Food and Drug Administration, HHS § 441.20a (6) pH. Proceed as directed in § 436.202 imipenem per milliliter at 25 °C is ¶85° of this chapter, using an aqueous solu- to ¶95° on an anhydrous basis. tion containing 60 milligrams per mil- (vi) It gives a positive identity test. liliter. (vii) It is crystalline. (7) Penicillin G content. Proceed as di- (2) Labeling. It shall be labeled in ac- rected in § 436.316 of this chapter. cordance with the requirements of (8) Crystallinity. Proceed as directed § 432.5 of this chapter. in § 436.203(a) of this chapter. (3) Requests for certification; samples. (9) Heat stability. Proceed as directed In addition to complying with the re- in § 436.214 of this chapter. quirements of § 431.1 of this chapter, [42 FR 59873, Nov. 22, 1977; 43 FR 2393, Jan. 17, each such request shall contain: 1978, as amended at 45 FR 22922, Apr. 4, 1980; (i) Results of tests and assays on the 50 FR 19918, 19919, May 13, 1985] batch for potency, sterility, pyrogens, loss on drying, specific rotation, iden- PART 441ÐPENEM ANTIBIOTIC tity, and crystallinity. DRUGS (ii) Samples, if required by the Direc- tor, Center for Drug Evaluation and Subpart AÐBulk Drugs Research: (a) For all tests except sterility: 10 Sec. 441.20a Sterile imipenem monohydrate. packages, each containing approxi- mately 500 milligrams. Subpart BÐ[Reserved] (b) For sterility testing: 20 packages, each containing equal portions of ap- Subpart CÐInjectable Dosage Forms proximately 300 milligrams. 441.220 Imipenem monohydrate-cilastatin (b) Tests and methods of assayÐ(1) Po- sodium injectable dosage forms. -
Consideration of Antibacterial Medicines As Part Of
Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1. -
Use of Long Half-Life Parenteral Cephalosporins in Ambulatory Practice
Use of Long Half-Life Parenteral Cephalosporins in Ambulatory Practice Mark Sauerwein, MD, Robert L. Deamer, PharmD, and John G. Prichard, MD Ventura, California, and Houston, Texas Cefonicid (Monocid) and ceftriaxone (Rocephin) are long half-life cephalos porins that may be used for serious infections in the outpatient setting. They may be used as an extension of initial hospital treatment, or therapy can be initiated and completed in many cases with the patient remaining at home. Sufficient clinical experience exists with both ceftriaxone and cefonicid to recommend these agents for selected patients having pyelonephritis, os teomyelitis, or soft tissue infections. Cefonicid, perhaps in combination with erythromycin, will provide excellent coverage for complicated community- acquired pneumonias. Ceftriaxone is effective as single-dose therapy for even complicated gonococcal infections. The use of long half-life cephalo sporins in ambulatory practice may result in substantial cost savings for certain patients. linicians are at times frustrated by prolonged management of selected infections are herein re C hospitalizations of those who are not acutely ill viewed. simply to provide parenteral antibiotic therapy. Pa Cefonicid (Monocid, Smith Kline & French) is a tients and their families may be equally disconcerted broad-spectrum cephalosporin that because of its because of the high cost and disruption consequent to spectrum of activity is typically grouped as a second- hospitalization. Nevertheless, the physician may wish generation agent. Cefonicid is usually administered in to initiate parenteral antibiotic therapy for a particular travenously or intramuscularly in doses of 1 to 2 g, and illness, such as pyelonephritis or pneumonia, as the because of its extended four-hour half-life, it can be clinical circumstances can create apprehension about given once every 24 hours (Table 1). -
Antimicrobial Stewardship Antimicrobial Stewardship: Systems and Processes for Effective Antimicrobial Medicine Use
NICE Medicines and prescribing centre DRAFT for consultation Antimicrobial stewardship Antimicrobial stewardship: systems and processes for effective antimicrobial medicine use Medicines practice guideline Appendices August 2015 National Institute for Health and Care Excellence Disclaimer This guideline represents the views of NICE and was arrived at after careful consideration of the evidence available. Those working in the NHS, local authorities, the wider public, voluntary and community sectors and the private sector should take it into account when carrying out their professional, managerial or voluntary duties. Implementation of this guidance is the responsibility of local commissioners and/or providers. Commissioners and providers are reminded that it is their responsibility to implement the guidance, in their local context, in light of their duties to have due regard to the need to eliminate unlawful discrimination, advance equality of opportunity and foster good relations. Nothing in this guidance should be interpreted in a way that would be inconsistent with compliance with those duties. Copyright National Institute for Health and Care Excellence 2015 Declarations of interest Contents Appendices .......................................................................................................................... 5 Appendix A: Declarations of interest ............................................................................ 5 A.1 Guideline development group (GDG) members .............................................. 5 A.2 -
E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/ -
In Silico and in Vitro Screening of FDA-Approved Drugs for Potential Repurposing Against Tuberculosis
bioRxiv preprint doi: https://doi.org/10.1101/228171; this version posted December 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In silico and in vitro screening of FDA-approved drugs for potential repurposing against tuberculosis Sridharan Brindha1, Jagadish Chandrabose Sundaramurthi2, Savariar Vincent1, Devadasan Velmurugan3, John Joel Gnanadoss1* 1Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India 2National Institute for Research in Tuberculosis (ICMR), Chetpet, Chennai 600031, Tamil Nadu, India 3CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai – 600025, Tamil Nadu, India *Corresponding Author: Dr. John Joel Gnanadoss Assistant Professor Department of Biotechnology Loyola College (University of Madras) Nungambakkam, Chennai – 600034 Tamil Nadu, India. Phone: 9840985870 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/228171; this version posted December 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Motivation Repurposing of known drugs to newer clinical conditions is a promising avenue for finding novel therapeutic applications for tuberculosis. Methods We performed docking-based virtual screening for 1554 known drugs against two of the potential drug targets, namely trpD and coaA of M. tuberculosis. In the first round of in silico screening we used rigid docking using Glide and AutoDock Vina. We subjected the consistently ranked drugs for induced-fit docking by these tools against the same target proteins. We performed luciferase reporter phage (LRP) assay to determine the biological activity of five selected drugs against M. -
Homopharma: a New Concept for Exploring the Molecular Binding
Chiu et al. BMC Genomics 2014, 15(Suppl 9):S8 http://www.biomedcentral.com/1471-2164/15/S9/S8 RESEARCH Open Access Homopharma: A new concept for exploring the molecular binding mechanisms and drug repurposing Yi-Yuan Chiu1, Jen-Hu Tseng1, Kuan-Hsiu Liu1, Chih-Ta Lin1, Kai-Cheng Hsu1, Jinn-Moon Yang1,2* From Asia Pacific Bioinformatics Network (APBioNet) Thirteenth International Conference on Bioinformatics (InCoB2014) Sydney, Australia. 31 July - 2 August 2014 Abstract Background: Drugs that simultaneously target multiple proteins often improve efficacy, particularly in the treatment of complex diseases such as cancers and central nervous system disorders. Many approaches have been proposed to identify the potential targets of a drug. Recently, we have introduced Space-Related Pharmamotif (SRPmotif) method to recognize the proteins that share similar binding environments. In addition, compounds with similar topology may bind to similar proteins and have similar protein-compound interactions. However, few studies have focused on exploring the relationships between binding environments and protein-compound interactions, which is important for understanding molecular binding mechanisms and helpful to be used in discovering drug repurposing. Results: In this study, we propose a new concept of “Homopharma”, combining similar binding environments and protein-compound interaction profiles, to explore the molecular binding mechanisms and drug repurposing. A Homopharma consists of a set of proteins which have the conserved binding environment and a set of compounds that share similar structures and functional groups. These proteins and compounds present conserved interactions and similar physicochemical properties. Therefore, these compounds are often able to inhibit the proteins in a Homopharma. Our experimental results show that the proteins and compounds in a Homopharma often have similar protein-compound interactions, comprising conserved specific residues and functional sites.