Computational Modeling of Rna-Small Molecule and Rna-Protein Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Computational Modeling of Rna-Small Molecule and Rna-Protein Interactions The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2015 COMPUTATIONAL MODELING OF RNA-SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS Lu Chen Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Biophysics Commons, Medicinal-Pharmaceutical Chemistry Commons, Pharmaceutics and Drug Design Commons, Statistical Models Commons, and the Structural Biology Commons Recommended Citation Chen, Lu, "COMPUTATIONAL MODELING OF RNA-SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 626. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/626 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Title page COMPUTATIONAL MODELING OF RNA- SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS A DISSERTATION Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas M.D. Anderson Cancer Center Graduate School of Biomedical Sciences In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Lu Chen, B.S. Houston, Texas August 2015 Dedication To my darling wife, Xiaofei Xiong and son, Ryan X. Chen who have loved, inspired, encouraged, motivated and supported me on whatever decision I have made. My parents, Jianjun Chen and Guoyun Zhang, who are always supportive in my scientific career. Dr. Shuxing Zhang, greatest mentor in my life. iii Acknowledgements I acknowledge all the hardworking scientists in Dr. Shuxing Zhang’s lab, including John Morrow, Micheal Cato, Zhi Tan, Srinivas Alla, Hoang Tran, Lei Du-cuny, Longzhang Tian, Sharangdhar Phatak, Nathan Ihle, Ryan Watkins. I also thank Matri and Paloma in George Calin’s lab, and great researchers in Dr. Edward Nikonowicz’s lab for their dedicate contributions to experimental validations. I owe great acknowledgement to my advisory committee, Shuxing Zhang, George Calin, Xiongbin Lu, Edward Nikonowicz, Wenyi Wang and John Ladbury for your valuable inputs and insights into this thesis. I could not have done it without your support. Special thanks to University of Texas M.D. Anderson and University of Austin for providing state-of-the-art HPC resources. Thank TACC for free academic license for Gaussian09. Thank Dr. Jinbo Xu for providing the source code and assisting me on deploying RaptorX for RNA-protein interface threading. iv Abstract COMPUTATIONAL MODELING OF RNA- SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS By Lu Chen, B.S. Advisor: Shuxing Zhang, Ph.D. The past decade has witnessed an era of RNA biology; despite the considerable discoveries nowadays, challenges still remain when one aims to screen RNA-interacting small molecule or RNA-interacting protein. These challenges imply an immediate need for cost-efficient while predictive computational tools capable of generating insightful hypotheses to discover novel RNA-interacting small molecule or RNA-interacting protein. Thus, we implemented novel computational models in this dissertation to predict RNA-ligand interactions (Chapter 1) and RNA-protein interactions (Chapter 2). Targeting RNA has not garnered comparable interest as protein, and is restricted by lack of computational tools for structure-based drug design. To test the potential of translating molecular docking tools designed for protein to RNA-ligand docking and virtual screening, we benchmarked 5 docking software and 11 scoring functions to assess their performances in pose reproduction, pose ranking, score-RMSD correlation and virtual screening. From this benchmark, we proposed a three-step docking pipelines optimized for virtual screening against RNAs with different flexibility properties. Using this pipeline, we have successfully v identified a selective compound binding to GA:UU motif. Both NMR and the subsequent MD simulation proved its selective binding to GA:UU motif flanked by two tandem flexible base pairs next to GA. Consistent to the 3D model, SAR analysis revealed that any R-group substitution would abolish the binding. Current computational methods for RNA-protein interaction prediction (sequence-based or structure-based) are either short of interpretability or robustness. Aware of these pitfalls, we implemented RNA-Protein interaction prediction through Interface Threading (RPIT), which identifies and references a known RNA-protein interface as the template to infer the region where the interaction occurs and predict the interacting propensity based on the interface profiles. To estimate the propensity more accurately, we implemented five statistical scoring functions based our unique collection of non-redundant protein-RNA interaction database. Our benchmark using leave-protein-out cross validation and two external validation sets resulted in overall 70%-80% accuracy of RPIT. Compared with other methods, RPIT offers an inexpensive but robust method for in silico prediction of RNA-protein interaction networks, and for prioritizing putative RNA-protein pairs using virtual screening. vi Table of Contents Approval page ........................................................................................................................ i Title page ............................................................................................................................... ii Dedication ............................................................................................................................ iii Acknowledgements ............................................................................................................ iv Abstract ................................................................................................................................. v Table of Contents ................................................................................................................ vii List of Illustrations ............................................................................................................... xi List of Tables ...................................................................................................................... xiii Abbreviations ..................................................................................................................... xiv Chapter 1: Introduction ......................................................................................................... 1 1.1 Targeting RNA with small molecules ......................................................................... 1 1.1.1 RNA as therapeutic target .................................................................................... 1 1.1.2 Hit identification via molecular docking .............................................................. 1 1.1.3 Current in silico methods of targeting RNA ......................................................... 3 1.2 Discovering novel RNA-protein interaction ................................................................ 4 1.2.1 Emerging RNA-protein interactions (RPI) ........................................................... 4 1.2.2 RNA-protein interface .......................................................................................... 5 1.2.3 Current in silico methods of predicting RPI ......................................................... 6 Chapter 2: Computational modeling of RNA-small molecule interaction ............................ 9 2.1 Introduction ................................................................................................................. 9 vii 2.2 Materials and Methods: Benchmarking, Development and Application ................... 11 2.2.1 Benchmark datasets ............................................................................................ 11 2.2.2 Molecular docking and decoy generation ........................................................... 18 2.2.3 Evaluation of pose reproduction ......................................................................... 18 2.2.4 Evaluation of pose ranking ................................................................................. 19 2.2.5 Evaluation of virtual screening ........................................................................... 20 2.2.6 Evaluation of docking score-binding affinity correlation ................................... 21 2.2.7 RNA-specific scoring function optimization ...................................................... 21 2.2.8 MD simulations of GA:UU RNA-inhibitor complex ......................................... 22 2.2.9 Preparation of RNA samples .............................................................................. 22 2.2.10 Nuclear magnetic resonance (NMR) ................................................................ 23 2.3 Results: Benchmarking and optimizing docking method for RNA target
Recommended publications
  • Rdock Reference Guide Rdock Development Team August 27, 2015 Contents
    rDock Reference Guide rDock Development Team August 27, 2015 Contents 1 Preface 4 2 Acknowledgements 4 3 Introduction 4 4 Configuration 4 5 Cavity mapping 6 5.1 Two sphere method . 6 5.2 Reference ligand method . 8 6 Scoring function reference 11 6.1 Component Scoring Functions . 11 6.1.1 van der Waals potential . 11 6.1.2 Empirical attractive and repulsive polar potentials . 11 6.1.3 Solvation potential . 12 6.1.4 Dihedral potential . 13 6.2 Intermolecular scoring functions under evaluation . 13 6.2.1 Training sets . 13 6.2.2 Scoring Functions Design . 13 6.2.3 Scoring Functions Validation . 14 6.3 Code Implementation . 15 7 Docking protocol 17 7.1 Protocol Summary . 17 7.1.1 Pose Generation . 17 7.1.2 Genetic Algorithm . 17 7.1.3 Monte Carlo . 17 7.1.4 Simplex . 18 7.2 Code Implementation . 18 7.3 Standard rDock docking protocol (dock.prm) . 18 8 System definition file reference 22 8.1 Receptor definition . 22 8.2 Ligand definition . 23 8.3 Solvent definition . 24 8.4 Cavity mapping . 25 8.5 Cavity restraint . 27 8.6 Pharmacophore restraints . 27 8.7 NMR restraints . 28 8.8 Example system definition files . 28 9 Molecular files and atoms typing 30 9.1 Atomic properties. 30 9.2 Difference between formal charge and distributed formal charge . 30 9.3 Parsing a MOL2 file . 31 9.4 Parsing an SD file . 31 9.5 Assigning distributed formal charges to the receptor . 31 10 rDock file formats 32 10.1 .prm file format .
    [Show full text]
  • Evaluation of Protein-Ligand Docking Methods on Peptide-Ligand
    bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides Sandeep Singh1#, Hemant Kumar Srivastava1#, Gaurav Kishor1#, Harinder Singh1, Piyush Agrawal1 and G.P.S. Raghava1,2* 1CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India. 2Indraprastha Institute of Information Technology, Okhla Phase III, Delhi India #Authors Contributed Equally Emails of Authors: SS: [email protected] HKS: [email protected] GK: [email protected] HS: [email protected] PA: [email protected] * Corresponding author Professor of Center for Computation Biology, Indraprastha Institute of Information Technology (IIIT Delhi), Okhla Phase III, New Delhi-110020, India Phone: +91-172-26907444 Fax: +91-172-26907410 E-mail: [email protected] Running Title: Benchmarking of docking methods 1 bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In the past, many benchmarking studies have been performed on protein-protein and protein-ligand docking however there is no study on peptide-ligand docking.
    [Show full text]
  • Ftitr Tutirgr Held Thuraday
    San Jon, Cal. fhit 31nsr Pasffie Game Subs Rate, $1.00 Rally to be Per Quarter ftitr Tutirgr Held Thuraday 2 2 X! I . J1,1-1 11.1FURNiA, WED \ I --1).\1., (2LI OBER II, 19i; r_12 Attractive Program for NOTICE Concert Series Tickets Placed on In order to choose a yell leader Pre-game Rally Planned; for the coming year, an election Sale Today, Committee Announces; will be held in front of the Morris Dailey auditorium all dily today, Parade Will Climax Fun Wednesday, October II. Presi- Naom Blinder, Violinist, Here Nov. 7 dent Covello asks every tudent Wildest Event of Evening Will to cooperate by voting. The Car.- Probably Be Parade Thru Leads Rally Famous Violinist To Appear Concert Series Tickets Sale didate re Howard Burns and Enthusiasm Downtown San Jose 7 (,hairman Shown Jim Hamilton. At S. J. State Nov. 'psis By Students Will In Music Program Dud DeGroot and Team - - -- Speeches During Alice Dixon Heads Conimittee Give \ the initial concert in the IO33- +4 Rally In Auditorium E. Higgins Of Music Department _ _ Plans rie, San Jose State music 'rivers will Concert &ries iniee the opportunity to bear Naom di,. ,rantest pre -game rally in the Radio Pep Rally Blinder. famous violinist, N9V. 7. ot San Jose State will be held in The tickets tor 'la Blinder is now concert master of th, series go on sal,- today '. Morris Dailey auditorium thit ir. qa. -peed san Francisco Symphony orchestra, and The!. may also be ! mening at 7:30, according to At Station KQW porch:, .
    [Show full text]
  • What Is Discovery Studio?
    Discovery Studio 2.0 Accelrys Life Science Tool 林進中 分子視算 What is Discovery Studio? • Discovery Studio is a complete modelling and simulations environment for Life Science researchers – Interactive, visual and integrated software – Consistent, contemporary user interface for added ease-of-use – Tools for visualisation, protein modeling, simulations, docking, pharmacophore analysis, QSAR and library design – Access computational servers and tools, share data, monitor jobs, and prepare and communicate their project progress – Windows and Linux clients and servers Accelrys Discovery Studio Application Discovery Studio Pipeline ISV Materials Discovery Accord WeWebbPPortort Pipeline ISV Materials Discovery Accord (web Studio Studio (web PilotPilot ClientClient Studio Studio ClientsClients access) (Pro or Lite ) (e.g., Client Client access) (Pro or Lite ) (e.g., Client Client Spotfire) Spotfire) Client Integration Layer SS c c i iT T e e g g i ic c P P l la a t t f f o o r r m m Tool Integration Layer Data Access Layer Cmd-Line Isentris Chemistry Biology Materials Accord Accord IDBS Oracle ISIS Reporting Statistics ISV Tools Databases Pipeline Pilot - Data Processing and Integration • Integration of data from multiple disparate data sources • Integration of disparate applications – Third party vendors and in- house developed codes under the same environment Pipeline Pilot - Data Processing and Integration • Automated execution of routine processes • Standardised data management • Capture of workflows and deployment of best practice Interoperability
    [Show full text]
  • Induction of Tumor Apoptosis Through a Circular RNA Enhancing Foxo3 Activity
    Cell Death and Differentiation (2017) 24, 357–370 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/17 www.nature.com/cdd Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity William W Du1,2,5, Ling Fang1,2,3,5, Weining Yang1,5, Nan Wu1,2, Faryal Mehwish Awan1,2, Zhenguo Yang1,2 and Burton B Yang*,1,2,4 Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA. Cell Death and Differentiation (2017) 24, 357–370; doi:10.1038/cdd.2016.133; published online 25 November 2016 Circular RNAs are a large class of non-coding RNAs that are Results circularized by joining free 3'- to 5'-ends, forming a circular structure.1–4 Although circular RNAs were initially Decreased expression of circ-Foxo3 in tumors and characterized over 30 years ago, their functions in mammalian cancer cells.
    [Show full text]
  • Getting Started with Rdock Dr
    Getting Started with rDock Dr. David Morley Getting Started with rDock Dr. David Morley Copyright © 2006 Vernalis Table of Contents Overview ............................................................................................................ vi 1. Prerequisites ..................................................................................................... 1 2. Unpacking the distribution files ............................................................................ 2 3. Building rDock .................................................................................................. 4 4. Running a short validation experiment ................................................................... 6 iv List of Tables 1.1. Required packages for building and running rDock ................................................ 1 2.1. rDock distribution files ..................................................................................... 2 3.1. Standard tmake build targets provided ............................................................... 4 4.1. Complexes included in the cpu_benchmark experiment ...................................... 6 4.2. rDock score components output as SD data fields .................................................. 7 v Overview rDock is a high-throughput molecular docking platform for protein and RNA targets. Under devel- opment at Vernalis (formerly RiboTargets) since 1998, the software (formerly known as RiboDock1), scoring functions, and search protocols have been refined continuously to meet the de-
    [Show full text]
  • © Copyright 2012 Craig J. Bierle Portions of This Dissertation Were
    © Copyright 2012 Craig J. Bierle Portions of this dissertation were adapted from the following publications: Copyright © American Society for Microbiology Journal of Virology, May 2009, p. 4112–4120 Vol. 83, No. 9 doi:10.1128/JVI.02489-08 Copyright © Elsevier Inc. Virology, November 2012, p. 157–166, Vol. 433 Iss. 1 http://dx.doi.org/10.1016/j.virol.2012.08.005 Inhibition of the protein kinase R pathway by cytomegalovirus double-stranded RNA binding proteins Craig J. Bierle A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Adam P. Geballe, Chair Michael Lagunoff Harmit S. Malik Program Authorized to Offer Degree: Molecular and Cellular Biology University of Washington Abstract Inhibition of the protein kinase R pathway by cytomegalovirus double-stranded RNA binding proteins Craig J. Bierle Chair of the Supervisory Committee: Professor Adam P. Geballe Division of Human Biology Double-stranded RNA (dsRNA) that accumulates during many viral infections is recognized by the host cell and elicits an antiviral response. Protein kinase R (PKR) is activated by dsRNA binding, phosphorylates eIF2α, and inhibits translation initiation, potentially blocking the synthesis of viral proteins. Human cytomegalovirus (HCMV) expresses two noncanonical dsRNA binding proteins, TRS1 and IRS, that antagonize PKR. In this study, I investigated the dsRNA-binding properties of TRS1 and related proteins to help clarify their mechanisms of PKR inhibition and roles in viral replication. I found that purified TRS1 specifically bound to dsRNAs as short as 20 base pairs, albeit with a weaker affinity than PKR.
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]
  • Protein-Protein Docking and Molecular Dynamics Simulations Elucidated Binding Modes of FUBI-P62 UBA Complex
    Chongruchiroj et al., 2015 Original Article TJPS The Thai Journal of Pharmaceutical Sciences 39 (4), October - December 2015: 171-179 Protein-Protein Docking and Molecular Dynamics Simulations Elucidated Binding Modes of FUBI-p62 UBA Complex Sumet Chongruchiroj1, Panida Kongsawadworakul 2, Veena Nukoolkarn3, Montree Jaturanpinyo4, 5 6 1,* Wichit Nosoong-noen , Jiraporn Chingunpitak , Jaturong Pratuangdejkul 1Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 2Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand 3Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 4Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 5Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 6School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand Abstract The cytosolic Fau protein, a precursor of antimicrobial peptide, composes of ubiquitin-like domain FUBI at N- terminus and ribosomal protein rpS30 at C-terminus. Fau has been important in killing of intracellular Mycobacterium tuberculosis infection through autophagy-targeting p62 mechanism. The p62 adapter protein delivered microbicidal protein rpS30 to autolysosome where it was converted into antimicrobial peptides capable of killing M. tuberculosis in mycobacterial phagosome. Recently, direct interaction of FUBI and p62 UBA domain has been established using immunoprecipitation. In the absence of experimental complex structure of FUBI and p62 UBA, understanding of binding interaction could be extensively characterized using molecular modeling techniques. The aim of this study was to elucidate the binding mode of interaction between FUBI and p62 UBA. Based on the conserved hydrophobic binding regions of FUBI and p62 UBA domain, 334 docked poses were predicted using the ZDOCK and RDOCK protein-protein docking algorithms.
    [Show full text]
  • Molecular Modeling in Drug Design
    molecules Molecular Modeling in Drug Design Edited by Rebecca C. Wade and Outi M. H. Salo-Ahen Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Molecular Modeling in Drug Design Molecular Modeling in Drug Design Special Issue Editors Rebecca C. Wade Outi M. H. Salo-Ahen MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rebecca C. Wade Outi M. H. Salo-Ahen HITS gGmbH/Heidelberg University Abo˚ Akademi University Germany Finland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Molecules (ISSN 1420-3049) from 2018 to 2019 (available at: https://www.mdpi.com/journal/molecules/ special issues/MMDD) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-614-1 (Pbk) ISBN 978-3-03897-615-8 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Molecular Modeling in Drug Design” ..........................
    [Show full text]
  • A Review on Applications of Molecular Docking in Drug Designing
    Indo American Journal of Pharmaceutical Research, 2017 ISSN NO: 2231-6876 A REVIEW ON APPLICATIONS OF MOLECULAR DOCKING IN DRUG DESIGNING 1* 2 1 M. Venkata Saileela , Dr. M. Venkateswar Rao , Venkata Rao Vutla 1Department of Pharmaceutical Analysis, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur. 2 Department of Pharmacology, Guntur Medical College, Guntur. ARTICLE INFO ABSTRACT Article history Molecular docking is a computational modelling of structure of complexes formed by two or Received 11/04/2017 more interacting molecules. In the field of molecular modelling, docking is a method which Available online predicts the preferred orientation of one molecule to a second when bound to each other to 30/04/2017 form a stable complex. Knowledge of the preferred orientation in turn may be used to predict the strength of association or binding affinity between two molecules using scoring functions. Keywords Molecular docking is one of the most frequently used in structure based drug design due to its Molecular Modelling, ability to predict the binding-conformation of small molecules ligands to the appropriate Scoring Functions. target binding site. Corresponding author M. Venkata Saileela Department Pharmaceutical Analysis, Chalapathi institute of Pharmaceutical Sciences, Lam, Guntur [email protected] Please cite this article in press as M. Venkata Saileela et al. A Review on Applications of Molecular Docking in Drug Designing. Indo American Journal of Pharmaceutical Research.2017:7(04). C opy right © 2017 This is an Open Access article distributed under the terms of the Indo American journal of Pharmaceutical 8391 Research, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • A Uracil Transport Metabolon in E. Coli: Interaction Between the Membrane Transporter Uraa and the Cytosolic Enzyme UPRT
    A Uracil Transport Metabolon in E. coli: Interaction between the Membrane Transporter UraA and the Cytosolic Enzyme UPRT by Fan Xia A thesis submitted in conformity with the requirements for the degree of Masters of Science Graduate Department of Biochemistry University of Toronto © Copyright by Fan Xia (2016) A Uracil Transport Metabolon in E. coli: Interaction between the Membrane Transporter UraA and the Cytosolic Enzyme UPRT Fan Xia Masters of Science Graduate Department of Biochemistry University of Toronto 2016 Abstract The uracil-H+ symporter UraA and the uracil phosphoribosyltransferase UPRT are both encoded on the ura operon in E. coli, creating genetic and functional link between uracil import and its metabolism. Previous studies have determined the crystal structures of UraA and UPRT. However, it is unclear whether a physical interaction exists between UraA and UPRT. Such direct contact would allow channelling of the substrate uracil from the transporter UraA directly to the active site of UPRT, thereby creating a uracil transport metabolon. This study provides evidence for the physical interaction between UraA and UPRT. Manual docking of the two proteins demonstrates that the shape and charges on the potential interacting surfaces complement each other. Various biochemical techniques were used to test for a physical interaction between UraA and UPRT, including a pull-down assay, an electrophoretic mobility shift assay, a liposome floatation assay and bio-layer interferometry. A low-affinity and ionic strength- dependent interaction between UraA and UPRT was detected. ii Acknowledgments I would like to thank my supervisors Dr. Reinhart Reithmeier and Dr. Trevor Moraes for providing me with the opportunity to study and work in their labs.
    [Show full text]