Numerical Simulations of Gravitational Collapse By

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Simulations of Gravitational Collapse By Numerical Simulations of Gravitational Collapse by Frans Pretorius B.Eng., The University of Victoria, 1996 M.Sc, The University of Victoria, 1999 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Physics and Astronomy) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2, 2002 © Frans Pretorius, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Physics and Astronomy The University Of British Columbia Vancouver, Canada ABSTRACT 11 ABSTRACT In this thesis we present a numerical study of gravitational collapse, within the framework of Einstein's theory of general relativity. We restrict our attention to spacetimes possessing axial symmetry, and incorporate a massless scalar field as the matter source. Our primary objectives are the study of critical phenomena at the threshold of black hole formation, and the stable simulation of black hole spacetimes. An integral part of the thesis is concerned with developing the necessary numerical tools and techniques to successfully solve these problems. To that end, we have implemented a variant of Berger and Oliger's adaptive mesh refinement (AMR) algorithm, with enhancements that allow us to incorporate elliptic equations into the AMR framework. Using this code, we simulate critical collapse of axisymmetric distributions of scalar field energy, which is the first time this has been done in the non-perturbative regime. For several classes of initial data, our results are consistent with a hypothesized universal critical solution. However, from the collapse of prolate initial data, we find indications that there may be an additional, non-spherical unstable mode. This putative instability eventually causes a near- critical echoing solution to bifurcate into two, causally disconnected solutions that each resemble the spherical critical solution. Furthermore, we speculate that this bifurcation process would continue indefinitely at threshold, resulting in an infinite cascade of near-spherical solutions. However, the evidence for this second unstable mode is not conclusive, and more work will be needed, possibly with an enhanced code, to answer this question. To numerically study spacetimes containing black holes, one needs to avoid the singularities that occur inside of the holes. The technique that we have implemented to accomplish this is called black hole excision. This aspect of the code is still work-in-progress, for we have not yet incorporated excision into the AMR-based code, and the class of excision boundary conditions we currently employ are inconsistent with the complete set of field equations. However, we are able to obtain stable simulations using a constrained evolution scheme, and we present two preliminary examples, one showing black hole formation, the other a head-on black hole collision. CONTENTS iii CONTENTS Abstract ii Contents • iii List of Tables v List of Figures vi Acknowledgements viii 1 Introduction 1 1.0.1 Notation 3 1.1 The Field Equations of General Relativity 3 1.2 Gravitational Collapse 5 1.3 Critical Phenomena 6 1.4 Black Hole Collisions and Gravitational Waves 7 1.5 Numerical Solution of the Field Equations 9 1.5.1 The ADM formalism 10 1.5.2 Coordinate and Slicing Conditions 12 1.5.3 Black Hole Excision . 14 1.5.4 Solution of Equations via Finite Difference Techniques 15 1.5.5 Adaptive Mesh Refinement 23 1.5.6 Solution of Elliptic Equations via Multigrid 28 2 Numerical Evolution in Axisymmetry 34 2.1 The 2+1+1 Formalism ' 34 2.1.1 A Scalar Field Matter Source 37 2.1.2 Incorporating Angular Momentum using a Complex Scalar Field 37 2.2 Structure of the Unigrid Numerical Code 38 2.2.1 Coordinate System and Variables 38 2.2.2 Regularity and Outer Boundary Conditions 40 2.2.3 Initial Data 41 2.2.4 Discretization and Solution Scheme 41 2.2.5 Finding Apparent Horizons 43 2.2.6 Black Hole Excision Technique 44 2.2.7 Convergence, Consistency and Mass Conservation Results . 47 2.3 Structure of the Adaptive Code 49 2.3.1 Modifications to Berger and Oliger's Algorithm 52 2.3.2 Multigrid on an Adaptive Hierarchy 56 2.3.3 Clustering 58 2.3.4 Truncation Error Estimation 58 2.3.5 Interpolation and Restriction Operators 59 2.3.6 Initializing the Grid Hierarchy 59 2.3.7 Controlling High-Frequency Grid-Boundary Noise 60 2.3.8 Dealing with Multigrid Failures 62 CONTENTS iv 2.3.9 Convergence, Consistency and Mass Conservation Results 63 2.4 Probing the Geometry of a Numerical Solution 67 2.4.1 Geodesies 70 3 Scalar Field Critical Collapse 72 3.1 Spherically Symmetric Initial Data 73 3.2 Small Deviations from Spherical Symmetry 77 3.3 Large Deviations from Spherical Symmetry 82 3.3.1 Equatorial-Plane Antisymmetric Scalar Field Collapse . 82 3.3.2 Highly Prolate Initial Scalar Field Profiles 84 3.4 Sample AMR Mesh Structure . 89 4 Black Hole Excision 101 4.1 Scalar Field Collapse 101 4.2 Black Hole Collisions . 102 4.2.1 Boosted Scalar Field Initial Conditions 108 4.2.2 Excision Boundary Conditions 108 4.2.3 A Sample Merger 109 5 Conclusions and Future Work 117 Bibliography 118 A Equations and Finite Difference Operators 124 A.l Analytic Equations 124 A. 2 Finite Difference Operators 126 B Data Analysis and Visualization 129 B. l The Data-Vault Virtual Machine Specification . 129 B.l.l Register Structure 129 B.l.2 Instruction Set , 130 B.1.3 Execution Model 134 B.2 Current Implementation 135 B.2.1 Generalized Index Vector format 135 LIST OF TABLES v LIST OF TABLES 2.1 AMR code test: £2 and £00 norms of the data shown in Figures 2.11 and 2.12 .... 63 3.1 Extremes of the central value of $ in near-critical spherically symmetric collapse . 74 3.2 Extremes of the central value of $ in near-critical, near-spherically symmetric collapse 81 3.3 Extremes of the local central values of $ in near-critical antisymmetric collapse ... 86 3.4 Extremes of the central values of $ in near-critical prolate collapse 89 B.1 DV register structure definition 130 B.2 DV time structure definition 130 B.3 DV level structure definition 132 B.4 DV grid structure definition 132 LIST OF FIGURES vi LIST OF FIGURES 1.1 A schematic representation of the ADM space+time decomposition 11 1.2 A schematic demonstration of the CFL condition 21 1.3 An example of a Berger and Oliger mesh hierarchy 25 1.4 A pseudo-code representation of the Berger and Oliger time stepping algorithm ... 26 1.5 A pseudo-code representation of the FAS, V-cycle multigrid algorithm 32 2.1 The effect of an excision surface on the definition of grid points and FD stencils ... 45 2.2 A pseudo-code representation of the reconstruction function and smoothing filter used to smooth grid functions during excision 48 2.3 Test of the unigrid code for Brill wave evolution 50 2.4 Test of the unigrid code for scalar field evolution 51 2.5 A pseudo-code representation of the Berger and Oliger time stepping algorithm, as modified and implemented in our code 54 2.6 An illustration of the technique we use to extrapolate elliptic variables within the AMR framework 55 2.7 A hypothetical MG grid configuration that will adversely affect execution speed ... 57 2.8 An illustration of the interpolation method used for a and ft during AMR evolution 60 2.9 A pseudo-code description of part of the interpolation method used for a and ft during AMR evolution 61 2.10 AMR code test: a at t = 2.34, showing the AMR hierarchy 64 2.11 AMR code test: comparison of a to a unigrid evolution, at t = 2.34 65 2.12 AMR code test: comparison of $ to a unigrid evolution, at t = 2.34 66 2.13 AMR code test: depth of the hierarchy as a function of time 68 2.14 AMR code test: MADM 68 2.15 AMR code test: consistency 69 2.16 AMR code test: convergence factors 69 3.1 Initial profile of <£, for spherically symmetric critical collapse 73 3.2 ln(i?max) vs. \n(A* - A) from sub-critical evolution of spherically symmetric initial 3 data, with eT = 10~ . 75 3.3 ln(i?max) vs. ln(A* - A) from sub-critical evolution of spherically symmetric initial 4 data, with eT = 10~ 76 3.4 Central value of $ as a function of - ln(r* - r), from spherically symmetric critical collapse 77 3.5 Evolution of $ from spherically symmetric critical collapse 78 3.6 ln(i?max) vs. \n(A* - A) from sub-critical evolution of near-spherically symmetric -3 initial data, with er = IO 79 3.7 ln(i?max) vs. ln(^4* - A) from sub-critical evolution of near-spherically symmetric 4 initial data, with er = 10~ 80 3.8 Comparison of the central value of $ versus — ln(r* — r), for near-spherically sym• metric initial data 81 3.9 Apparent horizon shapes from super-critical, antisymmetric collapse 83 3.10 Initial profile of $ for antisymmetric critical collapse 84 3.11 Evolution of $ from antisymmetric initial data 85 LIST OF FIGURES vii 3.12 Late-time profile of 4>, evolved from near-critical antisymmetric initial data 86 3.13 ln(jRmax) vs.
Recommended publications
  • Generation of Angular Momentum in Cold Gravitational Collapse
    A&A 585, A139 (2016) Astronomy DOI: 10.1051/0004-6361/201526756 & c ESO 2016 Astrophysics Generation of angular momentum in cold gravitational collapse D. Benhaiem1,M.Joyce2,3, F. Sylos Labini4,1,5, and T. Worrakitpoonpon6 1 Istituto dei Sistemi Complessi Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy e-mail: [email protected] 2 UPMC Univ. Paris 06, UMR 7585, LPNHE, 75005 Paris, France 3 CNRS IN2P3, UMR 7585, LPNHE, 75005 Paris, France 4 Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89 A, Compendio del Viminale, 00184 Rome, Italy 5 INFN Unit Rome 1, Dipartimento di Fisica, Universitá di Roma Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy 6 Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Nonthaburi Campus, 11000 Nonthaburi, Thailand Received 16 June 2015 / Accepted 4 November 2015 ABSTRACT During the violent relaxation of a self-gravitating system, a significant fraction of its mass may be ejected. If the time-varying gravi- tational field also breaks spherical symmetry, this mass can potentially carry angular momentum. Thus, starting initial configurations with zero angular momentum can, in principle, lead to a bound virialised system with non-zero angular momentum. Using numerical simulations we explore here how much angular momentum can be generated in a virialised structure in this way, starting from con- figurations of cold particles that are very close to spherically symmetric. For the initial configurations in which spherical symmetry is broken only by the Poissonian fluctuations associated with the finite particle number N, with N in range 103 to 105, we find that the relaxed structures have standard “spin” parameters λ ∼ 10−3, and decreasing slowly with N.
    [Show full text]
  • Special and General Relativity with Applications to White Dwarfs, Neutron Stars and Black Holes
    Norman K. Glendenning Special and General Relativity With Applications to White Dwarfs, Neutron Stars and Black Holes First Edition 42) Springer Contents Preface vii 1 Introduction 1 1.1 Compact Stars 2 1.2 Compact Stars and Relativistic Physics 5 1.3 Compact Stars and Dense-Matter Physics 6 2 Special Relativity 9 2.1 Lorentz Invariance 11 2.1.1 Lorentz transformations 11 2.1.2 Time Dilation 14 2.1.3 Covariant vectors 14 2.1.4 Energy and Momentum 16 2.1.5 Energy-momentum tensor of a perfect fluid 17 2.1.6 Light cone 18 3 General Relativity 19 3.1 Scalars, Vectors, and Tensors in Curvilinear Coordinates 20 3.1.1 Photon in a gravitational field 28 3.1.2 Tidal gravity 29 3.1.3 Curvature of spacetime 30 3.1.4 Energy conservation and curvature 30 3.2 Gravity 32 3.2.1 Einstein's Discovery 32 3.2.2 Particle Motion in an Arbitrary Gravitational Field 32 3.2.3 Mathematical definition of local Lorentz frames . 35 3.2.4 Geodesics 36 3.2.5 Comparison with Newton's gravity 38 3.3 Covariance 39 3.3.1 Principle of general covariance 39 3.3.2 Covariant differentiation 40 3.3.3 Geodesic equation from covariance principle 41 3.3.4 Covariant divergente and conserved quantities . 42 3.4 Riemann Curvature Tensor 45 x Contents 3.4.1 Second covariant derivative of scalars and vectors 45 3.4.2 Symmetries of the Riemann tensor 46 3.4.3 Test for flatness 47 3.4.4 Second covariant derivative of tensors 47 3.4.5 Bianchi identities 48 3.4.6 Einstein tensor 48 3.5 Einstein's Field Equations 50 3.6 Relativistic Stars 52 3.6.1 Metric in static isotropic spacetime 53
    [Show full text]
  • Stellar Equilibrium Vs. Gravitational Collapse
    Eur. Phys. J. H https://doi.org/10.1140/epjh/e2019-100045-x THE EUROPEAN PHYSICAL JOURNAL H Stellar equilibrium vs. gravitational collapse Carla Rodrigues Almeidaa Department I Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany Received 26 September 2019 / Received in final form 12 December 2019 Published online 11 February 2020 c The Author(s) 2020. This article is published with open access at Springerlink.com Abstract. The idea of gravitational collapse can be traced back to the first solution of Einstein's equations, but in these early stages, com- pelling evidence to support this idea was lacking. Furthermore, there were many theoretical gaps underlying the conviction that a star could not contract beyond its critical radius. The philosophical views of the early 20th century, especially those of Sir Arthur S. Eddington, imposed equilibrium as an almost unquestionable condition on theoretical mod- els describing stars. This paper is a historical and epistemological account of the theoretical defiance of this equilibrium hypothesis, with a novel reassessment of J.R. Oppenheimer's work on astrophysics. 1 Introduction Gravitationally collapsed objects are the conceptual precursor to black holes, and their history sheds light on how such a counter-intuitive idea was accepted long before there was any concrete proof of their existence. A black hole is a strong field structure of space-time surrounded by a unidirectional membrane that encloses a singularity. General relativity (GR) predicts that massive enough bodies will collapse into black holes. In fact, the first solution of Einstein's field equations implies the existence of black holes, but this conclusion was not reached at the time because the necessary logical steps were not as straightforward as they appear today.
    [Show full text]
  • Collapse of an Unstable Neutron Star to a Black Hole Matthias Hanauske (E-Mail:[email protected], Office: 02.232)
    Experiments in Computer Simulations : Collapse of an unstable Neutron Star to a Black Hole Matthias Hanauske (e-mail:[email protected], office: 02.232) 0 Class Information • application form : { if you want to do this experiment, please register via e-mail to me no later than on the last Wednesday before the week in which you want to do the experiment; your e-mail should include the following information: (1) student number, (2) full name, (3) e-mail address. • intensive course : { 12 [hours] = 6 [hours/week] × 2 [weeks]. • when : { Monday 9-16, two subsequent weeks upon individual arrangement with me; other time slots may be arranged with me individually. • where : { Pool Room 01.120. • preparation : { an account for you on the \FUCHS" cluster of the CSC (http://csc.uni-frankfurt.de/) will be provided; please read the quick starting guide on the CSC web pages before starting the simulation. • required skill : { basic Linux knowledge. • using software : { Einstein Toolkit [5]. { gnuplot (http://www.gnuplot.info/) { pygraph (https://bitbucket.org/dradice/pygraph). { python (https://www.python.org/) and matplotlib (http://matplotlib.org/). { Mathematica (http://www.wolfram.com/mathematica/). 1 1 Introduction Neutron stars are beside white dwarfs and black holes the potential final states of the evo- lution of a normal star. These extremely dense astrophysical objects, which are formed in the center of a supernova explosion, represent the last stable state before the matter collapses to a black hole. Due to their large magnetic fields (up to 1011 Tesla) and fast rotation (up to 640 rotations in one second) neutron stars emit a certain electromagnetic spectrum.
    [Show full text]
  • Detection of Gravitational Collapse J
    Detection of gravitational collapse J. Craig Wheeler and John A. Wheeler Citation: AIP Conference Proceedings 96, 214 (1983); doi: 10.1063/1.33938 View online: http://dx.doi.org/10.1063/1.33938 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/96?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Chaos and Vacuum Gravitational Collapse AIP Conf. Proc. 1122, 172 (2009); 10.1063/1.3141244 Dyadosphere formed in gravitational collapse AIP Conf. Proc. 1059, 72 (2008); 10.1063/1.3012287 Gravitational Collapse of Massive Stars AIP Conf. Proc. 847, 196 (2006); 10.1063/1.2234402 Analytical modelling of gravitational collapse AIP Conf. Proc. 751, 101 (2005); 10.1063/1.1891535 Gravitational collapse Phys. Today 17, 21 (1964); 10.1063/1.3051610 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.83.205.78 On: Mon, 02 Mar 2015 21:02:26 214 DETECTION OF GRAVITATIONAL COLLAPSE J. Craig Wheeler and John A. Wheeler University of Texas, Austin, TX 78712 ABSTRACT At least one kind of supernova is expected to emit a large flux of neutrinos and gravitational radiation because of the collapse of a core to form a neutron star. Such collapse events may in addition occur in the absence of any optical display. The corresponding neutrino bursts can be detected via Cerenkov events in the same water used in proton decay experiments. Dedicated equipment is under construction to detect the gravitational radiation.
    [Show full text]
  • Swift J164449. 3+ 573451 Event: Generation in the Collapsing Star
    Swift J164449.3+573451 event: generation in the collapsing star cluster? V.I. Dokuchaev∗ and Yu.N. Eroshenko† Institute for Nuclear Research of the Russian Academy of Sciences 60th October Anniversary Prospect 7a, 117312 Moscow, Russia (Dated: June 27, 2018) We discuss the multiband energy release in a model of a collapsing galactic nucleus, and we try to interpret the unique super-long cosmic gamma-ray event Swift J164449.3+573451 (GRB 110328A by early classification) in this scenario. Neutron stars and stellar-mass black holes can form evolutionary a compact self-gravitating subsystem in the galactic center. Collisions and merges of these stellar remnants during an avalanche contraction and collapse of the cluster core can produce powerful events in different bands due to several mechanisms. Collisions of neutron stars and stellar-mass black holes can generate gamma-ray bursts (GRBs) similar to the ordinary models of short GRB origin. The bright peaks during the first two days may also be a consequence of multiple matter supply (due to matter release in the collisions) and accretion onto the forming supermassive black hole. Numerous smaller peaks and later quasi-steady radiation can arise from gravitational lensing, late accretion of gas onto the supermassive black hole, and from particle acceleration by shock waves. Even if this model will not reproduce exactly all the Swift J164449.3+573451 properties in future observations, such collapses of galactic nuclei can be available for detection in other events. PACS numbers: 98.54.Cm, 98.70.Rz Keywords: galactic nuclei; neutron stars; gamma-ray bursts I. INTRODUCTION ters of stellar remnants can form in the course of evolu- tion due to mass segregationsinking of the most massive On March 28, 2011, the Swift’s Burst Alert Telescope stars to the center and their explosions as supernovae [9– detected the unusual super-long gamma-ray event Swift 11].
    [Show full text]
  • Fuzzy Blackholes Anand Murugan Pomona College
    Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2007 Fuzzy Blackholes Anand Murugan Pomona College Recommended Citation Murugan, Anand, "Fuzzy Blackholes" (2007). Pomona Senior Theses. 21. http://scholarship.claremont.edu/pomona_theses/21 This Open Access Senior Thesis is brought to you for free and open access by the Pomona Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Fuzzy Blackholes Anand Murugan Advisor : Prof. Vatche Sahakian May 1, 2007 Contents 1 Introduction 2 2 Background 3 2.1 String Theory And Her Mothers, Sisters and Daughters . 3 2.2 Black Holes And Their Properties . 5 2.3Holography................................ 7 2.4NCSYMs................................. 9 3 Fuzzy Black Holes 12 3.1 Formation of the Fuzzy Horizon . 12 3.2TheNCSYM............................... 13 3.3 The Gravitational Dual . 14 3.4 The Decoupling Limit . 16 3.5 Phase Structure . 18 3.6 Stabilization . 19 4 Brane Interaction 21 4.1 Setup of Problem . 21 4.2Analysis.................................. 22 5 Conclusions 23 1 Chapter 1 Introduction The fuzzball model of a black hole is an attempt to resolve the many paradoxes and puzzles of black hole physics that have revealed themselves over the last century. These badly behaved solutions of general relativity have given physicists one of the few laboratories to test candidate quantum theories of gravity. Though little is known about exactly what lies beyond the event horizon, and what the ultimate fate of matter that falls in to a black hole is, we know a few intriguing and elegant semi-classical results that have kept physicists occupied.
    [Show full text]
  • Exact Solutions for Spherically Gravitational Collapse Around A
    Exact solutions for spherically gravitational collapse around a black hole: the effect of tangential pressure Zhao Sheng-Xian(赵声贤)1,3, Zhang Shuang-Nan(张双南)1,2,3† 1 Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing 100049, China 3 University of Chinese Academy of Sciences, Beijing 100049, China Abstract: Spherically gravitational collapse towards a black hole with non-zero tangential pressure is studied. Exact solutions corresponding to different equations of state are given. We find that when taking the tangential pressure into account, the exact solutions have three qualitatively different endings. For positive tangential pressure, the shell around a black hole may eventually collapse onto the black hole, or expand to infinity, or have a static but unstable solution, depending on the combination of black hole mass, mass of the shell and the pressure parameter. For vanishing or negative pressure, the shell will collapse onto the black hole. For all eventually collapsing solutions, the shell will cross the event horizon, instead of accumulating outside the event horizon, even if clocked by a distant stationary observer. Keywords: black holes, gravitational collapse, general relativity 1. Introduction In 1939 Oppenheimer and Snyder [1] studied the gravitational collapse of a homogeneous spherically symmetric and pressureless dust cloud, which initiated the study of gravitational collapse. In the work of Oppenheimer and Snyder (1939) [1], they predicted the phenomenon of “frozen star”, which states that a test particle falling towards a black hole will be eventually frozen near the black hole with an arbitrarily small distance from the event horizon for an observer at infinity, though the particle will indeed cross the event horizon and reach the singularity at the center within finite time in the comoving coordinates.
    [Show full text]
  • Gravitational Collapse: Jeans Criterion and Free Fall Time
    Astrofysikalisk dynamik, VT 2010 Gravitational Collapse: Jeans Criterion and Free Fall Time Lecture Notes Susanne HÄofner Department of Physics and Astronomy Uppsala University 1 Gravitational Collapse and Star Formation In this course we apply the equations of hydrodynamics to various phases of stellar life. We start with the onset of star formation, asking under which conditions stars can form out of the interstellar medium and which typical time scales govern the gravitational collapse of a cloud. The Jeans Criterion We consider a homogeneous gas cloud with given density and temperature, and investigate under which circumstances this con¯guration is unstable due to self-gravity. For simplicity, we restrict the problem to a one-dimensional analysis. The gas is described by the equation of continuity @½ @ + (½u) = 0 (1) @t @x and the equation of motion @ @ @P @© (½u) + (½uu) = ¡ ¡ ½ (2) @t @x @x @x including the gravitational acceleration g = ¡@©=@x The gravitational potential © is given by Poisson's equation @2© = 4¼G½ (3) @x2 describing the self-gravity of the gas (G is the constant of gravitation). We assume that the gas is isothermal and replace the energy equation by a barotropic equation of state 2 P = cs½ (4) where cs is the isothermal sound speed. This assumption is justi¯ed by the fact that the energy exchange by radiation is very e±cient for typical interstellar matter, i.e. the time scales for thermal adjustment are short compared to the dynamical processes we study here. We assume that initially the gas has a constant density ½0, a constant pressure P0 and is at rest (u0 = 0).
    [Show full text]
  • SNOWMASS21-TF1 TF0-057.Pdf 409.50KB 2020-08-31 21:46:42
    Snowmass2021 - Letter of Interest Peering inside Black Holes with Gravitational Waves Thematic Areas: (TF01) String theory, quantum gravity, black holes (TF2) Effective field theory techniques (TF3) CFT and formal QFT (TF4) Scattering amplitudes (TF5) Lattice gauge theory (TF6) Theory techniques for precision physics (TF7) Collider phenomenology (TF8) BSM model building (TF9) Astro-particle physics & cosmology (TF10) Quantum Information Science (TF11) Theory of neutrino physics (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics Contact Information: Emil Mottola (Los Alamos National Laboratory & Perimeter Institute)[[email protected]] Author: Emil Mottola Abstract: In classical General Relativity (GR) the interiors of Black Holes (BHs) are not only singular but, if rotating, also admit closed timelike curves, violating causality.1 This feature occurs at macroscopic distance scales, far larger than the microscopic Planck scale LP l. When quantum effects are considered, severe conflicts with statistical thermodynamics, conservation of probability and an enormous BH entropy arise also at the macroscopic horizon scale.2,3 This suggests that a low energy semi-classical Effective Field Theory (EFT) approach should be applicable. In this LOI such an approach based the conformal anomaly is proposed, which leads to a non-singular horizonless, but ultra-compact object called a gravitational condensate star. The gravastar hypothesis can be tested by searching for discrete surface modes and GW echoes emitted after binary merger events. In this new era of GW and multi-messenger astronomy with additional GW detectors coming online in this decade, the time is now ripe for a full-fledged effort to confront these theoretical ideas with the observational data that hold the promise of resolving the conundrum that BHs pose, and potentially point to a new path to ultimate synthesis of gravitation and quantum theory.
    [Show full text]
  • Black Holes and String Theory
    Black Holes and String Theory Hussain Ali Termezy Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London September 2012 Contents 1 Black Holes in General Relativity 2 1.1 Black Hole Solutions . 2 1.2 Black Hole Thermodynamics . 5 2 String Theory Background 19 2.1 Strings . 19 2.2 Supergravity . 23 3 Type IIB and Dp-brane solutions 25 4 Black Holes in String Theory 33 4.1 Entropy Counting . 33 Introduction The study of black holes has been an intense area of research for many decades now, as they are a very useful theoretical construct where theories of quantum gravity become relevant. There are many curiosities associated with black holes, and the resolution of some of the more pertinent problems seem to require a quantum theory of gravity to resolve. With the advent of string theory, which purports to be a unified quantum theory of gravity, attention has naturally turned to these questions, and have remarkably shown signs of progress. In this project we will first review black hole solutions in GR, and then look at how a thermodynamic description of black holes is made possible. We then turn to introduce string theory and in particular review the black Dp-brane solutions of type IIB supergravity. Lastly we see how to compute a microscopic account of the Bekenstein entropy is given in string theory. 1 Chapter 1 Black Holes in General Relativity 1.1 Black Hole Solutions We begin by reviewing some the basics of black holes as they arise in the study of general relativity.
    [Show full text]
  • Arxiv:2010.05354V1 [Gr-Qc] 11 Oct 2020
    Black hole or Gravastar? The GW190521 case I. Antoniou1, ∗ 1Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece (Dated: August 31, 2021) The existence of cosmological compact objects with very strong gravity is a prediction of General Relativity and an exact solution of the Einstein equations. These objects are called black holes and recently we had the first observations of them. However, the theory of black hole formation has some disadvantages. In order to avoid these, some scientists suggest the existence of gravastars (gravitation vacuum stars), an alternative stellar model which seems to solve the problems of the black hole theory. In this work we compare black holes and gravastars using a wide range of the literature and we emphasize the properties of gravastars, which are consistent with the current cosmological observations. Also, we propose gravastars as the solution of the ”pair-instability” effect and a possible explanation for the observed masses of the compact objects, before the collapse, from the gravitational signal GW190521, since in the formation of a gravastar there aren’t mass restrictions. PACS numbers: 98.62.Ai, 04.20.Cv, 04.30.-w I. INTRODUCTION black holes, or some other compact object with very strong gravity. Many scientists dispute the One of the most attractive concepts in Gen- existence of black holes because if we take into ac- eral Relativity is the existence and the properties count quantum effects, the gravitational collapse of black holes, a region of spacetime where grav- of objects comes to a halt and furthermore no ity is so strong that nothing, no particles or even event horizon forms [2].
    [Show full text]