Basal Quartz) Valley (Taber-Cutbank), Southern Alberta and Northem Montana

Total Page:16

File Type:pdf, Size:1020Kb

Basal Quartz) Valley (Taber-Cutbank), Southern Alberta and Northem Montana A Study of the Sedirnentology, Geochemistry, and Stratigraphie Organization of the Lower Cretaceous Horsefly (Basal Quartz) Valley (Taber-Cutbank), Southern Alberta and Northem Montana by Terrence David Lukie A thesis submitted to the Department of Geological Sciences in conformity with the requirements for the degree of Master of Science Queen' s University Kingston, Ontario, Canada March, 1999 copyright " Terrence David Lukie, 1999 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Setvices services bibliographiques 395 Weïïington Street 395, nie Wellington OttawaON K1AW4 OttawaON K1AûN4 CaMda Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distriie or sell reproduire, prêter, distriiuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicmfïche/film, de reproduction sur papier ou sur format elecbronique . The author retains ownenhip of the L'auteur conserve la propriete du copyright in this thesis. Neither the droit d'auteur qui protège cette îhèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract The Basal Quartz unit (Early Cretaceous) consists of al1 deposits fiom the sub- Cretaceous unconfomity upon which it sits to the base of the Ostracode Zone. In southem Alberta and northem Montana is a complex unit composed of four mineralogically distinct units (A-sands, Honefly, BAT, and Ellerslie Formation) consisting of quartz-rich sandstones and mudstones of fluvial and fluvial-estuarine origin. These units comprise at least four different incised-valley systems (Le., four different depositional sequences). In the study area (Townships 1-7, Ranges 15- 18 W4 in Alberta, and Townships 3 1-37N, Ranges 4-6W in Montana; fiom 48.5 O to 49.5 ONlatitude and 112 O to 113 O W longitude), the fil1 of the second valley (the Horsefly unit; Taber-Cutbank equivdent) is composed of only fluvial sediments with no marine influence. The purpose of the shidy is to determine how changes in the rates of creation of accommodation space are reflected in the fluvial architecture (channel stacking patterns). This was done using subsdace oil-industry data such as petrophysical well-logs (270 wells on 20 cross-sections, plus wells off-section) and drill cores (60). A chemostratigraphic study of the Basal Quartz valley deposits in question, as weIl as of the over- and underlying stratigraphic units (nom the Jurassic Rierdon Formation to the Lower Cretaceous Glauconitic Member) has shown that the previously defined stratigraphic units are geochemically distinct and that Basal Quartz (Horsefly) deposits being studied are geochemically homogeneous. The geochemical analyses also indicate that the Horsefly unit may contain sediment derived f?om three possible sources: the shield craton, and uplifted cratonic rocks and oceanic termes in the cordillera. The Honefly is a broad (40-45 km.wide), flat-bottomed, valley with approximately 46 metres (150 feet) of relief, and on average about 42.5 metres (140 feet) of deyfill. It is bounded by the Sweetgrass Arch to the east and the Foreland Fold and Thmst Belt to the West. The Horsefly is composed of eleven facies ranging from conglomerate to rnudstone. which comprise four main facies associations (channel deposits, thin sand sheets, interbedded sands and muds, and mud successions). There is an overall increase in the amount of mud preserved fiom the base to the top of the valley which can be interpreted as reflecting an overall increase in accommodation space. This increase is theresult of an overall relative sea- level rise. Local areas where the Horsefly unit is thicker, shows a decrease in the sand-to-mud ratio, and has an increase in the percentage of organic matter are interpreted to represent localized increases of accommodation space resulting from block faulting. The valley deposits cm be subdivided into two systems tracts (Lowstand Systems Tracts (LST) and Transgressive Systems Tracts (TST)). The LST occurs at the base of the valley and is composed of charnel-belts that are amalgamated into a single, sheet-like sandbody. This sandbody averages between 18 and 21 metres in thickness, and covers the base ofthe vailey. The overlying TST is composed of isolated chamel-beits encased in muddy overbar. paleosols. These isolated channel-belts average between 4.5 and 6 metres in thickness, and have an estimated width of 0.5 to 3 kilometres. Two main types of paleosols were identifid in the overbank sediments (gleysols and vertisols; sensu Mack et al., 1993). Geochemical analyses of the pdeosols indicate that the degrees of saiinization, calcification, leaching, and hydrolysis are very low, which signifies that the paleosols are immature. Understanding how the affects of changes in accommodation space alter the channel stacking patterns (fluvial architecture) in this vaifey rnay dowthe sequence-stratigraphie correlation of fluvial deposirs to specific marine deposits. Acknowledgments 1 would like to thank PanCanadian Petroleum. Limited for the financial and technical support received for this project. 1wodd also like to thank Dr. Robert W. Dalrymple for his financial and technical support throughout the proj ect. 1acknowledge Queen's University and the American Association of Petroleum Geologists for the financial support received while working on this project. 1 thank Ken Ratcliffe and Chernosrnt Consultants for the geochemical analyses that were done for the snidy. I also acknowledge the following people for discussions which greatly improved the thesis: B.A. Zaitiin, D. Potocki, J. Peterson, N. Corben, P.J. McCarthy, W. Arnott, D. Leckie, Re MacNaughton, R. Price, G. Narbonne, G. Ardies and L. Smith. 1 also thank W. Nysola and R. Kliciak for their geotechnical support, and R. Renaud for his cornputer technological support. I would especially like to thank my famil y, for theû moral and financial support throughout both of my degrees. Lastiy, but definitely not least, I thank Ms. Tammy P. Rae for her tremendous amount of love and moral support over the years. and for patiently waiting for me to finally retum home. Tabie of Contents Acknowledgments ................................................ iv Table of Contents .................................................. v .* List of Figures .................................................. viii List of Tables .................................................... xi 1.0 Introduction ................................................... 1 2.0 Regionai Stratigraphy ............................................ 6 2.1 Introduction ................................................. 6 2.2 General Stratigraphy .......................................... 6 2.2.1 Jurassic Rocks ........................................... 6 2.2.2 Sub-Cretaceous Unconformity .............................. 9 2.2.3 Lower Mannville Group ................................... 9 2.2.4 Upper Mannville Group (Upper Blairmore) ................... 12 2.3 Previous Studies of the Basal Quartz ............................ 14 2.4 PanCanadian Petroleurn Regional Study (Basal Quartz Regional Task Force) ............................................. 15 2.4.1 A-sands ............................................... 16 2.4.2 Horsefly Unit ........................................... 18 2.4.3 B.A.T. (Bantry-Aiderson-Taber) Sands ...................... 19 2.5 Basal Quartz Production History (southem Alberta and northern Montana ......................................... 19 3.0 Methodology ................................................. 21 3.1 Well-Logs ................................................... 77 3.2 Geochemical Sampling ....................................... 26 3.3 Drill Cores ................................................. 27 3 .4 Petrographic T'hin Sections .................................... 27 4.0 Geochemistry of the Lower Cretaceous Deposits .................... -29 4.1 Introduction ................................................ 29 4.2Methods ................................................... 30 4.2.1 Analytical Techniques .................................... 30 4.2.2 Statistical Techniques .................................... 32 4.3 Geochemical Distinction of Stratigraphie Units ................... -33 4.3.1 Mudstones ............................................. 49 4.3.2 Sandstones ............................................. 57 4.4 Mineralogy of the Horsefly Unit (Mudstone Data) .................. 63 4.5 Provenance of the Horsefly .................................... 69 4.6 ConcIusions ................................................ 78 5.0 Facies and Facies Associations ................................... 81 5.1 Introduction ................................................ 81 5.2Facies .................................................... 81 5.3 Facies Associations: Description and Interpretation ................. 95 5.3.1 a Facies Association 1: Chanel Deposits ...................... 99 5 .3.l b Facies Association 1 : Interpretation ....................... 103 5.3.2a Facies Association 2: Thin Sand Sheets .................... 104 5 .3.2b Facies Association 2: Interpretation ....................... 105 5.3.3a Facies Association
Recommended publications
  • Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada)
    Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada). R. Deschamps, Eric Kohler, M. Gasparrini, O. Durand, T. Euzen, Fati Nader To cite this version: R. Deschamps, Eric Kohler, M. Gasparrini, O. Durand, T. Euzen, et al.. Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada).. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2012, 67 (1), pp.31-58. 10.2516/ogst/2011153. hal-00702841 HAL Id: hal-00702841 https://hal-ifp.archives-ouvertes.fr/hal-00702841 Submitted on 31 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ogst110074_Deschamps 22/02/12 14:54 Page 31 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 1, pp. 31-58 Copyright © 2012, IFP Energies nouvelles DOI: 10.2516/ogst/2011153 Dossier Diagenesis - Fluid-Rocks Interactions Diagenèse minérale - Équilibres fluides-roches Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada) R. Deschamps1*, E. Kohler1, M. Gasparrini1, O. Durand2, T. Euzen3 and F.
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Physical and Numerical Modeling of SAGD Under New Well Configurations
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-09-23 Physical and Numerical Modeling of SAGD Under New Well Configurations Tavallali, Mohammad Tavallali, M. (2013). Physical and Numerical Modeling of SAGD Under New Well Configurations (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27348 http://hdl.handle.net/11023/1002 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Physical and Numerical Modeling of SAGD Under New Well Configurations by Mohammad Tavallali A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING CALGARY, ALBERTA SEPTEMBER, 2013 © Mohammad Tavallali, 2013 ii ABSTRACT This research was aimed at investigating the effect of well configuration on SAGD performance and developing a methodology for optimizing the well configurations for different reservoir characteristics. The role of well configuration in determining the performance of SAGD operations was investigated with help of numerical and physical models. Since mid 1980’s, SAGD process feasibility has been field tested in many successful pilots and subsequently through several commercial projects in various bitumen and heavy oil reservoirs. Although SAGD has been demonstrated to be technically successful and economically viable, it still remains very energy intensive, extremely sensitive to geological and operational conditions, and an expensive oil recovery mechanism.
    [Show full text]
  • General Geology of Lower Cretaceous Heavy Oil
    POOR IMAGE DUE TO ORIGINAL DOCUMENT QUALITY -JC.plt, 5 - ot/-oI General Geology of Lower Cretaceous Heavy • Oil Accumulations In Western Canada By L W. VIGRASS* (Heavy Oil Semillur, The Petrolell1n Society of C.l.~I., Calgary. llIay .5, 1.965) ABSTRACT The oil throughout the belt is asphaltic and contain.'3Downloaded from http://onepetro.org/jcpt/article-pdf/4/04/168/2165766/petsoc-65-04-01.pdf by guest on 01 October 2021 large amounts of sulphur. nitrogen and oxygen. Gra­ Lower Cretaceous sand reservoirs contain about 750 billion barrels of "lscous, heavy oil along a broad arcuate vities range from 6° to 18° API and viscosities from belt that extends from northwestern Alberta into west­ several hundred to several million centipoise at GO°F, central Saskatchewan_ The heavy on is pooled in the Studies of sulphur isotopes, trace metal content and Mannville Group and, in a gross sense. occurs in a marine­ continental transition facies. The accumulation at Peace high molecular weight compounds show a fundamen­ River is in a regional onlap feature. The accumulations in tal similarity between Athabasca, Bonn.yville und the Athabasca-Llo}'dminster region occur across the Lloydminster crude oils. crest and on the southwest flank of a regional anticlinal feature associated with the solution of salt from Middle The change in character of the oil with geographic Devonian beds. These re~ional features had already position and depth is not ' ...·ell documented, but oils formed by the end of Early Cretaceous time. from deeper reservoirs at the south end of the bell Chemical and physical I)rOperties of oils from differ­ are more paraffinic, have higher API gravities and ent accumulations show that they belong to a single oil s:,.,stem and suggest a common mode of origin.
    [Show full text]
  • Incised Valley-Fill System Development and Stratigraphic
    INCISED VALLEY-FILL SYSTEM DEVELOPMENT AND STRATIGRAPHIC ANALYSIS OF THE LOWER CRETACEOUS KOOTENAI FORMATION, NORTHWEST MONTANA by Casey Ryan Reid A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April 2015 ©COPYRIGHT by Casey Ryan Reid 2015 All Rights Reserved ii ACKNOWLEDGEMENTS I would like to thank the Big Sky Carbon Sequestration Partnership and Vecta Oil and Gas for the financial and technical support received during this project. I would also like to thank my committee Dr. Jim Schmitt, Dr. Dave Bowen and Dr. Dave Lageson for their support and guidance throughout the duration of this thesis. Montana State University and the American Association of Petroleum Geologists are also acknowledged for financial support received and continued excellence in the geosciences. Without the support of my family and friends this project would surely never have been completed. While I am indebted to numerous people a number of specific words of thanks are necessary: to my parents whose love, guidance, and unwavering encouragement has never yielded, to my sisters who always supplied a welcome break from work and to my fellow geoscientists Jack Borksi, Nick Atwood, Nate Corbin, Ryan Hillier, and Colter Anderson. iii TABLE OF CONTENTS 1. INTRODUCTION, OBJECTIVES, & SIGNIFICANCE OF STUDY ...........................1 Introduction ......................................................................................................................1
    [Show full text]
  • Forensic Chemostratigraphy in Geosteering Multilateral Wells: an Example from Devonian to Carboniferous-Aged Sequences in Southe
    URTeC Control ID # 1579996 1 URTeC Control ID Number: 1579996 Forensic Chemostratigraphy in Geosteering Multilateral Wells: An example from Devonian to Carboniferous-aged sequences in Southern Alberta Heather Stilwell1*, Nahysa Martinez1, Gemma Hildred1, Brian Zaitlin2 1. Chemostrat, Houston, TX, United States. 2. Native American Resource Partners, Calgary, AB, Canada. Copyright 2013, Unconventional Resources Technology Conference (URTeC) This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, 12-14 August 2013. The URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted by the author(s). The contents of this paper have not been reviewed by URTeC and URTeC does not warrant the accuracy, reliability, or timeliness of any information herein. All information is the responsibility of, and, is subject to corrections by the author(s). Any person or entity that relies on any information obtained from this paper does so at their own risk. The information herein does not necessarily reflect any position of URTeC. Any reproduction, distribution, or storage of any part of this paper without the written consent of URTeC is prohibited. Summary The results presented in this study test the efficacy of using whole-rock elemental data to characterize the stratigraphy penetrated when drilling lateral wells and use this information along with comparisons to a vertical offset well to stay in zone. This approach is tested in the Alberta Bakken Petroleum System (ABPS) in Southwestern Alberta, Canada, focusing on the Banff, Exshaw, Big Valley, and Stettler formations (Hildred et al 2013, Zaitlin 2013).
    [Show full text]
  • Bedrock Geology of Alberta
    Alberta Geological Survey Map 600 Legend Bedrock Geology of Alberta Southwestern Plains Southeastern Plains Central Plains Northwestern Plains Northeastern Plains NEOGENE (± PALEOGENE) NEOGENE ND DEL BONITA GRAVELS: pebble gravel with some cobbles; minor thin beds and lenses NH HAND HILLS FORMATION: gravel and sand, locally cemented into conglomerate; gravel of sand; pebbles consist primarily of quartzite and argillite with minor amounts of sandstone, composed of mainly quartzite and sandstone with minor amounts of chert, arkose, and coal; fluvial amygdaloidal basalt, and diabase; age poorly constrained; fluvial PALEOGENE PALEOGENE PALEOGENE (± NEOGENE) PALEOGENE (± NEOGENE) UPLAND GRAVEL: gravel composed of mainly white quartzite cobbles and pebbles with lesser amounts of UPLAND GRAVEL: gravel capping the Clear Hills, Halverson Ridge, and Caribou Mountains; predominantly .C CYPRESS HILLS FORMATION: gravel and sand, locally cemented to conglomerate; mainly quartzite .G .G and sandstone clasts with minor chert and quartz component; fluvial black chert pebbles; sand matrix; minor thin beds and lenses of sand; includes gravel in the Swan Hills area; white quartzite cobbles and pebbles with lesser amounts of black chert pebbles; quartzite boulders occur in the age poorly constrained; fluvial Clear Hills and Halverson Ridge gravels; sand matrix; ages poorly constrained; extents poorly defined; fluvial .PH PORCUPINE HILLS FORMATION: olive-brown mudstone interbedded with fine- to coarse-grained, .R RAVENSCRAG FORMATION: grey to buff mudstone
    [Show full text]
  • Assessment of Undiscovered Conventional Oil and Gas Resources of the Western Canada Sedimentary Basin, Canada, 2012
    Assessment of Undiscovered Conventional Oil and Gas Resources of the Western Canada Sedimentary Basin, Canada, 2012 The U.S. Geological Survey mean estimates of undiscovered conventional oil and gas resources from provinces in the Western Canada Sedimentary Basin of central Canada are 1,321 million barrels of oil, 25,386 billion cubic feet of gas, and 604 million barrels of natural gas liquids. Introduction Basin Province of Saskatchewan, southeastern Alberta, and southern Manitoba; and (3) the Rocky Mountain Deformed The U.S. Geological Survey (USGS) recently completed Belt Province of western Alberta and eastern British Colum- a geoscience-based assessment of undiscovered oil and gas bia (fig. 1). This report is part of the USGS World Petroleum resources of provinces within the Western Canada Sedimentary Resources Project assessment of priority geologic provinces Basin (WCSB) (table 1). The WCSB primarily comprises the of the world. The assessment was based on geoscience ele- (1) Alberta Basin Province of Alberta, eastern British Columbia, ments that define a total petroleum system (TPS) and associated and the southwestern Northwest Territories; (2) the Williston assessment unit(s) (AU). These elements include petroleum 129° 125° 121° 117° 113° 109° 105° 101° 97° 93° 89° Mackenzie Northern Interior Basins Foldbelt NUNAVUT NORTHWEST TERRITORIES 60° Hudson Bay HUDSON CANADA Basin BAY 58° EXPLANATION ALBERTA SASKATCHEWAN Middle and Upper Cretaceous Reservoirs AU Triassic through Lower Cretaceous Reservoirs AU 56° Alberta Basin Mississippian through Canadian Permian Reservoirs AU Shield Upper Devonian and Older Reservoirs AU 54° BRITISH MANITOBA COLUMBIA Williston Basin Edmonton 52° Rocky Mountain Deformed Belt Saskatoon ONTARIO CANADA 50° Area Calgary of map Regina Winnipeg UNITED STATES 48° 0 100 200 MILES WASHINGTON NORTH MONTANA UNITED STATES DAKOTA 0 100 200 KILOMETERS IDAHO Figure 1.
    [Show full text]
  • Stratigraphic Framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and Mclaren Alloformations) in the Lloyd
    Stratigraphic Framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and McLaren Alloformations) in the Lloydminster Area, West-central Saskatchewan Alireza Morshedian 1, James A. MacEachern 1, and Shahin E. Dashtgard 1 Morshedian, A., MacEachern, J.A., and Dashtgard, S.E. (2012): Stratigraphic framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and McLaren alloformations) in the Lloydminster area, west-central Saskatchewan; in Summary of Investigations 2011, Volume 1, Saskatchewan Geological Survey, Sask. Ministry of Energy and Resources, Misc. Rep. 2011-4.1, Paper A-3, 17p. Abstract The Lower Cretaceous Sparky, Waseca, and McLaren alloformations (Upper Mannville Group) of west-central Saskatchewan comprise an interval up to 60 m thick, consisting of weakly consolidated sandstones, shales, heterolithic bedsets and minor coals, deposited in shallow-marine to coastal plain/delta plain environments. A sequence stratigraphic evaluation of the upper part of the Mannville Group is presented, based on the vertical and lateral distributions of facies associations and the presence of stratigraphic discontinuities. Thirteen facies are recognized. These facies are grouped into six spatially recurring facies associations. Facies Association 1 consists of a single facies, pervasively bioturbated silty/sandy mudstone. The facies contains marine trace fossil suites and is interpreted to record sediment accumulation in an open marine (offshore) environment. Wave-/storm-dominated shoreface deposits of Facies Association 2 (FA2) display sporadically distributed, but locally high bioturbation intensities. Units consist mainly of well-sorted, erosionally amalgamated hummocky cross-stratification and swaley cross-stratification sandstones with intervening bioturbated sandstone layers, passing into cross-stratified and planar-stratified sandstones. Facies Association 3 (FA3) corresponds to deltaic successions that lie laterally adjacent (along the same paleo-shoreline) to the wave-/storm-dominated shoreface deposits of FA2.
    [Show full text]
  • Uranium Geoscience in the Athabasca Basin and Western Canada Sedimentary Basin in Northwestern Saskatchewan (NTS 74F and 74K)
    Uranium Geoscience in the Athabasca Basin and Western Canada Sedimentary Basin in Northwestern Saskatchewan (NTS 74F and 74K) Sean A. Bosman 1, Jared Noll 2, Derek Johnson 3 and Brody Strocen 3 Information from this publication may be used if credit is given. It is recommended that reference to this publication be made in the following form: Bosman, S.A., Noll, J., Johnson, D. and Strocen, B. (2017): Uranium geoscience in the Athabasca Basin and Western Canada Sedimentary Basin in northwestern Saskatchewan (NTS 74F and 74K); in Summary of Investigations 2017, Volume 2, Saskatchewan Geological Survey, Saskatchewan Ministry of the Economy, Miscellaneous Report 2017-4.2, Paper A-4, 14p. Abstract The Patterson Lake region of northwest Saskatchewan, at the southwest margin of the Athabasca Basin, contains at least three high-grade uranium deposits, the Triple R, Arrow and Spitfire. This area is unique to the Athabasca region within Saskatchewan because of the presence of rocks of the Western Canada Sedimentary Basin, which overlie rocks of both the Taltson/Clearwater domains and the Athabasca supergroup. Phanerozoic stratigraphy in the area includes carbonate-rich rocks of the Lower to Middle Devonian Elk Point Group, sandstones and mudstones of the Lower Cretaceous Mannville Group, moderately lithified diamictites (probably Quaternary?) and unconsolidated Quaternary sediments. The Elk Point Group in this area can be further divided, from oldest to youngest, into the La Loche, Contact Rapids and Winnipegosis/Methy formations (Alberta nomenclature), or the Ashern and Winnipegosis formations (Saskatchewan nomenclature). The Mannville Group is divided, from lower to upper, into the McMurray, Clearwater and Grand Rapids formations (Alberta nomenclature), or the Cantuar and Pense formations (Saskatchewan nomenclature).
    [Show full text]
  • CO2 Sequestration and Coalbed-Methane Potential of Lower Mannville Group (Lower Cretaceous) Coals, Southern Saskatchewan – Preliminary Investigations
    CO2 Sequestration and Coalbed-Methane Potential of Lower Mannville Group (Lower Cretaceous) Coals, Southern Saskatchewan – Preliminary Investigations S.L. Bend 1 and M.C. Frank 1 Bend, S.L. and Frank, M.C. (2004): CO2 sequestration and coalbed-methane potential of lower Mannville Group (Lower Cretaceous) coals, southern Saskatchewan – preliminary investigations; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-12, 17p. Abstract The long-term storage of CO2 within deep non-mineable coal seams is widely considered to be a viable means of reducing greenhouse gas emissions. Recent studies have also shown that injection of CO2 into coal seams can enhance the production of coalbed methane (CBM), a more environmentally friendly fuel than oil. The Lower Cretaceous Mannville Group (Aptian-Albian) of southern Saskatchewan contains coals of sub- bituminous rank occurring within the Cantuar Formation. Because of their low economic importance, these coals have received only minimal attention in the past, and little is known of their distribution and character. A major project was recently initiated to assess the CO2 sequestration and CBM potential of the Mannville coals. Analysis of geophysical well logs, core, and drill cuttings was performed along with coal petrography in order to identify areas of the thickest, most extensive coal deposits, and to determine their petrographic characteristics. This report presents some preliminary data on coals of the lower Mannville Group interval (Dina to General Petroleums members). To date, regions of thick (up to 5.5 m), laterally continuous (up to 65 km) coal in the lower Mannville Group have been identified in four principal areas: Winter-Senlac, Kerrobert Paleovalley, Unity-Kindersley embayments, and the Empress Basin.
    [Show full text]
  • GEOLOGIC MAP of the BELT 30' X 60' QUADRANGLE, CENTRAL
    GEOLOGIC MAP OF THE BELT 30’ x 60’ QUADRANGLE, CENTRAL MONTANA Susan M. Vuke, Richard B. Berg, Roger B. Colton, and Hugh E. O’Brien Montana Bureau of Mines and Geology Open-File Report MBMG 450 2002 REVISIONS Text: 10/03 Map: 11/07 This report has had preliminary reviews for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards. Partial support has been provided by the STATEMAP component of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey under contract number 01-HQ-A6-0096. CORRELATION DIAGRAM BELT 30’x 60’ QUADRANGLE Qal Qaf Qac Qe Holocene Qat Qta Qls Qgt Qgl QTat QTab Quaternary QTdf Pleistocene unconformity Pliocene Tat Miocene Tbs Tla Tsh Tsy Tcgm Tmgm Tg Tqsp Tsh Tsy Tql Tqm Tr Tphm Direct correlation between Highwood Mountains and Little Belt Mountains not intended; relation not known. Tertiary Tl Eocene Highwood Mountains and vicinity unconformity Little Be l t Mountains and vicini ty ? Tcg ? unconformity Kjr Kcl Kmg Keu MONTANA GROUP Kev Ket Ktc Kmk Kmf Upper Cretaceous unconformity Kmc Cretaceous (part) unconformity Kmfl COLORADO GROUP unconformity Kbb Km Kac Kbv Lower Kt Kbt Cretaceous (part) Kbfl 2. Continued on next page. CORRELATION DIAGRAM (Continued) BELT 30’ x 60’ QUADRANGLE Kk5 Kk4 Lower Cretaceous Cretaceous (part) Kk s (part) Kk2 Kkc unconformity KJm Jurassic Je ELLIS GROUP unconformity Pennsylvanian IPMab AMSDEN GROUP Mt Mh Mo BIG SNOWY GROUP Mississippian Mk unconformity Mmc MADISON GROUP Ml MDt Dj Devonian Dm unconformity Єpi Єp Cambrian Єm Єw Єf unconformity pЄc pЄgg pЄpi Early Proterozoic pЄmg pЄa ? ? Precambrian Archean pЄga pЄh pЄmi 3.
    [Show full text]