Sedimentology, Ichnology, and Stratigraphy of the Sparky, Waseca, and Mclaren Alloformations, West-Central Saskatchewan, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentology, Ichnology, and Stratigraphy of the Sparky, Waseca, and Mclaren Alloformations, West-Central Saskatchewan, Canada SEDIMENTOLOGY, ICHNOLOGY, AND STRATIGRAPHY OF THE SPARKY, WASECA, AND MCLAREN ALLOFORMATIONS, WEST-CENTRAL SASKATCHEWAN, CANADA by Alireza Morshedian M.Sc. (Geology), Azad University of Tehran, 2006 B.Sc. (Geology), Azad University of Tehran, 1998 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Earth Sciences Faculty of Science © Alireza Morshedian 2012 SIMON FRASER UNIVERSITY Spring 2012 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for “Fair Dealing”. Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Alireza Morshedian Degree: Doctor of Philosophy Title of Thesis: Sedimentology, Ichnology, and Stratigraphy of the Sparky, Waseca, and McLaren Alloformations, West-Central Saskatchewan, Canada Examining Committee: Chair: Dr. Dan Gibson Associate Professor, Department of Earth Sciences _______________________________________________ Dr. James MacEachern Senior Supervisor Professor, Department of Earth Sciences _______________________________________________ Dr. Shahin Dashtgard Co-Supervisor Assistant Professor, Department of Earth Sciences _______________________________________________ Dr. Kerrie Bann Supervisor Adjunct Professor, Department of Earth Sciences _______________________________________________ Dr. George Pemberton Supervisor Professor, University of Alberta _______________________________________________ Dr. Brent Ward Internal Examiner Associate Professor, Department of Earth Sciences _______________________________________________ Dr. Luis Buatois External Examiner Professor, University of Saskatchewan Date Defended/Approved: March 21, 2012 _ ii Partial Copyright Licence ABSTRACT The Lower Cretaceous Sparky, Waseca, and McLaren alloformations (Upper Mannville Group) of west-central Saskatchewan comprise an interval up to 60 m thick, consisting of weakly consolidated sandstones, shales, heterolithic bedsets and minor coals deposited in shallow-marine to coastal plain/delta plain environments. Thirteen facies are recognized. These facies are grouped into six spatially recurring facies associations. Facies Association 1 (FA1) corresponds to sediments deposited below fairweather wave base but above storm wave base. Facies associations 2 and 3 (FA2 and FA3) coarsen upward and represent the progradation of wave- and storm-dominated shorefaces as well as mixed river- and wave-influenced deltas, respectively. Facies Association 4 (FA4) commonly displays fining-upward successions, interpreted as distributary channel or fluvio-estuarine deposits, depending upon their stratigraphic context. Facies Association 5 (FA5) is broadly similar to FA2, but is ichnologically distinct. The succession is characterized by low-diversity, impoverished trace-fossil suites with variable bioturbation intensities that are interpreted to record deposition in shallow brackish-water bays. Facies Association 6 (FA6) successions are interpreted as coastal plain/delta plain deposits. Upper Mannville strata can be separated into parts of two depositional sequences. The main deposits of the lower sequence comprise two highstand systems tracts (HST), corresponding to the Sparky Alloformation and the Lower Waseca Allomember. The base of the Lower Waseca marks the onset of a transgressive systems tract (TST). A maximum flooding surface (MFS) marks the end of transgression and the resumption of progradation for the remainder of the Lower Waseca. Following highstand progradation a relative base-level fall produced a subaerial unconformity, which marks the base of the upper sequence. Fluvial valley incision led to sediment bypass, and deposition of forced regressive and lowstand shoreface and delta complexes of the falling stage systems tract (FSST) and lowstand systems tract (LST) towards the northern part of the study area. TST accumulation is largely confined to estuarine infill of the incised valleys of the iii Upper Waseca Allomember. The Upper Waseca is separated from the McLaren Alloformation by a maximum flooding surface (MFS). The overlying McLaren Alloformation marks a return to regional shoreline progradation, and corresponds to a highstand systems tract (HST). Keywords: Mannville Group, Brackish Water, Deltas, Shorefaces, Ichnology, Sequence Stratigraphy, Lloydminster. Subject Terms: Ichnology, Sedimentology, Stratigraphy, Geology iv DEDICATION To Mila, my little motivation pill. v ACKNOWLEDGEMENTS First and foremost I’d like to acknowledge my senior supervisor, Dr. James MacEachern. Throughout my Ph.D. program, James provided me with motivation, immense knowledge, and support. He also encouraged me to present at conferences, which I now see as a highlight of my graduate career. He was such a crucial part of my academic experience and showed me what it means to be a professional geologist. I would also like to thank Dr. Shahin Dashtgard, who provided valuable insight and advice during individual discussions. I would also like to sincerely thank committee members Dr. George Pemberton, Dr. Kerry Bann, and Dr. Brent Ward, as well as Dr. Luis Buatois for being the external examiner, and providing excellent suggestions towards the improvement of this thesis. Special thanks are expressed to the personnel of the Saskatchewan Subsurface Geological Laboratory for access to the core and for logistical support. I would like to acknowledge the help, support, friendship, and guidance of past and present members of the ARISE Group, specifically: Cindy Hansen, Aaron DesRoches, Cameron Thompson, Shannon Frey, Chad Sisulak, Korhan Ayranci, Brittan Jones, Andrew LaCroix, Stacy Johnson, Johnna Czarnecki, Adam Montgomery, and Liam Ricci. A big thanks to Rodney Arnold, and Matt Plotnikoff who graciously helped every time I needed technical support. A special thanks to my family for their support and encouragement. Thanks to mom, dad, Ala, and Mitra, your love and support is greatly appreciated. Last but certainly not least, I would like to thank my wife Maryam for being supportive, especially during the stressful moments and filling my life with energy and love. vi TABLE OF CONTENTS Approval .......................................................................................................................................... ii Abstract .......................................................................................................................................... iii Dedication ........................................................................................................................................ v Acknowledgements ......................................................................................................................... vi Table of Contents .......................................................................................................................... vii List of Figures .................................................................................................................................. x List of Tables ................................................................................................................................ xiii CHAPTER 1: INTRODUCTION ................................................................................................. 1 1.1 Introduction ............................................................................................................................. 1 1.2 References ............................................................................................................................... 7 Chapter 2: Geological setting of the western canada foreland basin, and the evolution of the mannville group ................................................................................................. 12 2.1 Introduction ........................................................................................................................... 12 2.2 Foreland Basin Development ................................................................................................ 12 2.3 Development of the Western Canada Foreland Basin ........................................................... 14 2.3.1 Tectonostratigraphic Belts and Complexes .............................................................. 14 2.3.2 Evolution of the Cordillera and Western Canada Foreland Basin ........................... 18 2.3.3 Physical Elements of the Western Canada Foreland Basin ...................................... 20 2.4 The Evolution of the Mannville Group ................................................................................. 23 2.5 Sequence Stratigraphy of the Mannville Group .................................................................... 29 2.6 References ............................................................................................................................. 31 Chapter 3: Integrated Ichnology, Sedimentology, and Stratigraphy of the Lower Cretaceous Mannville Group (Sparky Alloformation), West-Central Saskatchewan ........... 38 3.1 Introduction ........................................................................................................................... 38 3.2 Study Area and Methodology...............................................................................................
Recommended publications
  • Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada)
    Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada). R. Deschamps, Eric Kohler, M. Gasparrini, O. Durand, T. Euzen, Fati Nader To cite this version: R. Deschamps, Eric Kohler, M. Gasparrini, O. Durand, T. Euzen, et al.. Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada).. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2012, 67 (1), pp.31-58. 10.2516/ogst/2011153. hal-00702841 HAL Id: hal-00702841 https://hal-ifp.archives-ouvertes.fr/hal-00702841 Submitted on 31 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ogst110074_Deschamps 22/02/12 14:54 Page 31 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 1, pp. 31-58 Copyright © 2012, IFP Energies nouvelles DOI: 10.2516/ogst/2011153 Dossier Diagenesis - Fluid-Rocks Interactions Diagenèse minérale - Équilibres fluides-roches Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada) R. Deschamps1*, E. Kohler1, M. Gasparrini1, O. Durand2, T. Euzen3 and F.
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Physical and Numerical Modeling of SAGD Under New Well Configurations
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-09-23 Physical and Numerical Modeling of SAGD Under New Well Configurations Tavallali, Mohammad Tavallali, M. (2013). Physical and Numerical Modeling of SAGD Under New Well Configurations (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27348 http://hdl.handle.net/11023/1002 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Physical and Numerical Modeling of SAGD Under New Well Configurations by Mohammad Tavallali A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING CALGARY, ALBERTA SEPTEMBER, 2013 © Mohammad Tavallali, 2013 ii ABSTRACT This research was aimed at investigating the effect of well configuration on SAGD performance and developing a methodology for optimizing the well configurations for different reservoir characteristics. The role of well configuration in determining the performance of SAGD operations was investigated with help of numerical and physical models. Since mid 1980’s, SAGD process feasibility has been field tested in many successful pilots and subsequently through several commercial projects in various bitumen and heavy oil reservoirs. Although SAGD has been demonstrated to be technically successful and economically viable, it still remains very energy intensive, extremely sensitive to geological and operational conditions, and an expensive oil recovery mechanism.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files
    Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files By Debra K. Higley1, Mitchell E. Henry, and Laura N.R. Roberts Report Series 2005-1421 U.S. Department of the Interior U.S. Geological Survey 1 Inquiries about this publication should be addressed to: Debra K. Higley U.S. Geological Survey, MS 939, Box 25046 Denver Federal Center, Denver, CO 80225 Tel: 303-236-5791 Email: [email protected] 1 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For products and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS–the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Debra K. Higley, Mitchell Henry, and Laura N.R. Roberts, 2006, Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files: U.S. Geological Survey Report Series 2005-1421, web publication and associated data files. Any use of trade, product, or firm names is for descriptive purposes only, and does not imply endorsement by the U.S. government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Introduction …………………………………………………………….. 3 Data Processing Steps …………………………………………….……. 4 Acknowledgments ………………………………….………………..…. 5 Zmap-Format Grid Files ..………………………….………………..…. 5 References and Software Cited …………………….……………..…….
    [Show full text]
  • General Geology of Lower Cretaceous Heavy Oil
    POOR IMAGE DUE TO ORIGINAL DOCUMENT QUALITY -JC.plt, 5 - ot/-oI General Geology of Lower Cretaceous Heavy • Oil Accumulations In Western Canada By L W. VIGRASS* (Heavy Oil Semillur, The Petrolell1n Society of C.l.~I., Calgary. llIay .5, 1.965) ABSTRACT The oil throughout the belt is asphaltic and contain.'3Downloaded from http://onepetro.org/jcpt/article-pdf/4/04/168/2165766/petsoc-65-04-01.pdf by guest on 01 October 2021 large amounts of sulphur. nitrogen and oxygen. Gra­ Lower Cretaceous sand reservoirs contain about 750 billion barrels of "lscous, heavy oil along a broad arcuate vities range from 6° to 18° API and viscosities from belt that extends from northwestern Alberta into west­ several hundred to several million centipoise at GO°F, central Saskatchewan_ The heavy on is pooled in the Studies of sulphur isotopes, trace metal content and Mannville Group and, in a gross sense. occurs in a marine­ continental transition facies. The accumulation at Peace high molecular weight compounds show a fundamen­ River is in a regional onlap feature. The accumulations in tal similarity between Athabasca, Bonn.yville und the Athabasca-Llo}'dminster region occur across the Lloydminster crude oils. crest and on the southwest flank of a regional anticlinal feature associated with the solution of salt from Middle The change in character of the oil with geographic Devonian beds. These re~ional features had already position and depth is not ' ...·ell documented, but oils formed by the end of Early Cretaceous time. from deeper reservoirs at the south end of the bell Chemical and physical I)rOperties of oils from differ­ are more paraffinic, have higher API gravities and ent accumulations show that they belong to a single oil s:,.,stem and suggest a common mode of origin.
    [Show full text]
  • Stratigraphjc, Diagenetic and Geochemical Study of Cretaceous Strata In
    StratigraphJc, Diagenetic and Geochemical Study of Cretaceous Strata in Central Saskatchewan A thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Science In Geology University of Regina by Autumn Q Wang Regina, Saskatchewan August, 2010 Copyright 2010: Autumn Q. Wang Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-79906-2 Our file Notre reference ISBN: 978-0-494-79906-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'Internet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Incised Valley-Fill System Development and Stratigraphic
    INCISED VALLEY-FILL SYSTEM DEVELOPMENT AND STRATIGRAPHIC ANALYSIS OF THE LOWER CRETACEOUS KOOTENAI FORMATION, NORTHWEST MONTANA by Casey Ryan Reid A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April 2015 ©COPYRIGHT by Casey Ryan Reid 2015 All Rights Reserved ii ACKNOWLEDGEMENTS I would like to thank the Big Sky Carbon Sequestration Partnership and Vecta Oil and Gas for the financial and technical support received during this project. I would also like to thank my committee Dr. Jim Schmitt, Dr. Dave Bowen and Dr. Dave Lageson for their support and guidance throughout the duration of this thesis. Montana State University and the American Association of Petroleum Geologists are also acknowledged for financial support received and continued excellence in the geosciences. Without the support of my family and friends this project would surely never have been completed. While I am indebted to numerous people a number of specific words of thanks are necessary: to my parents whose love, guidance, and unwavering encouragement has never yielded, to my sisters who always supplied a welcome break from work and to my fellow geoscientists Jack Borksi, Nick Atwood, Nate Corbin, Ryan Hillier, and Colter Anderson. iii TABLE OF CONTENTS 1. INTRODUCTION, OBJECTIVES, & SIGNIFICANCE OF STUDY ...........................1 Introduction ......................................................................................................................1
    [Show full text]
  • The Viking Formation (Lower Cretaceous) of Southeastern Saskatchewan
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1981 The Viking Formation (Lower Cretaceous) of southeastern Saskatchewan. Shaun C. O'Connell University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation O'Connell, Shaun C., "The Viking Formation (Lower Cretaceous) of southeastern Saskatchewan." (1981). Electronic Theses and Dissertations. 6773. https://scholar.uwindsor.ca/etd/6773 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. NOTE TO USERS This reproduction is the best copy available. UMI_ (B) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE VIKING FORMATION (LOWER CRETACEOUS) OF SOUTHEASTERN SASKATCHEWAN by Shaun C. O' Connell Thesis Submitted to the Faculty of Graduate Studies through the Department of Geology in Partial Fulfilment of the Requirements for the degree of Master of Science in Geology at The University of Windsor.
    [Show full text]
  • Dynamic Sedimentation in the Late Albian, South-Central Alberta and Saskatchewan Matea Drljepan.; A
    Dynamic sedimentation in the Late Albian, south-central Alberta and Saskatchewan Matea Drljepan.; A. Guy Plint University of Western Ontario Summary Across southern Alberta and Saskatchewan, rocks of Late Albian age (including the Joli Fou, Viking, Bow Island and Mill Creek formations) represent depositional environments ranging from alluvial to deltaic- nearshore to offshore marine. Because of radical facies changes, it is difficult to establish age relationships amongst these various lithostratigraphic formations. Building upon an existing allostratigraphic framework developed by Boreen and Walker (1991), Roca et al. (2008), Buckley and Plint (2013), and Vannelli (2016) have modified the original allostratigraphic scheme and extended correlation of Upper Albian strata to northern Alberta and NE British Columbia. The investigation reported here builds upon these allostratigraphic studies and extends across 56,000 km2 of south-central Alberta and Saskatchewan. Preliminary results show that early Late Albian Joli Fou sediments form a subtly SE- thickening wedge whereas lower Viking allomembers VA and VB are approximately sheet-like, with local thickening to the SW reflecting local deltaic depocentres. Viking allomember VD contasts markedly with allomembers VA and VB because it forms a prominent, elongate SW-thickening wedge that extends across Alberta into Saskatchewan, within which, parasequences onlap towards the NE. The NE limit of the wedge is abrupt, defined by a prominent lineament, or hinge-line. To the south of the hinge, overlapping sandy deltaic lobes can be mapped whereas to the north of the hinge, the rocks are mudstone-dominated. Introduction The Viking Formation represents one of the most prolific hydrocarbon reservoirs in the Western Canada Foreland Basin, containing 5 to 8% of the total oil in Alberta (Reinson et al., 1994) and a total estimated oil reserve of 88.7 million m3 (Alberta Research Council et al., 1994).
    [Show full text]
  • Preliminary Investigations of the Hudson Bay Area Coal Deposits
    Preliminary Investigations of the Hudson Bay Area Coal Deposits J. Berenyi, A. Marsh, and R. Leray 1 Berenyi, J., Marsh, A., and Leray, R. (2009): Preliminary investigations of the Hudson Bay area coal deposits; in Summary of Investigations 2009, Volume 2, Saskatchewan Geological Survey, Sask. Ministry of Energy and Resources, Misc. Rep. 2009-4.2, Paper A-12, 14p. Abstract The discovery of anomalous thicknesses of coal in the Hudson Bay region of east-central Saskatchewan by Goldsource Mines Inc., in the spring of 2008, ignited an unprecedented staking rush for coal in the province. Subsequent drilling by the company has shown that these deposits are not only anomalous in thickness, but also in morphology and depositional environment. Unlike most other coal deposits in Saskatchewan, which are relatively thin (less than a few metres) and more regionally extensive, the Hudson Bay area coal deposits are more localized and have far greater thicknesses of up to 100 m (including partings). Since the initial discovery, the company has identified a total of 11 discrete coal deposits within its 51 942 ha Border Project area. In June of 2009, Saskatchewan Ministry of Energy and Resources staff commenced a study of the stratigraphy, sedimentology, and diagenetic history of the subsurface in and around these discoveries in an attempt to develop a geologic model for these types of deposits. Detailed stratigraphic logging, combined with geophysical well log interpretation, provided the basis for some preliminary interpretations. All of the significant intervals of coal occur within the Cantuar Formation of the Mannville Group. The Cantuar Formation is infilling paleo-topographic lows on the sub-Cantuar unconformity surface.
    [Show full text]
  • Forensic Chemostratigraphy in Geosteering Multilateral Wells: an Example from Devonian to Carboniferous-Aged Sequences in Southe
    URTeC Control ID # 1579996 1 URTeC Control ID Number: 1579996 Forensic Chemostratigraphy in Geosteering Multilateral Wells: An example from Devonian to Carboniferous-aged sequences in Southern Alberta Heather Stilwell1*, Nahysa Martinez1, Gemma Hildred1, Brian Zaitlin2 1. Chemostrat, Houston, TX, United States. 2. Native American Resource Partners, Calgary, AB, Canada. Copyright 2013, Unconventional Resources Technology Conference (URTeC) This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, 12-14 August 2013. The URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted by the author(s). The contents of this paper have not been reviewed by URTeC and URTeC does not warrant the accuracy, reliability, or timeliness of any information herein. All information is the responsibility of, and, is subject to corrections by the author(s). Any person or entity that relies on any information obtained from this paper does so at their own risk. The information herein does not necessarily reflect any position of URTeC. Any reproduction, distribution, or storage of any part of this paper without the written consent of URTeC is prohibited. Summary The results presented in this study test the efficacy of using whole-rock elemental data to characterize the stratigraphy penetrated when drilling lateral wells and use this information along with comparisons to a vertical offset well to stay in zone. This approach is tested in the Alberta Bakken Petroleum System (ABPS) in Southwestern Alberta, Canada, focusing on the Banff, Exshaw, Big Valley, and Stettler formations (Hildred et al 2013, Zaitlin 2013).
    [Show full text]