International Trade and Invasive Alien Species

Total Page:16

File Type:pdf, Size:1020Kb

International Trade and Invasive Alien Species Standards and Trade Development Facility International Trade and Invasive Alien Species The Standards and Trade Development Facility (STDF) is a global partnership in SPS capacity building and technical cooperation established by the Food and Agriculture Organization of the United Nations (FAO), the World Organisation for Animal Health (OIE), the World Bank, the World Health Organization (WHO) and the World Trade Organization (WTO). More information is available at: www.standardsfacility.org Printed by the WTO Secretariat For further information, please contact: Standards and Trade Development Facility (STDF) World Trade Organization Rue de Lausanne 154 CH-1211 Geneva Switzerland Fax: + 41 (0) 22 739 5760 Email: [email protected] Website: http://www.standardsfacility.org Cover Image credits: © shutterstock © iStockphoto/Alexander Tivanov © iStockphoto/Thomas Acop © Koen Van Beversluys International Trade and Invasive Alien Species June 2013 The findings, interpretations and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the view of the STDF or any of its partner agencies or donors. International Trade and Invasive Alien Species Contents 1. Introduction 1 2. Invasive Alien Species in the context of the WTO SPS Agreement 3 2.1. Harmonization with international standards 4 2.2. Precautionary approach 4 2.3. Governance and transparency 6 3. Invasive Alien Species in the context of the IPPC 7 3.1. Promoting harmonized language and common terminology 8 3.2. Legislative frameworks for IAS that are quarantine pests 8 3.3. Border control and quarantine 9 3.4. Pest risk analysis 11 3.5. Intentional introduction 12 3.6. Managing the impacts of IAS that are quarantine pests 13 4. Invasive Alien Species in the context of the OIE 15 4.1. Defining animal health as it relates to IAS 15 4.2. Invasive alien animals: A source of introduced pathogens 15 4.3. Animal pathogens, animal disease and IAS 17 4.4. IAS impacts on animal health other than through disease 18 4.5. Measures to control SPS and IAS risks based on OIE standards and recommendations 19 4.6. Identification of gaps in the regulatory framework relevant to the animal kingdom 21 5. Enhancing capacity to control risks related to IAS 22 5.1. Awareness 24 5.2. Policy and legal framework 24 5.3. Assessing needs to enhance strategy development and capacity building 25 5.4. Improving knowledge, expertise and skills 26 5.5. Access to infrastructure and other resources 28 5.6. Promoting cooperation, synergies and inter-disciplinary approaches 28 5.7. Promoting partnerships with the private sector, academia and civil society 30 6. Conclusions and recommendations 31 Annex 1: Relevant international conventions / agreements 35 Annex 2: Relevant international / regional organizations 37 Annex 3: Examples of relevant online resources (including databases, web sites, guidelines, training kits, etc.) 40 References and Literature 43 iii List of boxes Box 1: CBD definitions 1 Box 2: Convention on Biological Diversity, Article 8(h) 2 Box 3: IPPC definitions 2 Box 4: Definition of Sanitary or Phytosanitary Measure in the WTO SPS Agreement 3 Box 5: SPS Agreement, Article 3, Harmonization 4 Box 6: CBD, Guiding principle 1: Precautionary approach 5 Box 7: SPS Agreement, Article 5.7 5 Box 8: SPS Agreement, Annex B, Notification procedures 6 Box 9: Three IPPC recommendations on IAS 7 Box 10: CBD, Excerpts from COP Decision VI/23 9 Box 11: Three IPPC recommendations related to IAS legislation 9 Box 12: CBD, Guiding principle 7: Border control and quarantine measures 10 Box 13: CBD, Guiding principle 10: Intentional introduction 12 Box 14: CBD Guiding Principles that address mitigation 14 Box 15: OIE definitions 19 Box 16: Elements of the OIE 5th Strategic Plan relevant to IAS 20 Box 17: Conventions and guidelines addressing IAS risks associated with ocean transport and ship movement 22 Box 18: Global Invasive Species Programme 25 Box 19: IPPC and OIE Capacity Evaluation Tools 25 Box 20: The IPPC Implementation Review and Support System 26 List of cases Case Study 1: Asian longhorn beetle (Anoplophora glabripennis) 10 Case Study 2: Common ragweed (Ambrosia artemisiifolia L.) 11 Case Study 3: Bio-control agent “goes native” 12 Case Study 4: Controlling the cactus moth in Mexico and the USA 13 Case Study 5: The introduction of cats and rats in the Pacific Islands 16 Case Study 6: The role of trade and travel in spreading zoonotic diseases 17 Case Study 7: Examples of the effects of introduced aquatic species 18 Case Study 8: OIE and FAO collaboration on Epizootic Ulcerative Syndrome (EUS) 20 Case Study 9: Pacific Invasive Initiative (PII) 28 Case Study 10: A regional approach to control water hyacinth in Lake Victoria 29 Case Study 11: Controlling the spread of the fruit fly in West Africa 30 iv International Trade and Invasive Alien Species Abbreviations and Acronyms AAHS Aquatic Animal Health Services ANS Aquatic Nuisance Species Task Force (USA) AusAID Australian Agency for International Development APHIS Animal and Plant Health Inspection Service (United States Department of Agriculture) CABI Centre for Agricultural Bioscience International CBD Convention on Biological Diversity CIRAD Centre de coopération internationale en recherche agronomique pour le développement CITES Convention on the International Trade in Endangered Species of Wild Fauna and Flora COP Conference of Parties (of the CBD) CPM Commission on Phytosanitary Measures (of the IPPC) DAISIE Delivering Alien Species Inventory in Europe FAO Food and Agriculture Organization of the United Nations EPPO European and Mediterranean Plant Protection Organization EAC East African Community GEF Global Environment Facility GISD Global Invasive Species database GISP Global Invasive Species Programme GMO Genetically modified organism(s) IAEA International Atomic Energy Agency IAS Invasive alien species ICAO International Civil Aviation Organization IHR International Health Regulations IITA International Institute of Tropical Agriculture IMO International Maritime Organization IPPC International Plant Protection Convention IRSS Implementation Review and Support System (of the IPPC) ISPM International standard on phytosanitary measures ISSG Invasive Species Specialist Group (of IUCN) IUCN International Union for the Conservation of Nature and Natural Resources LVEMP Lake Victoria Environmental Management Project NAPPO North American Plant Protection Organization NISC National Invasive Species Council (of the USA) NPPO National Plant Protection Organization OIE World Organisation for Animal Health PCE Phytosanitary Capacity Evaluation PPPO Pacific Plant Protection Organization PRA Pest Risk Analysis PVS Performance of Veterinary Services RPPO Regional Plant Protection Organization SPC South Pacific Commission SPS Sanitary and phytosanitary SPS Agreement Agreement on the Application of Sanitary and Phytosanitary Measures STDF Standards and Trade Development Facility v SBSTTA Subsidiary Body on Scientific, Technical and Technological Advice (of the CBD) TNC The Nature Conservancy UNCED United Nations Conference on Environment and Development UNCTAD United Nations Conference on Trade and Development UNEP United Nations Environmental Programme UNDP United Nations Development Programme USDA United States Department of Agriculture VS Veterinary Services WB World Bank WHO World Health Organization WTO World Trade Organization vi International Trade and Invasive Alien Species Acknowledgements The Standards and Trade Development Facility (STDF) would like to express its appreciation to Ralf Lopian (Ministry of Agriculture and Forestry of Finland) and Craig Stephen (Centre for Coastal Health, Canada and Faculty of Veterinary Medicine and Faculty Medicine, University of Calgary), the authors of this document. The STDF is grateful to its partners, particularly the IPPC, OIE and WTO, who provided valuable comments and feedback on several draft versions of this document, as well as to other organizations and individuals who provided inputs and guidance. Special thanks are also due to all the speakers and participants who shared their perspectives and expertise during the seminar on international trade and IAS, which was organized by the STDF, in collaboration with the IPPC, the OIE and the WTO, on 12-13 July 2012. Lastly, but not least, we would like to recognize the work of Kenza Le Mentec, in the STDF Secretariat, in organizing the aforementioned seminar and bringing this paper to publication. vii Executive summary 1. Invasive alien species (IAS) – species which may be introduced into new ecosystems via intentional or unintentional introductions – are a major threat to biological diversity. In many cases, they can also have devastating consequences for human health, agricultural productivity and trade. The economic cost of IAS is estimated at hundreds of billions of dollars annually to economies worldwide. 2. Increasing travel, trade, and tourism have facilitated intentional and unintentional movement of species beyond natural geographical barriers. Many of these alien species have become invasive. Trade is one of the main pathways through which IAS can be introduced. Intentional introductions of IAS can occur through trade in new plant species and animals, while unintentional introductions are often linked to trade in agricultural commodities, as well as transportation and shipping. 3. Given the potentially devastating impacts of IAS, the Convention on Biological Diversity (CBD) requires countries, as
Recommended publications
  • Thistles of Colorado
    Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2021-01 General 2021/001 New data on quarantine pests and pests of the EPPO Alert List 2021/002 Update on the situation of quarantine pests in the Russian Federation 2021/003 Update on the situation of quarantine pests in Tajikistan 2021/004 Update on the situation of quarantine pests in Uzbekistan 2021/005 New and revised dynamic EPPO datasheets are available in the EPPO Global Database Pests 2021/006 Anoplophora glabripennis eradicated from Austria 2021/007 Popillia japonica is absent from Germany 2021/008 First report of Scirtothrips aurantii in Spain 2021/009 Agrilus planipennis found in Saint Petersburg, Russia 2021/010 First report of Spodoptera frugiperda in Syria 2021/011 Spodoptera frugiperda found in New South Wales, Australia 2021/012 Spodoptera ornithogalli (Lepidoptera Noctuidae - yellow-striped armyworm): addition to the EPPO Alert List 2021/013 First report of Xylosandrus compactus in mainland Spain 2021/014 First report of Eotetranychus lewisi in mainland Portugal 2021/015 First report of Meloidogyne chitwoodi in Spain 2021/016 Update on the situation of the potato cyst nematodes Globodera rostochiensis and G. pallida in Portugal Diseases 2021/017 First report of tomato brown rugose fruit virus in Belgium 2021/018 Update on the situation of tomato brown rugose fruit virus in Spain 2021/019 Update on the situation of Acidovorax citrulli in Greece with findings
    [Show full text]
  • Classical Biological Control of Nodding and Plumeless Thistles
    Biological Control 21, 206–213 (2001) doi:10.1006/bcon.2001.0940, available online at http://www.idealibrary.com on Classical Biological Control of Nodding and Plumeless Thistles L. T. Kok Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319 Received March 15, 2001; accepted March 20, 2001; published online May 22, 2001 group. Both thistles are winter annuals or biennials. Nodding (musk) thistle (Carduus thoermeri Wein- Seeds produced in summer form rosettes which over- mann in the Carduus nutans L. group) and plumeless winter. The rosettes resume development in spring, thistle (Carduus acanthoides L.) are introduced nox- followed by stem elongation and flowering. Nodding ious weeds of Eurasian origin. Both weeds are prob- thistle was first recorded in 1853 at Harrisburg, Penn- lematic in pastures, rangelands, and croplands and sylvania (Stuckey and Forsyth, 1971) and has been along state highways in many parts of the United reported in 40 of the 48 contiguous states (Frick, 1978). States. The success of both species of thistles is largely Plumeless thistle first appeared in 1878 at Camden, due to their prolific seed production, seed longevity, New Jersey and in Ohio (Batra, 1978) and is found in competitive ability, and lack of natural enemies. Clas- sical biological control of nodding thistle in Virginia 19 states (Frick, 1978). The two thistle species often has been achieved with three exotic thistle herbivores, occupy the same habitats in the northeast, such as Rhinocyllus conicus Froelich (Coleoptera: Curculion- overgrazed pastures and disturbed roadsides, some- idae), Trichosirocalus horridus (Panzer) (Coleoptera: times occurring in mixed stands (Batra, 1978).
    [Show full text]
  • Terrestrial Insects: a Hidden Biodiversity Crisis? 1
    Chapter 7—Terrestrial Insects: A Hidden Biodiversity Crisis? 1 Chapter 7 Terrestrial Insects: A Hidden Biodiversity Crisis? C.H. Dietrich Illinois Natural History Survey OBJECTIVES Like most other elements of the biota, the terrestrial insect fauna of Illinois has undergone drastic change since European colonization of the state. Although data are sparse or entirely lacking for most species, it is clear that many formerly abundant native species are now exceedingly rare while a few previously uncommon or undocumented species, both native and exotic, are now abundant. Much of this change may be attributable to fragmentation and loss of native habitats (e.g., deforestation, draining of wetlands, agricultural conversion and intensification, urbanization), although other factors such as invasion by exotic species (including plants, insects and pathogens), misuse of pesticides, and improper management of native ecosystems have probably also been involved. Data from Illinois and elsewhere in the north temperate zone provide evidence that at least some groups of terrestrial insects have undergone dramatic declines over the past several decades, suggesting that insects are no less vulnerable to anthropogenic environmental change than other groups of organisms Yet, insects continue to be under-represented on official lists of threatened or endangered species and conservation programs focus primarily on vertebrates and plants. This chapter summarizes available information on long-term changes in the terrestrial insect fauna of Illinois, reviews possible causes for these changes, highlights some urgent research needs, and provides recommendations for conservation and management of terrestrial insect communities. INTRODUCTION Insects are among the most important “little things that run the world” (1).
    [Show full text]
  • Leaf Scarring by the Weevils Neochetina Eichhorniae and N
    BioControl (2005) 50: 511–524 Ó Springer 2005 Leaf scarring by the weevils Neochetina eichhorniae and N. bruchi enhances infection by the fungus Cercospora piaropi on waterhyacinth, Eichhornia crassipes Patrick J. MORAN USDA-ARS, Beneficial Insects Research Unit, Weslaco, Texas, USAw; e-mail: [email protected] Received 16 January 2004; accepted in revised form 5 October 2004 Abstract. Additive or synergistic effects among introduced and native insect and plant pathogen agents are necessary to achieve biological control of waterhyacinth (Eich- hornia crassipes), a globally damaging aquatic weed. In field plots, plants were infested with waterhyacinth weevils (Neoechetina bruchi and N. eichhorniae) and leaves were scarred by weevil feeding. Subsequent infection by the fungal pathogen Cercospora piaropi caused necrotic lesions to form on leaves. Necrosis development was 7.5- and 10.5-fold greater in plots augmented with both weevils and C. piaropi and weevils alone, respectively, than in plots receiving only C. piaropi. Twenty-four days after weevil infestation, the percentage of laminar area covered by lesions on third-youngest and oldest live leaves was elevated 2.3–2.5-fold in plots augmented with weevils. Scar density and necrosis coverage on young leaf laminae were positively correlated, even though antipathogenic soluble peroxidases were elevated 3-fold in plots augmented with weevils alone or weevils and C. piaropi. Combined weevil and fungal augmentation decreased shoot densities and leaves per plant. In a no-choice bioassay, weevil feeding on oldest but not young leaves was reduced 44% two weeks after C. piaropi inoculation. Protein content and peroxidase activities were elevated 2–6-fold in oldest leaves three weeks after inoculation.
    [Show full text]
  • Invasive Alien Species: the Application of Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts
    CBD Distr. GENERAL CBD/COP/14/INF/9 12 November 2018 ENGLISH ONLY CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL DIVERSITY Fourteenth meeting Item 26 of the provisional agenda* Sharm El-Sheikh, Egypt, 17-29 November 2018 INVASIVE ALIEN SPECIES: THE APPLICATION OF CLASSICAL BIOLOGICAL CONTROL FOR THE MANAGEMENT OF ESTABLISHED INVASIVE ALIEN SPECIES CAUSING ENVIRONMENTAL IMPACTS Note by the Executive Secretary BACKGROUND 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Conference of the Parties, a document on the application of classical biological control for the management of established invasive alien species causing environmental impacts. 2. The document is relevant to the work of the Convention on Biological Diversity, in particular with regard to addressing (a) tools for conducting analysis for the management of invasive alien species, (b) the risks associated with trade in live alien organisms, and (c) achieving Aichi Biodiversity Target 9. 3. The document is being circulated in the form and language in which it was received by the Secretariat. * CBD/COP/14/1. The application of classical biological control for the management of established invasive alien species causing environmental impacts Summary for Policy Makers Prepared by: International Union for Conservation of Nature (IUCN), Species Survival Commission Invasive Species Specialist Group (ISSG) *Note that the full report follows on from this Summary for Policy Makers document. Summary for policy makers Convention on Biological Diversity (CBD) COP13 Decision XIII on Invasive Alien Species (IAS) recognized ‘that classical biological control can be an effective measure to manage already established invasive alien species’, and encouraged ‘Parties, other Governments and relevant organizations, when using classical biological control to manage already established invasive alien species, … [to take] into account the summary of technical considerations1’ that was annexed to the decision.
    [Show full text]
  • Thistle Identification
    Oklahoma Cooperative Extension Service PSS-2776 Thistle Identification January 2021 Laura Goodman Extension Rangeland Ecology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Tom Royer extension.okstate.edu Extension Entomologist Alex Rocateli can often develop. The current Thistle Law includes three of Forage Systems Extension Specialist the five species. However, all introduced thistles should be considered invasive. Oklahoma’s Noxious Weed Law, first enacted in 1994 in four counties in northeastern Oklahoma (Code 35:30-36-13) Thistles Listed in the Noxious Weed Law was amended in 1995, 1998 and 1999. The current law de- Canada thistle (Cirsium arvense) is an introduced peren- clares musk, scotch and Canada thistles to be noxious weeds nial thistle widely distributed in Nebraska and other northern and public nuisances in all counties of the state. states. At present, it does not appear to be a major threat in There are about a dozen purple-flowered spiny thistle Oklahoma. Several plants were collected in the panhandle species that occur in Oklahoma. Oklahoma’s Noxious Weed counties in the 1950s and several more in Bryan County in Law can raise concern among landowners if they do not the 1970s, but currently, no infestations are known to exist in know which thistles on their land they are required to control. the state. In a 1998 survey of noxious weeds in Meade County The purpose of this publication is to describe the introduced Kansas, north of Beaver County, Oklahoma, reported a small thistles, selected common native thistles and provide infor- infestation of Canada thistle.
    [Show full text]
  • Feeding by Waterhyacinth Weevils (Neochetina Spp.) (Coleoptera: Curculionidae) in Relation to Site, Plant Biomass, and Biochemical Factors
    BIOLOGICAL CONTROLÐWEEDS Feeding by Waterhyacinth Weevils (Neochetina spp.) (Coleoptera: Curculionidae) in Relation to Site, Plant Biomass, and Biochemical Factors PATRICK J. MORAN1 USDAÐARS, BeneÞcial Insects Research Unit, Weslaco, TX 78596 Environ. Entomol. 33(2): 346Ð355 (2004) ABSTRACT Biological control of waterhyacinth [Eichhornia crassipes (Mart.) Solms.] by water- hyacinth weevils [Neochetina bruchi (Hustache)] and [Neochetina eichhorniae (Warner)] varies according to Þeld environment, season, and plant stress levels. Plants at four Þeld sites were sampled to determine if leaf scarring caused by adult weevil feeding was associated with plant biomass, biochemical and population measures, and insect densities. Leaf scar densities were consistently higher on plants from two sites at which root and dead plant part biomass were high. Scarring was correlated to root and dead biomass across all sites. Scarring was not associated with weevil densities summed across all life stages or larval gallery density. Soluble protein contents were lower in plants from the two sites with high scarring than at two other sites in Spring 2002, and scarring was negatively correlated to protein content across all sites. Protein was usually highest in immature furled leaves. Activities of soluble peroxidase enzymes were highest in old leaves. Scar densities were not associated with canopy height and shoot density. At one site, high scar densities occurred on plants with small leaf areas, which were likely growing slowly under the inßuence of multiple abiotic and biotic stress factors. Mechanical and natural plant removal and regrowth may have facilitated plant compensation for weevil feeding at the other site with high scarring. Temporally and spatially dynamic physical and biochemical plant traits and growth environments could limit biological control of waterhyacinth.
    [Show full text]
  • Preferencia Alimentaria De Neochetina Eichhorniae (Coleoptera: Curculionidae) En Plantas Acuáticas De Diferente Valor Nutritivo
    Revista Colombiana de Entomología 39 (1): 81-87 (2013) 81 Preferencia alimentaria de Neochetina eichhorniae (Coleoptera: Curculionidae) en plantas acuáticas de diferente valor nutritivo Food preference Neochetina eichhorniae (Coleoptera: Curculionidae) by aquatic plants of different nutritional value FEDRA SOLANGE MARTÍNEZ1,2, M. CELESTE FRANCESCHINI1,3 y ALICIA POI1,3 Resumen: Neochetina eichhorniae (Coleoptera: Curculionidae) es un herbívoro asociado a los camalotales de Ei- chhornia crassipes y E. azurea de áreas nativas. Los objetivos de este trabajo fueron: (1) evaluar la preferencia ali- mentaria de los adultos de N. eichhorniae bajo condiciones naturales, utilizando especies de macrófitas nativas que coexisten con las dos plantas huéspedes y (2) analizar la preferencia alimentaria en relación con el contenido de nitró- geno, fósforo y lignina, como indicadores del valor nutritivo de las hojas. Las especies de plantas estudiadas fueron: E. crassipes, E. azurea, Oxycaryum cubense, Thalia multiflora, Salvinia biloba, Pistia stratiotes, Ludwigia peploides y Nymphaea prolifera. Se realizaron pruebas de preferencia de opción doble y múltiple, utilizando raciones de las macrófitas, en presencia y ausencia de las plantas huéspedes. Se cuantificó, respectivamente, el área total dañada por macrófita y por curculiónido y se correlacionó con el valor nutritivo de las hojas. Las plantas huéspedes, cuya superficie dañada varió entre 115 y 284,76 mm2, fueron las especies preferidas. La superficie dañada tuvo correlación positiva con el contenido de nitrógeno de las hojas de las distintas especies de plantas. El contenido de fósforo, lignina y el cociente L: N no tuvieron relación con la preferencia. Neochetina eichhorniae tuvo especificidad por ambas plantas huéspedes, cuyas hojas tuvieron alto contenido de nitrógeno.
    [Show full text]
  • Biological Control of Water Hyacinth with Arthropods: a Review to 2000
    Biological Control of Water Hyacinth with Arthropods: a Review to 2000 M.H. Julien* Abstract Water hyacinth, native to the Amazon River, invaded the tropical world over the last century and has become an extremely serious weed. The search for biological control agents began in the early 1960s and continues today. Six arthropod species have been released around the world. They are: two weevils, Neochetina bruchi and N. eichhorniae; two moths, Niphograpta albiguttalis and Xubida infusellus; a mite Orthogalumna terebrantis; and a bug Eccritotarsus catarinensis. The mite and X. infusellus have not contributed to control and the bug is under evaluation following recent releases in Africa. The two weevils and the moth N. albiguttalis have been released in numerous infestations since the 1970s and have contributed to successful control of the weed in many locations. It is timely to assess their impact on water hyacinth and, to help in planning future strategies, to identify the factors that contribute to or mitigate against successful biological control. Although the search for new agents continues, and as a result biological control will likely be improved, this technique alone is unlikely to be successful in all of the weed’s habitats. It is important that whole-of-catchment management strategies be developed that integrate biological control with other control techniques. The aims of such strategies should be to achieve the best possible control using methods that are affordable and sustainable; hence the need to develop strategies using biological control as the base component. WATER hyacinth apparently became a problem in the sation of the weed for commercial and subsistence USA following its distribution to participants in the purposes has also been widely considered.
    [Show full text]
  • BULL THISTLE (Cirsium Vulgare) Description
    BULL THISTLE (Cirsium vulgare) Description: Bull thistle, also referred to as spear thistle, Fuller’s thistle and lance-leafed thistle, is a member of the Asteraceae or sunflower family. Bull thistle can grow 2 to 5 feet tall with numerous spreading branches. Stems of the plant are sparsely hairy, irregularly and spiny winged, green or brownish in color with purple veins. Leaf margins are double dentate (toothed and toothed again), each ending in a lone stiff spine. The leaf surface of the plant has a distinct center vein with slight pubescence on the topside and more underneath. Flower heads are usually solitary on the end of each stem, gumdrop-shaped, one to two inches tall with long, stiff, yellow tipped spines. Flowers are generally bright purple but sometimes white in color. Seeds are light-colored with dark brown to black longitudinal stripes. Seeds are generally 1/16 inch long, oblong, somewhat flattened or curved, with a long, white, hairy plume. Plant Images: Bull thistle Rosette Leaf Gumdrop-shaped flower Distribution and Habitat: This thistle is generally found in the northern and eastern counties in North Dakota and is the least serious of the introduced thistles in the s tate. The plant thrives in moist soils and is less common on sand and pure clay soils. Typical habitats include disturbed or degraded land, such as roadsides, fence rows, overgrazed pastures and rangelands, eroded gullies, ditch banks and vacant lots. Life History/Ecology: Bull thistle is a biennial that reproduces and spreads solely by seed production. Germination of the plant occurs in the spring or during the fall in response to adequate soil moisture.
    [Show full text]
  • Preliminary Results on the Phytophagous Insect Fauna on Onopordum Acanthium (Asteraceae) in Bulgaria
    Pestic. Phytomed. (Belgrade), 25(4), 2010, 301-309 UDC: 591.617:632.51 Pestic. fitomed. (Beograd), 25(4), 2010, 301-309 Scientific paper * Naučni rad DOI: 10.2298/PIF1004301H Preliminary Results on the Phytophagous Insect Fauna on Onopordum acanthium (Asteraceae) in Bulgaria Vili Harizanova1, Atanaska Stoeva1, Massimo Cristofaro2, Allesandra Paolini2, Francesca Lecce2 and Franca Di Cristina2 1UAgricultural University-Plovdiv, Plovdiv 4000, Mendeleev 12, Bulgaria ([email protected]) 2ANEA C.R. Cassacia UTAGRI-ECO Via Anguillarese 301, 00123 S. Maria di Galeria (Rome), Italy Received: August 5, 2010 Accepted: November 3, 2010 SUMMARY The Scotch thistle, Onopordum acanthium (Asteraceae) has the Eurasian origin and represents an invasive weed in the USA and Australia. It is a serious problem in pastures, along roadsides, rangeland, etc. The weed is very common in Bulgaria and in 2009-2010 several sites with large populations of O. acanthium have been located. The weekly sur- veys of some of the sites, mainly in the region of Plovdiv, revealed a significant diver- sity of phytophagous insect species, some of which had very high population density. More than 30 species have already been identified and observations on the phenolo- gy and biology of some of them have been conducted. For some of the species, such as endophagous Larinus latus, Lixus cardui, Eublemma amoena, Trichosirocalus briesei, or ectophagous Cassida rubiginosa etc. found during our surveys, there are reports in the lit- erature describing them as having been already introduced as successful biocontrol agents in Australia. Endophagous species like lepidopteran Myelois circumvoluta and Pyroderces argyrogrammos which feed on the stems and the head, and the tephritid flies Tephritis pos- tica and Chaetostomella cylindrica which feed on the capitula, seem quite destructive for the weed, but need to be further studied regarding host specificity.
    [Show full text]