ACAP) , to Accompany Document UNEP/CMS/Conf.10.9
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNEP/CBD/RW/EBSA/SIO/1/4 26 June 2013
CBD Distr. GENERAL UNEP/CBD/RW/EBSA/SIO/1/4 26 June 2013 ORIGINAL: ENGLISH SOUTHERN INDIAN OCEAN REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS Flic en Flac, Mauritius, 31 July to 3 August 2012 REPORT OF THE SOUTHERN INDIAN OCEAN REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS1 INTRODUCTION 1. In paragraph 36 of decision X/29, the Conference of the Parties to the Convention on Biological Diversity (COP 10) requested the Executive Secretary to work with Parties and other Governments as well as competent organizations and regional initiatives, such as the Food and Agriculture Organization of the United Nations (FAO), regional seas conventions and action plans, and, where appropriate, regional fisheries management organizations (RFMOs), with regard to fisheries management, to organize, including the setting of terms of reference, a series of regional workshops, with a primary objective to facilitate the description of ecologically or biologically significant marine areas (EBSAs) through the application of scientific criteria in annex I of decision IX/20, and other relevant compatible and complementary nationally and intergovernmentally agreed scientific criteria, as well as the scientific guidance on the identification of marine areas beyond national jurisdiction, which meet the scientific criteria in annex I to decision IX/20. 2. In the same decision (paragraph 41), the Conference of the Parties requested that the Executive Secretary make available the scientific and technical data and information and results collated through the workshops referred to above to participating Parties, other Governments, intergovernmental agencies and the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) for their use according to their competencies. -
The Winter Diet of the Great-Winged Petrel Pterodroma Macroptera at Sub-Antarctic Marion Island in 1991
Cooper & Klages: Winter diet of the Great-winged Petrel 261 THE WINTER DIET OF THE GREAT-WINGED PETREL PTERODROMA MACROPTERA AT SUB-ANTARCTIC MARION ISLAND IN 1991 JOHN COOPER1 & NORBERT T.W. KLAGES2 1Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch, 7701, South Africa ([email protected]) 253 Clarendon Street, Mount Pleasant, Port Elizabeth, 6070, South Africa Received 11 June 2008, accepted 24 December 2008 SUMMARY COOPER, J. & KLAGES, N.T.W. 2009. The winter diet of the Great-winged Petrel Pterodroma macroptera at sub-Antarctic Marion Island in 1991. Marine Ornithology 37: 261–263. The diet of winter-breeding Great-winged Petrels Pterodroma macroptera was studied at sub-Antarctic Marion Island, Prince Edward Islands, southern Indian Ocean in August–October 1991 by multiple stomach flushing of weighed chicks after parental feeding. The Great-winged Petrel at Marion Island may be described as a cephalopod specialist, because squid formed the larger part of the diet in terms of diversity, frequency of occurrence and contribution by mass, and were the largest prey items taken. Fish and crustaceans formed relatively minor parts of the diet. These findings are broadly in accord with those of three previous quantitative studies at the same and other localities. Key words: Great-winged Petrel, Pterodroma macroptera, cephalopods, Marion Island, diet INTRODUCTION visited at irregular intervals in the evenings and later at night, and any chicks that had gained at least 10 g because of a parental feed Seabirds are important “top predators” in the Southern Ocean, and over this time period were subjected to multiple stomach-flushing. -
Relative Passage Rates of Lipid and Aqueous Digesta in the Formation of Stomach Oils
RELATIVE PASSAGE RATES OF LIPID AND AQUEOUS DIGESTA IN THE FORMATION OF STOMACH OILS DANIEL D. ROBY,• KAREN L. BRINK,2 AND ALLEN R. PLACE3 •CooperativeWildlife Research Laboratory and Department of Zoology, SouthernIllinois University, Carbondale, Illinois 62901 USA, 2P.O. Box 571, Carbondale,Illinois 62903 USA, and 3Centerof MarineBiotechnology, University of Maryland,Baltimore, Maryland 21202 USA ABSTRACT.--Weused tritium-labeled glycerol triether as a nonabsorbablelipid-phase mark- er and carbon-14labeled polyethylene glycol as a nonabsorbableaqueous-phase marker to examine gastrointestinaltransit of a homogenized fish meal fed to 4-week-old chicks of AntarcticGiant-Petrels (Macronectes giganteus) and GentooPenguins (Pygoscelis papua). Both aqueous-phaseand lipid-phase markers passedthrough the gastrointestinaltract without being metabolized.Label recoveries from the two specieswere statisticallyindistinguishable. Mean retention time was significantlylonger for lipid-phasecomponents than for aqueous- phasecomponents in both species.In the petrel, mean retention time for lipid-phaseand for aqueous-phasewas significantlylonger than in the penguin. Interspecificdifferences in retention were largely the result of differing ratesof gastricemptying. Both markersemptied rapidly from the proventriculusand gizzard of the penguins,while in giant-petrelsthe lipid- phase was retained for extended periods in the stomach.Differential transit of lipid and aqueousphases coupled with the lower rate of gastricemptying in giant-petrelchicks provides a physiologicalbasis for accumulationof dietary lipids in the proventriculus. The large, distensibleproventriculus and the ventral positionof the pyloric valve relative to the gizzard and proventriculusare morphologicaltraits which enhance the formation and retention of stomachoils. Received31 May 1988,accepted 19 December1988. OFall avian internal organs,the range of mor- (Matthews 1949, Duke et al. 1989). In other birds phologicalvariation in the stomachis the great- the much smaller proventriculus is cranial to est. -
AC10 Doc 11 Rev 1 Agenda Item 11.1
AC10 Doc 11 Rev 1 Agenda Item 11.1 Tenth Meeting of the Advisory Committee Wellington, New Zealand, 11 – 15 September 2017 Report of the Population and Conservation Status Working Group Population and Conservation Status Working Group CONTENTS 1. WELCOME AND OPENING REMARKS ......................................................................................... 3 2. MEMBERSHIP AND INTRODUCTION............................................................................................ 3 3. ADOPTION OF THE AGENDA ........................................................................................................ 3 4. PROGRESS REPORTS ................................................................................................................... 3 4.1. Database updates ............................................................................................................................. 3 4.2. Updates and Reviews of ACAP Species Assessments .................................................................... 4 4.3. List of researchers with access to tissues from bycaught birds ........................................................ 4 5. POPULATION STATUS AND TRENDS .......................................................................................... 4 5.1. Current population trends of ACAP species ..................................................................................... 4 6. THREATS AND PRIORITISATION ................................................................................................. 8 6.1. Updates -
Feeding Ecology of Short-Tailed Shearwaters: Breeding in Tasmania and Foraging in the Antarctic?
MARINE ECOLOGY PROGRESS SERIES Published June 18 Mar Ecol Prog Ser l Feeding ecology of short-tailed shearwaters: breeding in Tasmania and foraging in the Antarctic? Henri Weimerskirch*, Yves Cherel CEBC - CNRS, F-79360 Beauvoir, France ABSTRACT- The food, feedlng and physiological ecology of foraging were studied in the short-tailed shearwater Puffinus tenujrostris of Tasmania, to establish whether this species can rely on Antarctic food to fledge its chick. Parents were found to use a 2-fold foraging strategy, on average performing 2 successive short trips at sea of 1 to 2 d duration followed by 1 long trip of 9 to 17 d. These long foraging tnps are the longest yet recorded for any seabird. During short trips the parents tend to lose mass, feed- ing the chick with Australian krill and fish larvae caught in coastal and neritic waters around Tasma- nia. The prey are caught at maximum diving depths of 13 m on average (maximum 30 m).During long trips, adults gain mass and feed their chlcks with a very rich mixture of stomach oil and digested food composed of a high diversity of prey including myctophid fish, sub-Antarctic krill and squids. Prey are probably caught mainly in the Polar Frontal Zone, at least 1000 km south of Tasmania, at maximum depths of 58 m on average (maximum 71 m). Long foraging trips in distant southern waters gave at least twice the yield of trips in close waters but during the former, yield decreased with the time spent for- aging, as indicated by the inverse relationship between time spent forag~ngand adult body condition. -
Arctocephalus Gazella, at Iles Kerguelen
Polar Biol (2002) 25: 269–279 DOI 10.1007/s00300-001-0339-6 ORIGINAL PAPER Mary-Anne Lea Æ Mark Hindell Æ Christophe Guinet Simon Goldsworthy Variability in the diving activity of Antarctic fur seals, Arctocephalus gazella, at Iles Kerguelen Accepted: 15 October 2001 / Published online: 28 November 2001 Ó Springer-Verlag 2001 Abstract Intra-population variation in diving behaviour Introduction of lactating Antarctic fur seals (Arctocephalus gazella) was studied at the Kerguelen Archipelago (49°07’S, The diving behaviour of marine predators, quantified by 70°45’E) during the austral summers of 1998–2000. Dive the use of time-depth recorders (TDRs), is one of the data were successfully recorded for 112 seals equipped most commonly used measures for differentiating for- with time-depth recorders during 117 foraging trips. All aging activity between individuals and populations, both seals displayed bouts of diving activity and the nocturnal spatially and temporally (Antonelis et al. 1990; Hindell foraging behaviour typical of otariids preying on pelagic et al. 1991; Schreer and Testa 1996; Bowen et al. 1999; fish and squid. Mean dive depth (53 m) was consider- Cherel et al. 1999; Bonadonna et al. 2000; Georges et al. ably deeper than recorded for this species at other sites. 2000a, b). In recent years the diving behaviour of several Four diving behaviour groups were identified: (1) deep marine predators has also been linked to spatial and divers (n=60); (2) shallow-active divers (n=45); (3) temporal variability in the availability of prey species shallow divers (n=9); (4) daytime divers (n=3). The (Boyd et al. -
Large Pelagic Seabirds: Picture of Bird
Large Pelagic seabirds: Picture Albatrosses, Mollymawks & Giant Petrels of bird For idenDficaon and species info refer to: www.nzbirdsonline.org.nz Introduc4on Ecology and life history New Zealand has the highest diversity of Normal adult weight range: Adult Buller’s mollymawks can weigh as albatrosses and mollymawks with 12 liNle as 2.5kg while the Southern Royal Albatross can weigh up to species that breed on NZ's sub-antarcDc 10kg. Due to the variability of normal weight ranges between species islands and 7 endemic species. It is unlikely and within species it is recommended to calculate doses based on that large numbers of these birds would be individual body weights. effected during a single oil spill event Moult: Gradual, mostly during their non-breeding year but conDnues unless it occurs near a breeding colony. into breeding. Biennial wing moult - outer primaries one year, inner Although albatrosses are in the group primaries the next year. commonly called "tubenoses", they differ Breeding: All albatross species and the grey-headed mollymawk from other tubenose families in that their produce a single young every two years. Incubang and rearing a chick tube-shaped nostrils are separated and takes 1 year and then take one year to recover. located on either side of the bill. All birds The other mollymawk species and the two giant petrel species breed in the order Procellariformes (including once a year, usually from August to May. petrels and shearwaters) have three front- Lifespan: Long-lived facing toes with webbing. Diet: Water surface scavengers Personal protecve equipment (PPE): Appropriate PPE must be worn when capturing and handling oiled wildlife to prevent exposure to oil (disposable nitrile gloves, safety glasses/goggles, protecDon for clothing e.g. -
The Incidence, Functions and Ecological Significance of Petrel Stomach Oils
84 PROCEEDINGS OF THE NEW ZEALAND ECOLOGICAL SOCIETY, VOL. 24, 1977 THE INCIDENCE, FUNCTIONS AND ECOLOGICAL SIGNIFICANCE OF PETREL STOMACH OILS JOHN WARHAM Department of Zoology, University of Canterbury, Chrb;tchurch SUMMARY: Recent research into the origins and compositions of the stomach oils unique to sea~birds of the order Procellariifonnes is reviewed. The sources of these oils, most of which contain mainly wax esters and/or trigIycerides, is discussed in relation to the presence of such compounds in the marine environment. A number of functions are proposed as the ecological roles of the oils, including their use as slowIy~mobilisable energy and water reserves for adults and chicks and as defensive weaponry for surface-nesting species. Suggestions are made for further research, particularly into physiological and nutritional aspects. INTRODUCTION their table, a balm for their wounds, and a medicine Birds of the Order Procellariiforrnes (albatrosses, for their distempers." In New Zealand, Travers and fuJmars, shearwaters and other petrels) are peculiar Travers (1873) described how the Chatham Island in being able to store oil in their large, glandular and Morioris held young petrels over their mouths and very distensible fore-guts or proventriculi.. All petrel allowed the oil to drain directly into them. In some spedes so far examined, with the significant excep- years the St Kildans exported part of thei.r oil har~ tion of the diving petrels, Fam. Pelecanoididae, have vest, as the Australian mutton-birders stilI do with been found to contain oil at various times. The oi.1 oil from the chicks of P. tenuirostris. This has been occurs in both adults and chicks, in breeders and used as a basis for sun~tan lotions, but most nowa- non~breeders, and in birds taken at sea and on land. -
ACAP Colony Database Analysis
AC5 Doc 33 Agenda item 8.3 Agreement on the Conservation of Albatrosses and Petrels Fifth Meeting of Advisory Committee Mar del Plata, Argentina, 13 – 17 April 2010 ________________________________________________________________ ACAP Internationally Important Breeding Areas Author: BirdLife International „This paper is presented for consideration by ACAP and may contain unpublished data, analyses, and/or conclusions subject to change. Data in this paper shall not be cited or used for purposes other than the work of the ACAP Secretariat, ACAP Advisory Committee or their subsidiary Working Groups without the permission of the original data holders.‟ AC5 Doc 33 Agenda item 8.3 ACAP Internationally Important Breeding Sites: IBA analysis of the ACAP colony database Paper submitted to AC5 Uthgra Sasso Hotel, Mar del Plata, Argentina 13-17 April 2010 BirdLife International Feb 2010 AC5 Doc 33 Agenda item 8.3 Recommended citation: BirdLife International (2010) ACAP Internationally Important Breeding Sites: IBA analysis of the ACAP colony database. Cambridge, UK: BirdLife International. Compiled by B. Lascelles, BirdLife International Secretariat and BirdLife Global Seabird Programme, Cambridge, UK Acknowledgements Thanks to Richard Phillips and Wieslawa Misiak for assistance in extracting the relevant information from the ACAP colony database, and to Lincoln Fishpool for comments on the draft of this document. Abstract This paper provides information on the breeding sites for ACAP-listed species that are known to hold ≥1% of the global population of the species in question. Information on the breeding site locations and populations present at each site were taken from the ACAP colony database. Information on the global populations of ACAP-listed species was taken from the BirdLife World Bird Database. -
Population Trends of Penguins in the French Southern Territories
Author's personal copy Polar Biology (2020) 43:835–850 https://doi.org/10.1007/s00300-020-02691-6 ORIGINAL PAPER Population trends of penguins in the French Southern Territories Christophe Barbraud1 · Karine Delord1 · Charles A. Bost1 · Adrien Chaigne2 · Cédric Marteau2 · Henri Weimerskirch1 Received: 31 July 2019 / Revised: 21 April 2020 / Accepted: 29 May 2020 / Published online: 3 June 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Penguins are important top consumers in marine food webs and are one of the most threatened bird families, especially by climate change and food web alterations by marine fsheries. Yet, long-term population trends are lacking or are uncertain for many populations. Seven species of penguins breeding at the French Southern Territories in the southern Indian Ocean on the Crozet, Kerguelen, Saint-Paul–Amsterdam archipelagos and in Terre Adélie/Adelie Land, Antarctica are monitored regularly. This monitoring started in the early 1950s and most populations have been surveyed during the past four years, allowing assessments of population trends. King penguins increased at nearly all breeding sites within the Crozet and Ker- guelen archipelagos. Emperor penguins have decreased at Terre Adélie/Adelie Land, with a partial recovery of the colony during the 2010s. Gentoo penguin populations at Crozet and Kerguelen are highly variable but stable. Adélie penguins have been increasing in Terre Adélie/Adelie Land. The trends in eastern rockhopper penguins vary between colonies and archipelagos. Northern rockhopper penguins have continuously decreased in numbers at Amsterdam Island, but appear to have increased at the nearby Saint-Paul Island. Macaroni penguins have frst increased and then stabilized since the 2000s at Kerguelen and are stable at the Crozet Islands. -
Durham Research Online
Durham Research Online Deposited in DRO: 23 June 2014 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Hodgson, D.A. and Graham, A.G.C. and Roberts, S.J. and Bentley, M.J. and O¡ Cofaigh, C. and Verleyen, E. and Vyverman, W. and Jomelli, V. and Favier, V. and Brunstein, D. and Verfaillie, D. and Colhoun, E.A. and Saunders, K.M. and Selkirk, P.M. and Mackintosh, A. and Hedding, D.W. and Nel, W. and Hall, K. and McGlone, M.S. and Van der Putten, N. and Dickens, W.A. and Smith, J.A. (2014) 'Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands.', Quaternary science reviews., 100 . pp. 137-158. Further information on publisher's website: http://dx.doi.org/10.1016/j.quascirev.2013.12.001 Publisher's copyright statement: c 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. -
French Southern Territories
Important Bird Areas in Africa and associated islands – French Southern Territories ■ FRENCH SOUTHERN TERRITORIES ANTOINE CATARD Grey-headed Albatross Diomedea chrysostoma. (ILLUSTRATION: DAVE SHOWLER) GENERAL INTRODUCTION are endemic and 53 are introduced. It is mostly composed of grasses Agrostis magellanica, Poa cooki, P. annua, mosses and lichens, The Terres Australes Françaises or French Southern Territories are together with several herbaceous species (notably Acaena composed of three sets of islands in the southern Indian Ocean— magellanica, Azorella selago and Pringlea antiscorbutica). Plant Crozet, Kerguelen, and Saint Paul and Amsterdam—with a total cover is significant only in coastal areas at low altitude; above 200 m, area of 760,000 ha. These islands are very isolated and lie at least vascular plants are rare and bare rock dominates the landscape. 2,500 km away from the closest continental shores of Australia, The greatest numbers of birds are found on Île de l’Est, Îles des southern Africa and Antarctica. The nearest islands to the French Apôtres and Îles des Pingouins, where cats and rats are absent. On Southern Territories are Heard Island, 480 km south-east of the Îles Île des Cochons and Île de la Possession where, respectively, cats Kerguelen, and Prince Edward and Marion Islands, 1,000 km west and rats are present, the smaller seabird species, particularly petrels, of the Îles Crozet. There is no permanent human population on these have either been eliminated or are greatly reduced in numbers. islands, but three have stations which house expeditions of 30 to 80 Numbers of albatrosses and penguins nevertheless remain high.