Bibliography No. 39-3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nasa Tm X-1864 *
NASA TECHNICAL. • £HP2fKit NASA TM X-1864 * ... MEMORANDUM oo fe *' > ;ff f- •* '• . ;.*• f PROPULSION • FOR *MANN1D E30PLORATION-k '* *Of THE SOEAE " • » £ Moedkel • - " *' ' ' y Lem$ Research Center Cleveland, Qbt® NATIONAL AERONAUTICS AND SFACE ADMINISTRATION • WASHINGTON, D. €, * AUCUST 1969 NASA TM X-1864 PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM By W. E. Moeckel Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and. Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 ABSTRACT What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. The first portion of this report relates planetary round-trip times to the performance parameters of two types of propulsion systems: type I is specific-impulse limited (with high thrust), and type n is specific-mass limited (with low thrust). The second part of the report discusses advanced propulsion concepts of both types and evaluates their limitations. The discussion includes nuclear-fission . rockets (solid, liquid, and gaseous core), nuclear-pulse propulsion, nuclear-electric rockets, and thermonuclear-fusion rockets. Particular attention is given to the last of these, because it is less familiar than the others. A general conclusion is that the more advanced systems, if they prove feasible, will reduce trip time to the near planets by factors of 3 to 5, and will make several outer planets accessible to manned exploration. PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM* byW. E. Moeckel Lewis Research Center SUMMARY What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. -
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber
Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber G. Romanelli Master of Science Thesis Space Systems Engineering PULSED FUSION SPACE PROPULSION: COMPUTATIONAL IDEAL MAGNETO-HYDRO DYNAMICS OFA MAGNETIC FLUX COMPRESSION REACTION CHAMBER by Gherardo ROMANELLI to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday February 26, 2016 at 10:00 AM. Student number: 4299876 Thesis committee: Dr. A. Cervone, TU Delft, supervisor Prof. Dr. E. K. A. Gill, TU Delft Dr. Ir. E. Mooij, TU Delft Prof. A. Mignone, Politecnico di Torino An electronic version of this thesis is available at http://repository.tudelft.nl/. To boldly go where no one has gone before. James T. Kirk ACKNOWLEDGEMENTS First of all I would like to thank my supervisor Dr. A. Cervone who has always sup- ported me despite my “quite exotic” interests. He left me completely autonomous in shaping my thesis project, and still, was always there every time I needed help. Then, I would of course like to thank Prof. A. Mignone who decided to give his contribute to this seemingly crazy project of mine. His advice arrived just in time to give an happy ending to this story. Il ringraziamento più grande, però, va di certo alla mia famiglia. Alla mia mamma e a mio babbo, perché hanno sempre avuto fiducia in me e non hanno mai chiesto ragioni o spiegazioni alle mie scelte. Ai miei nonni, perché se di punto in bianco, un giorno di novembre ho deciso di intraprendere questa lunga strada verso l’Olanda, l’ho potuto fare anche per merito loro. -
Propulsion Options for the Global Precipitation Measurement Core Satellite
PROPULSION OPTIONS FOR THE GLOBAL PRECIPITATION MEASUREMENT CORE SATELLITE Eric H. Cardiff*, Gary T. Davist, and David C. FoltaS NASA Goddard Space Flight Center Greenbelt, MD 2077 1 Abstract This study was conducted to evaluate several propulsion system options for the Global Precipitation Measurement (GPM) core satellite. Orbital simulations showed clear benefits for the scientific data to be obtained at a constant orbital altitude rather than with a decayheboost approach. An orbital analysis estimated the drag force on the satellite will be 1 to 12 mN during the five-year mission. Four electric propulsion systems were identified that are able to compensate for these drag forces and maintain a circular orbit. The four systems were the UK-lO/TS and the NASA 8 cm ion engines, and the ESA RMT and RITlO EVO radio-frequency ion engines. The mass, cost, and power requirements were examined for these four systems. The systems were also evaluated for the transfer time from the initial orbit of 400 x 650 km altitude orbit to a circular 400 km orbit. The transfer times were excessive, and as a consequence a “dual” system concept (with a hydrazine monopropellant system for the orbit transfer and electric propulsion for drag compensation) was examined. Clear mass benefits were obtained with the “dual” system, but cost remains an issue because of the larger power system required for the electric propulsion system. An electrodynamic tether was also evaluated in this trade study. Introduction The propulsion system is required to perform two The Global Precipitation Measurement (GPM) primary functions. The first is to transfer the mission will be launched in late 2008 to measure satellite from the launch insertion orbit to the final the amount and type of precipitation around the circular orbit. -
Monopropellant System
~™ mil ii ii nun mi iiiii iiiii (19) J European Patent Office Office europeen des brevets (11) EP 0 950 648 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:ation: (51) Int. CI.6: C06D 5/08 20.10.1999 Bulletin 1999/42 (21) Application number: 98201190.0 (22) Date of filing: 15.04.1998 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU • van den Berg, Ronald Peter MC NL PT SE 2291 KJ Wateringen (NL) Designated Extension States: • Mul, Johannes Maria AL LT LV MK RO SI 2013 AE Haarlem (NL) • Elands, Petrus Johannes Maria (71) Applicant: 2804 LK Gouda (NL) NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK (74) Representative: ONDERZOEK Smulders, Theodorus A.H.J., Ir. et al TNO Vereenigde Octrooibureaux 2628 VK Delft (NL) Nieuwe Parklaan 97 2587 BN 's-Gravenhage (NL) (54) Monopropellant system (57) The invention is directed to a monopropellant composition for propulsion and/or gas generation, com- prising a solution of hydrazinium nitroformate (HNF) and/or ammonium dinitramide (ADN) in water and/or an alkanol. < CO CO o LO o Q_ LU Printed by Xerox (UK) Business Services 2.16.7/3.6 EP 0 950 648 A1 Description [0001] The present invention is in the area of monopropellant composition systems, for instance for spacecraft pro- pulsion, in emergency systems for jet fighters or in emergency gasgeneration systems for submarines. 5 [0002] Spacecraft propulsion is defined as that needed for the orientation (attitude control) and positioning (orbit con- trol including de-orbiting) of spacecraft after delivery into the required orbit by the launch vehicle. -
1 the Merits of Cold Gas Micropropulsion in State-Of
IAC-02-S.2.07 THE MERITS OF COLD GAS MICROPROPULSION IN STATE-OF-THE-ART SPACE MISSIONS Hugo Nguyen, Johan Köhler and Lars Stenmark The Ångström Space Technology Centre, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden. [email protected] Fax: +46 18 471 3572 Abstract: Cold gas micropropulsion is a sound 1. INTRODUCTION choice for space missions that require extreme For Attitude and Orbit Control System (AOCS) stabilisation, pointing precision or contamination- requirements on extreme stabilisation, pointing free operation. The use of forces in the micronewton precision, contamination-free operation is the range for spacecraft operations has been identified as most important for many missions. Examples a mission-critical item in several demanding space include DARWIN, LISA, SIM, NGST, and those systems currently under development. which have optical or other equipments pointing Cold gas micropropulsion systems share merits with exactly to a certain object or in a certain direction. traditional cold gas systems in being simple in Other obviously desirable properties include design, clean, safe, and robust. They do not generate design simplicity, cleanliness, safety, robustness, net charge to the spacecraft, and typically operate on low-power operation, no net charge generation to low-power. The minute size is suitable not only for the craft, together with low mass, and a wide inclusion on high-performance nanosatellites but dynamic range. Cold gas micropropulsion has also for high-demanding future space missions of those merits and in the present paper, larger sizes. technological solutions will be treated By using differently sized nozzles in parallel emphatically, at the same time the mentioned systems the dynamic range of a cold gas merits will be brought out clearly. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
A "Green Cold-Gas" Propulsion System for Cubesats
A "Green Cold-Gas" Propulsion System for Cubesats John Lee1, Adam Huang2 1 Department of Mechanical Engineering, University of Arkansas, [email protected] 2 Department of Mechanical Engineering, University of Arkansas, [email protected] Background – Cubesat Maneuvering Propellant Characterization Thrust Generated • Current Cubesat maneuvering techniques are mainly passive, with little to no • Vaporizing a propellant via nanochannels to vacuum was • Experiments were conducted in a vacuum HD Lifecam ability to change orbits. studied as a means of propulsion for small satellites. chamber that maintained a milliTorr • Specific impulse (Isp) - measure of propellant efficiency • Basic attitude control primarily using Earth’s magnetic field or gravity. Black Out Bell Jar Curtain pressure to simulate space conditions 훾+1 훾푅푇 ∗ ∗ • Very low torque, long time-constant stability (hours), and low accuracy. 푐 훾 2 2 훾−1 푐 = 훾+1 • Various trials were conducted to 퐼푠푝 = where 2 2훾−1 푔 훾 − 1 훾 + 1 훾 • Near-term flights with momentum wheels. Need momentum dumping. 0 훾 + 1 determine properties of vapor phase Light Source • Available technologies aqueous propylene glycol by varying: Test Apparatus • Using Aqueous PG Isp and nanochannel array dimensions • Magnets, Magnetorquers, Momentum wheels (needs dump), Conventional 250μm • Temperature – controlled with a bang- Mass Scale the theoretical thrust was calculated thrusters (solid, fluid thrusters), Gravity gradient, Drag, Electric Thrusters bang thermostat • Thrust is tuned by adjusted the nanochannel dimensions -
DESIGN and DEVELOPMENT of a 30-Ghz MICROWAVE ELECTROTHERMAL THRUSTER
The Pennsylvania State University The Graduate School College of Engineering DESIGN AND DEVELOPMENT OF A 30-GHz MICROWAVE ELECTROTHERMAL THRUSTER A Thesis in Aerospace Engineering by Erica E. Capalungan ©2011 Erica E. Capalungan Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2011 The thesis of Erica E. Capalungan was reviewed and approved* by the following: Michael M. Micci Professor of Aerospace Engineering Director of Graduate Studies Thesis Advisor Sven G. Bilén Associate Professor of Engineering Design, Electrical Engineering, and Aerospace Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School. ii ABSTRACT Research has been conducted on the microwave electrothermal thruster at The Pennsylvania State University since the 1980’s. Each subsequent thruster incorporated modifications that resulted in improvements in thruster performance compared to previous generations. Operational frequencies evaluated thus far include 2.45 GHz, 7.5 GHz, 8 GHz, and 14.5 GHz. As each thruster increased in operational frequency, plasmas have been ignited with successively lower amounts of input power. With higher frequency and lower power requirements, the physical sizes of the thruster and the power supply have been reduced. Decreased size results in a lighter propulsion system, which is ideal for space missions. This thesis concerns the design and development of a thruster operating at 30 GHz. Electromagnetic modeling was used in the design of the thruster to determine the optimal input antenna size and length. A 2.4-mm antenna size was chosen with a length that is flush with the bottom of the cavity. -
Magnetoshell Aerocapture: Advances Toward Concept Feasibility
Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics. -
IAF Space Propulsion Symposium 2019
IAF Space Propulsion Symposium 2019 Held at the 70th International Astronautical Congress (IAC 2019) Washington, DC, USA 21 -25 October 2019 Volume 1 of 2 ISBN: 978-1-7138-1491-7 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2019) by International Astronautical Federation All rights reserved. Printed with permission by Curran Associates, Inc. (2020) For permission requests, please contact International Astronautical Federation at the address below. International Astronautical Federation 100 Avenue de Suffren 75015 Paris France Phone: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 www.iafastro.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 PROPULSION SYSTEM (1) BLUE WHALE 1: A NEW DESIGN APPROACH FOR TURBOPUMPS AND FEED SYSTEM ELEMENTS ON SOUTH KOREAN MICRO LAUNCHERS ............................................................................ 1 Dongyoon Shin KEYNOTE: PROMETHEUS: PRECURSOR OF LOW-COST ROCKET ENGINE ......................................... 2 Jérôme Breteau ASSESSMENT OF MON-25/MMH PROPELLANT SYSTEM FOR DEEP-SPACE ENGINES ...................... 3 Huu Trinh 60 YEARS DLR LAMPOLDSHAUSEN – THE EUROPEAN RESEARCH AND TEST SITE FOR CHEMICAL SPACE PROPULSION SYSTEMS ....................................................................................... 9 Anja Frank, Marius Wilhelm, Stefan Schlechtriem FIRING TESTS OF LE-9 DEVELOPMENT ENGINE FOR H3 LAUNCH VEHICLE ................................... 24 Takenori Maeda, Takashi Tamura, Tadaoki Onga, Teiu Kobayashi, Koichi Okita DEVELOPMENT STATUS OF BOOSTER STAGE LIQUID ROCKET ENGINE OF KSLV-II PROGRAM ....................................................................................................................................................... -
The Development of a Pulsed Plasma Thruster As a Solid Fuel Plasma Source for a High Power Helicon
The Development of a Pulsed Plasma Thruster as a Solid Fuel Plasma Source for a High Power Helicon Ian Kronheim Johnson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The University of Washington 2011 Program authorized to offer degree: Aeronautics and Astronautics University of Washington Graduate School This is to certify that I have examined this copy of a master’s thesis by Ian Kronheim Johnson and have found that is it complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: Professor Robert Winglee, Department of Earth and Space Sciences, Chair Professor Tom Jarboe, Department of Aeronautics and Astronautics Date: The University of Washington ii In presenting this thesis in partial fulfillment of the requirements for a master’s degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission. Signature: Date: The University of Washington iii University of Washington Abstract The Development of a Pulsed Plasma Thruster as a Solid Fuel Plasma Source for a High Power Helicon Ian Kronheim Johnson Chair of the Supervisory Committee: Professor Robert Winglee Earth and Space Sciences As space exploration shifts to lower mass and lower cost missions, the need for improved on-board propulsion systems is growing.