Cave-73-02-Fullr.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biofilm Formation by Moraxella Catarrhalis
BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work. -
Propulsion Options for the Global Precipitation Measurement Core Satellite
PROPULSION OPTIONS FOR THE GLOBAL PRECIPITATION MEASUREMENT CORE SATELLITE Eric H. Cardiff*, Gary T. Davist, and David C. FoltaS NASA Goddard Space Flight Center Greenbelt, MD 2077 1 Abstract This study was conducted to evaluate several propulsion system options for the Global Precipitation Measurement (GPM) core satellite. Orbital simulations showed clear benefits for the scientific data to be obtained at a constant orbital altitude rather than with a decayheboost approach. An orbital analysis estimated the drag force on the satellite will be 1 to 12 mN during the five-year mission. Four electric propulsion systems were identified that are able to compensate for these drag forces and maintain a circular orbit. The four systems were the UK-lO/TS and the NASA 8 cm ion engines, and the ESA RMT and RITlO EVO radio-frequency ion engines. The mass, cost, and power requirements were examined for these four systems. The systems were also evaluated for the transfer time from the initial orbit of 400 x 650 km altitude orbit to a circular 400 km orbit. The transfer times were excessive, and as a consequence a “dual” system concept (with a hydrazine monopropellant system for the orbit transfer and electric propulsion for drag compensation) was examined. Clear mass benefits were obtained with the “dual” system, but cost remains an issue because of the larger power system required for the electric propulsion system. An electrodynamic tether was also evaluated in this trade study. Introduction The propulsion system is required to perform two The Global Precipitation Measurement (GPM) primary functions. The first is to transfer the mission will be launched in late 2008 to measure satellite from the launch insertion orbit to the final the amount and type of precipitation around the circular orbit. -
Neisseria Acinetobacter, Moraxella ? and Kingella Based on Partial 16S Ribosomal DNA Sequence Analysis4
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1994, p. 387-391 Vol. 44, No. 3 0020-7713/94/$04.00 + 0 Copyright 0 1994, International Union of Microbiological Societies Phylogenetic Relationships between Some Members of the Genera Neisseria Acinetobacter, Moraxella ? and Kingella Based on Partial 16s Ribosomal DNA Sequence Analysis4. M. C. ENRIGHT,” P. E. CARTER, I. A. MACLEAN,AND H. McKENZIE Department of Medical Microbiology, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB9 220 We obtained 16s ribosomal DNA (rDNA) sequence data for strains belonging to 11 species of Proteobacteria, including the type strains of Kingella kingae, Neisseria lactamica, Neisseria meningitidis, Moraxella lacunata subsp. lacunata, [Neisseria] ovis, Moraxella catarrhalis, Moraxella osloensis, [Moraxella] phenylpyruvica, and Acineto- bacter lwo$i, as well as strains of Neisseria subflava and Acinetobacter calcoaceticus. The data in a distance matrix constructed by comparing the sequences supported the proposal that the genera Acinetobacter and Moraxella and [N.] ovis should be excluded from the family Neisseriaceae. Our results are consistent with hybridization data which suggest that these excluded taxa should be part of a new family, the Moraxellaceae. The strains that we studied can be divided into the following five groups: (i) M. lacunata subsp. lacunata, [N.] ovis, and M. catarrhalis; (ii) M. osloensis; (iii) [M.]phenylpyruvica; (iv) A. calcoaceticus and A. lwofii; and (v) N. meningitidis, N. subflava, N. lactamica, and K. kingae. We agree with the previous proposal that [N.] ovis should be renamed Moraxella ovis, as this organism is closely related to Moraxella species and not to Neisseria species. The generically misnamed taxon [M.] phenylpyruvica belongs to the proposed family Moraxellaceae, but it is sufficiently different to warrant exclusion from the genus Moraxella. -
Moraxella Species: Infectious Microbes Identified by Use of Time-Of
Japanese Journal of Ophthalmology (2019) 63:328–336 https://doi.org/10.1007/s10384-019-00669-4 CLINICAL INVESTIGATION Moraxella species: infectious microbes identifed by use of time‑of‑fight mass spectrometry Shunsuke Takahashi1 · Kazuhiro Murata1 · Kenji Ozawa1 · Hiroki Yamada2 · Hideaki Kawakami3 · Asami Nakayama4 · Yuko Asano5 · Kiyofumi Mochizuki1 · Hiroshige Mikamo6 Received: 14 August 2018 / Accepted: 2 April 2019 / Published online: 4 July 2019 © Japanese Ophthalmological Society 2019 Abstract Purpose To report the clinical manifestations, identifcation, antimicrobial susceptibilities, and treatment outcomes of ocular infections caused by Moraxella species. Study design Retrospective study. Patients and methods The medical records of all patients treated at the Departments of Ophthalmology of the Ogaki Munici- pal Hospital and the Gifu University Graduate School of Medicine for ocular infections caused by Moraxella species between January 2011 and June 2017 were examined. The stored Moraxella species isolated from ocular samples were identifed by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS), molecular identifcation, and the biochemical properties. Results Sixteen eyes of 16 patients were treated for Moraxella ocular infections. The patients’ median age was 72 years. A predisposing systemic or ocular condition was identifed in 15 of the patients. Nine of the patients developed keratitis; four, conjunctivitis; and three, blebitis. M lacunata (6 eyes), M catarrhalis (6), M nonliquefaciens (3), and M osloensis (1) were identifed by MALDI-TOF MS. All isolates were sensitive to levofoxacin, tobramycin, ceftazidime, ceftriaxone, and cefa- zolin. Twelve patients with keratitis or blebitis were treated with various topical antimicrobial combinations, and systemic antibiotics were used in 10 of the 12 patients. -
Performance of the NASA 30 Cm Ion Thruster
https://ntrs.nasa.gov/search.jsp?R=19940020297 2020-06-16T16:39:35+00:00Z /-^- E-S^L^ NASA Technical Memorandum 106426 IEPC-93-108 Performance of the NASA 30 cm Ion Thruster Michael J. Patterson and Thomas W. Haag Lewis Research Center Cleveland, Ohio and Scot A. Hovan University of Dayton Dayton, Ohio Prepared for the 23rd International Electric Propulsion Conference cosponsored by the AIAA, AIDAA, DGLR, and BASS Seattle, Washington, September 13-16, 1993 NASA IEPC-93-108 Performance of the NASA 30 cm Ion Thruster Michael J. Patterson' and Thomas W. Haag' National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Scot A. Hovan Department of Mechanical Engineering University of Dayton Dayton, Ohio A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest, and is being proposed for use on the USAF/TRW Space Surveillance, Tracking and Autonomous Repositioning (SSTAR) platform to validate ion propulsion. The thruster incorporates innovations in design, materials, and fabrication techniques compared to those employed in conventional ion thrusters. Specific development efforts include thruster design optimizations, component life testing and validation, vibration testing, and performance characterizations. Under this test program, the ion thruster will be brought to engineering model development status. This paper discusses the performance and power throttling test data for the NASA 30 cm diameter xenon ion thruster over an input power envelope -
Moraxella Bacteremia in Cancer Patients
Open Access Case Report DOI: 10.7759/cureus.15316 Moraxella Bacteremia in Cancer Patients Shamra Zaman 1 , John Greene 2 1. Medicine, University of South Florida, Tampa, USA 2. Internal Medicine, Moffitt Cancer Center, Tampa, USA Corresponding author: John Greene, [email protected] Abstract Moraxella is a gram-negative bacterium part of the Moraxellaceae family. It is a pathogen that is commonly found in the upper respiratory tract of humans. It is a rare cause of community-acquired pneumonia and can be found in immunocompromised individuals, especially those with impaired humoral immunity such as hypogammaglobulinemia and those with lung diseases. We present three cases of Moraxella infections at the Moffitt Cancer Center between the years 2011 and 2017. We performed a literature review of Moraxella bacteremia in cancer patients and included three patients, two with a history of multiple myeloma and one undergoing radiation therapy for non-small cell lung carcinoma. None of the patients died as a result of the infection. Moraxella infections can result in a range of severity with increasing resistance to antibiotic therapy. Categories: Infectious Disease, Oncology Keywords: moraxella, myeloma, respiratory tract, pneumonia, immunocompromised patient Introduction Moraxella is a gram-negative bacterium that has a coccobacillus shape [1]. Originally considered normal flora in the human respiratory system, it can cause respiratory tract infections [2]. It primarily affects adults with prior chronic lung disease and the immunosuppressed. The most common immunodeficiency is hypogammaglobulinemia, which is found in patients with multiple myeloma and chronic lymphocytic leukemia (CLL). Invasive infections include meningitis, pneumonia, and endocarditis [3,4]. We present the cases of three cancer patients with Moraxella infections that illustrate the most common risk factors that predispose to this infection. -
Ionization Within a Plasma for the Purpose Investigating Space Propulsion and the Vasimr Plasma Rocket Engine
Ionization within a Plasma for the Purpose Investigating Space Propulsion and the Vasimr Plasma Rocket Engine A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Jeffrey Meadows May, 2016 approved by Dr. Marcus Murbach Faculty Advisor Abstract This paper investigates 2 key methods of ionization; Electron bombardment and RF bombardment, for plasma production in space as it relates to propulsion applications. The Paschen curve for air was measured experimentally and a 2mm wide region of <10% error was measured from those results. Ionization costs of between 8,000 and 15,000 electron Volts were calculated within the 2mm gap region. From these results, it was determined that electron bombardment could not provide efficient ionization for thrusting applications above 0.1 Newtons. From previously published data the ratio of ionization potential to atomic mass was a determined to be a key design parameter limiting propellant selection to the noble gases. The elements specifically investigated were Argon, Xenon & Krypton. More importance was placed on investigating Argon owing to the abundance of previously published data. Furthermore, a novel solution was proposed relying on published data and experimental investigation, to fill the design space between VASIMR and ion/hall thrusters. The theoretical results of this solution are a thrust of 0.6 N operating on 25 kW of power at total efficiency of just 10%. A future experiment was proposed for investigating RF bombardment ionization efficiencies of the 3 elements to better estimate their ionization efficiencies within the Helicon antenna to improve this 10% total efficiency. -
Degree at Master at Science Floyd J. Ruble, B.Sc
THE ORG!NIWION AND DEVELOPMENT OF YOUNG MEN'S FARMING CLUBS IN OHIO A fheaia Preaented for the :Degree at Master at Science by Floyd J. Ruble, B.Sc. ~he Ohio State University 1930 Approved bya TA.BLE OF CO:tnENTS Page INTRODUC~ION i Statement of the Problem 11 Source material ii FARill ORGANIZATIONS 1 ACTIVITIES FOR CHILDREN AND YOUTH 2 BEGINNING OF THE FARMING CLUB MOV&ililll! 3 ITS POSSIBILITIES FOR lilEMBEB.SllIP 4 THE ORGANIUTION OF A TY.Piilli.L CLUB 5 PART-TIME COURSES ESSENTIAL TO 1!13TABLISHING FARMING CLUBS 10 INT~TS OF THE OBGA.Niz.ATION 12 MEM.BlmSHIP 14 THE CONSTITUTION OF A CLUB 18 INITIATION 19 .PROGRAM OF WORK 20 ATHLE'rIOS 27 SOCIALS 28 PIAYS 29 PFB.l! HUNTS 30 PAlJJlft-SON .BANQ.Ums 31 PA!lf-TIKE COURSil> 31 O.BJ:00!.rIVBS OP' PART-TIME INSTRUCTION 35 PROJ:OOT WORK 37 :eROJ:OOTS AND SUPERVISED .PRACTICE IN THE GROVE CITY C01A1UNITY TABLE OF CONTE!il'lS page CASES OF INDIVIDUAL PROJJOOT WOBK 46 THE YOUNG MEN'S FAru.ilNG CLUB AS A COM.WNITY ASS~~ 50 BEIA.TIONSHIPS AND R.EaPONSIBILITI.12 OP T~CH.l:lib OP VOCA.TIONA.L AGRICUL'...'URE 51 THE FU'i'URE OF YOUNG MEN'S FAmllNG CLUBS 52 STATUS OF YOUNG MEN'S F.Alli:iilNG CLUBS IN O'.i:HAR STAT.Ea 53 SUMhlARY 54 BIBLIOGRAHIY 56 APPENDIX 57 LIST OF TAB~ Page I GROWTH OF THE GROVE CITY YOU. MEN'S FARM.ING CLUBS 6 II THE GRC1NTH OF YOUNG .MEN'S ~~Rii:llNG CLUBS SHOWING THE REJ'ATION OF THE NUMBER OF llEPAR'.i:.:J..~~S OF VOCATIONA.L AGRICULTURE AND THE WllB~ OF .PART-TIU COURS.:l3 FOR NINE Y.FARS, 1922 TO 1930 10 III 11IE REIATIONSHIP BEfJ.'WEEN F.AlUoUNG CLUB l4EM.B..iBS AND PART-TIME -
1 Iac-06-C4.4.7 the Innovative Dual-Stage 4-Grid Ion
IAC-06-C4.4.7 THE INNOVATIVE DUAL-STAGE 4-GRID ION THRUSTER CONCEPT – THEORY AND EXPERIMENTAL RESULTS Cristina Bramanti, Roger Walker, ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected], Roger. Walker @esa.int Orson Sutherland, Rod Boswell, Christine Charles Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia [email protected], [email protected], [email protected]. David Fearn EP Solutions, 23 Bowenhurst Road, Church Crookham, Fleet, Hants, GU52 6HS, United Kingdom [email protected] Jose Gonzalez Del Amo, Marika Orlandi ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected], [email protected] ABSTRACT A new concept for an advanced “Dual-Stage 4-Grid” (DS4G) ion thruster has been proposed which draws inspiration from Controlled Thermonuclear Reactor (CTR) experiments. The DS4G concept is able to operate at very high specific impulse, power and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. A small low-power experimental laboratory model was designed and built under a preliminary research, development and test programme, and its performance was measured during an extensive test campaign, which proved the practical feasibility of the overall concept and demonstrated the performance predicted by analytical and simulation models. In the present paper, the basic concept of the DS4G ion thruster is presented, along with the design, operating parameters and measured performance obtained from the first and second phases of the experimental campaign. -
Space Propulsion Technology for Small Spacecraft
Space Propulsion Technology for Small Spacecraft The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Krejci, David, and Paulo Lozano. “Space Propulsion Technology for Small Spacecraft.” Proceedings of the IEEE, vol. 106, no. 3, Mar. 2018, pp. 362–78. As Published http://dx.doi.org/10.1109/JPROC.2017.2778747 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114401 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ PROCC. OF THE IEEE, VOL. 106, NO. 3, MARCH 2018 362 Space Propulsion Technology for Small Spacecraft David Krejci and Paulo Lozano Abstract—As small satellites become more popular and capa- While designations for different satellite classes have been ble, strategies to provide in-space propulsion increase in impor- somehow ambiguous, a system mass based characterization tance. Applications range from orbital changes and maintenance, approach will be used in this work, in which the term ’Small attitude control and desaturation of reaction wheels to drag com- satellites’ will refer to satellites with total masses below pensation and de-orbit at spacecraft end-of-life. Space propulsion 500kg, with ’Nanosatellites’ for systems ranging from 1- can be enabled by chemical or electric means, each having 10kg, ’Picosatellites’ with masses between 0.1-1kg and ’Fem- different performance and scalability properties. The purpose tosatellites’ for spacecrafts below 0.1kg. In this category, the of this review is to describe the working principles of space popular Cubesat standard [13] will therefore be characterized propulsion technologies proposed so far for small spacecraft. -
Ion Propulsion
NASA Facts National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135–3191 FS–2004–11–021–GRC Ion Propulsion Plasma is an electrically neutral gas in which all positive and negative charges—from neutral atoms, negatively charged electrons, and positively charged ions—add up to zero. Plasma exists everywhere in nature; it is designated as the fourth state of matter (the others are solid, liquid, and gas). It has some of the properties of a gas but is affected by electric and magnetic fields and is a good conductor of electricity. Plasma is the building block for all types of electric propulsion, where electric and/or magnetic fields are used to push on the electrically charged ions and electrons to provide thrust. Examples of plasmas seen every day are lightning and fluorescent light bulbs. The conventional method for ionizing the propellant atoms in an ion thruster is called electron bombardment. The majority of NASA’s research consists of electron NASA Evolutionary Xenon Thruster (NEXT) ion bombardment ion thrusters. When a high-energy electron thruster in operation. (negative charge) collides with a propellant atom (neutral charge), a second electron is released, yielding two Introduction negative electrons and one positive ion. The propulsion of choice for science fiction writers has become the propulsion of choice for scientists and An alternative method of ionization called electron engineers at NASA. The ion propulsion system’s efficient cyclotron resonance (ECR) is also being researched use of fuel and electrical power enable modern spacecraft at NASA. This method uses high-frequency radiation to travel farther, faster, and cheaper than any other (usually microwaves), coupled with a high magnetic field propulsion technology currently available. -
IGNITION! an Informal History of Liquid Rocket Propellants by John D
IGNITION! U.S. Navy photo This is what a test firing should look like. Note the mach diamonds in the ex haust stream. U.S. Navy photo And this is what it may look like if something goes wrong. The same test cell, or its remains, is shown. IGNITION! An Informal History of Liquid Rocket Propellants by John D. Clark Those who cannot remember the past are condemned to repeat it. George Santayana RUTGERS UNIVERSITY PRESS IS New Brunswick, New Jersey Copyright © 1972 by Rutgers University, the State University of New Jersey Library of Congress Catalog Card Number: 72-185390 ISBN: 0-8135-0725-1 Manufactured in the United Suites of America by Quinn & Boden Company, Inc., Rithway, New Jersey This book is dedicated to my wife Inga, who heckled me into writing it with such wifely re marks as, "You talk a hell of a fine history. Now set yourself down in front of the typewriter — and write the damned thing!" In Re John D. Clark by Isaac Asimov I first met John in 1942 when I came to Philadelphia to live. Oh, I had known of him before. Back in 1937, he had published a pair of science fiction shorts, "Minus Planet" and "Space Blister," which had hit me right between the eyes. The first one, in particular, was the earliest science fiction story I know of which dealt with "anti-matter" in realistic fashion. Apparently, John was satisfied with that pair and didn't write any more s.f., kindly leaving room for lesser lights like myself.