Herron-Sweet 2015 Biocontrol.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessing Population Sizes, Biological Potential and Mass
1. ASSESSING POPULATION SIZES, BIOCONTROL POTENTIAL AND MASS PRODUCTION OF THE ROOT BORING MOTH AGAPETA ZOEGANA FOR AREWIDE IMPLEMENTATION AND MONITORING OF SPOTTED KNAPWEED BIOCONTROL 2. PRINCIPAL INVESTIGATORS: Mark Schwarzländer, PSES Department, University of Idaho, 875 Perimeter DR MS 2339, Moscow, ID 83844-2339, (208) 885-9319, FAX (208)885- 7760, [email protected]; Joseph Milan, USDI Bureau of Land Management, 3948 Development Ave., Boise, ID 83705, (208) 384-3487, FAX (208) 384-3326, [email protected]; Paul Brusven, Nez Perce Tribe Bio-Control Center, P.O. Box 365, 22776 Beaver Road, Lapwai, ID 83540, (208) 843-9374, FAX (208) 843-9373, [email protected] 3. COOPERATORS: Dr. Hariet Hinz (CABI Switzerland), Dr. Urs Schaffner (CABI Switzerland, Dr. Sanford Eigenbrode (University of Idaho), Dr. Heinz Müller-Schärer (University of Fribourg, Switzerland), Brian Marschmann (USDA APHIS PPQ State Director, Idaho), Dr. Rich Hansen (USDA APHIS CPHST, Ft. Collins, Colorado), John (Lewis) Cook (USDI BIA Rocky Mountain Region, Billings, Montana), Dr. John Gaskin (USDA ARS NPARL, Sidney, Montana), Idaho County Weed Superintendents and Idaho-based USFS land managers. BCIP CONTACT: Carol Randall, USFS Northern and Intermountain Regions, 2502 E Sherman Ave, Coeur d'Alene, ID 83814, (208) 769-3051, (208) 769-3062, [email protected] 4. REQUESTED FUNDS: USFS $100,000 (Year 1: $34,000; Year 2: $33,000; and Year 3: $33,000), Project Leveraging: University of Idaho $124,329. 5. EXECUTIVE SUMMARY: 1) The current status of ecological research suggests that albeit having some impact on spotted knapweed, both, A. zoegana and C. achates have stronger negative effects on native grasses, thus indirectly benefiting one of most devastating invasive plants in the U.S. -
Draft Management Plan
SUNNYSIDE/SNAKE RIVER WILDLIFE AREA MANAGEMENT PLAN Washington Department of Fish and Wildlife Prepared by Wildlife Area Manager, Rocky Ross & Leray Stream, Regional Wildlife Program Manager 2006 STATE OF WASHINGTON CHRIS GREGOIRE, GOVERNOR DEPARTMENT OF FISH AND WILDLIFE JEFF KOENINGS, Ph.D., DIRECTOR WILDLIFE PROGRAM DAVE BRITTELL, ASSISTANT DIRECTOR LANDS DIVISION MARK QUINN, MANAGER The Sunnyside Wildlife Area is primarily funded by the Bonneville Power Administration to mitigate for the Federal Columbia River Hydropower System. (Project Number 200201400) & The Snake River Units are funded by the Army Corp of Engineers to mitigate for the Snake River hydroelectric projects. This report should be cited as: Washington Department of Fish and Wildlife. 2006. Sunnyside/Snake River Wildlife Area Management Plan. Wildlife Management Program, Washington Department of Fish and Wildlife, Olympia. 214 pp. Washington State Wildlife Area Plan SUNNYSIDE / SNAKE RIVER WILDLIFE AREA Washington Department of Fish and Wildlife Wildlife Management Program 600 Capitol Way North Olympia, WA 98501-1091 Table of Contents EXECUTIVE SUMMARY................................................................................................................ vi CHAPTER I. INTRODUCTION...................................................................................................... 1 1.1 Agency Mission Statement ..................................................................................................... 1 1.2 Agency Goals and Objectives................................................................................................ -
Spotted Knapweed Centaurea Stoebe Ssp. Micranthos (Gugler) Hayek
spotted knapweed Centaurea stoebe ssp. micranthos (Gugler) Hayek Synonyms: Acosta maculosa auct. non Holub, Centaurea biebersteinii DC., C. maculosa auct. non Lam, C. maculosa ssp. micranthos G. Gmelin ex Gugler Other common names: None Family: Asteraceae Invasiveness Rank: 86 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description Ecological Impact Spotted knapweed is a biennial to short-lived perennial Impact on community composition, structure, and plant. Stems are 30½ to 91 cm tall and generally interactions: Spotted knapweed often forms dense branched. Rosette leaves are compound with several stands in natural communities. Infestations reduce the irregularly lobed segments. Stem leaves are alternate, 5 vigor of native plants, decrease the species diversity of to 15 cm long, more or less hairy, and resin-dotted. plant communities, and degrade the forage quality of Lower stem leaves are narrowly divided, while the wildlife habitats. Winter-ranging elk may avoid foraging upper stem leaves are undivided. Flower heads are 19 to in spotted knapweed dominated communities (Rice et al. 25½ mm wide and are composed of purple disc florets 1997). Knapweeds are allelopathic, inhibiting the (Royer and Dickinson 1999, Whitson et al. 2000). establishment and growth of surrounding vegetation (Whitson et al. 2000). Impact on ecosystem processes: Infestations of spotted knapweed have been shown to increase the erosion of topsoil. -
Cochylini Del 2
Cochylini del 2 Agapeta, Eupoecilia, Aethes (part.) Agapeta hamana (L.) 4268 15-25 mm. Imago flyver sidst på dagen og kommer fint til lys fra maj til august (september). Ikke alle eksem- plarer er så stærkt tegnet som ovenstående. Agapeta hamana (L.) Larven lever overvintrende i i rødderne af forskellige tidsler (Carduus, Cirsium mv.). Udbredt i Europa op til Mellemsverige og Finland. Almindelig. Agapeta largana (Rebel) 4270 16-23 mm. Imago er på vingerne i solens sidste stråler fra sidst i juni gennem juli. Lokalt ikke sjælden på enge. Præimaginale stadier er ukendte. Kendt fra Grækenland, Rumænien, Ungarn, det vestlige Østrig og jeg har selv fundet den flere steder i det sydøstlige Frankrig. Agapeta zoegana (L.) 4271 15-24 mm. Imago flyver i de sidste lyse timer og kommer fint til lys i juli-august. Agapeta zoegana (L.) Larven lever overvintrende i rødderne af Blåhat (Knautia) og Knopurt (Centaurea). Den forpupper sig i rødderne. Agapeta zoegana (L.) Ind i mellem dukker eksemplarer op som er formørket i den yderste tredjedel. Disse eksemparer er gerne mindre end normalt. Agapeta zoegana (L.) I Danmark er der ikke mange findesteder i Jylland og arten mangler helt vest for israndslinjen. I det øvrige land er den ikke sjælden, men sjældent talrig. Nordgrænsen går gennem det sydligste Norge, mellemste Sverige og sydlige Finland. Arten når til Ural og Lilleasien. Eugnosta lathoniana (Hb.) 4279 21-27 mm. Imago flyver sidst på dagen fra midt i maj til sidst i juni. Præimaginale stadier er ukendte. Udbredt i det meste af Sydeuropa, mod nord til Tyskland, men herfra kendes ingen konkrete fund. -
Anthonomus Eugenii Pepper Weevil
Pest specific plant health response plan: Outbreaks of Anthonomus eugenii Figure 1. Adult Anthonomus eugenii. © Fera Science Ltd 1 © Crown copyright 2020 You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: [email protected] This document is also available on our website at: https://planthealthportal.defra.gov.uk/pests-and-diseases/contingency-planning/ Any enquiries regarding this document should be sent to us at: The UK Chief Plant Health Officer Department for Environment, Food and Rural Affairs Room 11G32 National Agri-Food Innovation Campus Sand Hutton York YO41 1LZ Email: [email protected] 2 Contents 1. Introduction and scope ......................................................................................................... 4 2. Summary of threat................................................................................................................. 4 3. Risk assessments ................................................................................................................. 5 4. Actions to prevent outbreaks ............................................................................................... 5 5. Response .............................................................................................................................. -
Squarrose Knapweed EXOTIC Centaurea Virgata Ssp
southwestlearning.org AME R ICAN SOUTHWEST SPECIES FACT SHEET Asteraceae (Sunflower family) Squarrose Knapweed EXOTIC Centaurea virgata ssp. squarrosa At a Glance • Perennial • Highly branched stems that grow one to three feet tall. SITY • Lower leaves are deeply dissected, but the upper leaves R are entire and linear. • Flowers are pink to pale-purple. • Flowerheads have four to eight florets and appear more slender than the flowerheads of other knapweeds. • The bracts underneath the flower have a central spine that curves backwards. • Fruit is a golden to dark-brown achene. UNIVE STATE UTAH / DEWEY STEVE The bracts underneath the flower of squarrose knapweed have Habitat and Ecology a central spine that curves backwards. Squarrose knapweed (Centaurea virgata ssp. squarrosa) is present in Utah, Nevada, California, Oregon, Wisconsin, spotted (Centaurea maculosa) or diffuse knapweed (Cen- and Michigan. How it was introduced to North America is taurea diffusa). Squarrose knapweed is not palatable to unknown. Squarrose knapweed often grows on degraded livestock and can form monocultures. Its taxonomic status rangeland soils and tolerates drought and cold better than is uncertain: it is also known as Centaurea squarrosa and Centaurea virgata. Description Squarrose knapweed is a long-lived perennial with highly branched stems that grow one to three feet tall. The stems grow above a woody crown and stout taproot. Under unfa- vorable conditions, the plants remain as basal rosettes be- fore developing flowering stems. Squarrose knapweed re- produces by seed. The seed head falls near the parent plant, but the backwards-curved spines under the seed head can cling to hair, wool, fur, and clothing, allowing the seeds to disperse over greater distances. -
Weed Risk Assessment: Centaurea Calcitrapa
Weed Risk Assessment: Centaurea calcitrapa 1. Plant Details Taxonomy: Centaurea calcitrapa L. Family Asteraceae. Common names: star thistle, purple star thistle, red star thistle. Origins: Native to Europe (Hungary, Switzerland, Czechoslovakia, Russian Federation, Ukraine, Albania, Greece, Italy, Romania, Yugoslavia, France, Portugal, Spain), Macaronesia (Canary Islands, Madeira Islands), temperate Asia (Cyprus, Lebanon, Syria, Turkey) and North Africa (Algeria, Egypt, Morocco, Tunisia) (GRIN database). Naturalised Distribution: Naturalised in New Zealand, South Africa, Central America, South America, the United States of America (eg. naturalised in 14 states, mostly in northwest including California, Idaho, Washington, Wyoming, New Mexico, Oregon, Arizona) (USDA plants database), and Australia (GRIN database). Description: C. calcitrapa is an erect, bushy and spiny biannual herb that is sometimes behaves as an annual or short-lived perennial. It grows to 1 m tall. Young stems and leaves have fine, cobweb-like hairs that fall off over time. Older stems are much-branched, straggly, woody, sparsely hairy, without wings or spines and whitish to pale green. Lower leaves are deeply divided while upper leaves are generally narrow and undivided. Rosette leaves are deeply divided and older rosettes have a circle of spines in the centre. This is the initial, infertile, flower head. Numerous flowers are produced on the true flowering stem and vary from lavender to a deep purple colour. Bracts end in a sharp, rigid white to yellow spines. Seed is straw coloured and blotched with dark brown spots. The pappus is reduced or absent. Bristles are absent. Seeds are 3-4mm long, smooth and ovoid. The root is a fleshy taproot (Parsons and Cuthbertson, 2001) (Moser, L. -
2007 Annual Report Summary
BIOLOGICAL CONTROL PROGRAM 2008 SUMMARY Developed by: Jim Brown Kris Godfrey Syed Khasimuddin Charles Pickett Mike Pitcairn William Roltsch Baldo Villegas Dale Woods Lue Yang CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE PLANT HEALTH AND PEST PREVENTION SERVICES INTEGRATED PEST CONTROL BRANCH Cite as: Dale M. Woods, Editor, 2009, Biological Control Program 2008 Annual Summary, California Department of Food and Agriculture, Plant Health and Pest Prevention Services, Sacramento, California. 69pp. CDFA CONTRIBUTING PERSONNEL Mr. Jim Brown Dr. Kris Godfrey Dr. Syed Khasimuddin Dr. Charles Pickett Dr. Mike Pitcairn Dr. William Roltsch Mr. Baldo Villegas Dr. Dale Woods Mr. Lue Yang CDFA Technical Assistants Ms. Penny Baxley Ms. Kathleen Cassanave Ms. Lia Chase Ms. Leann Horning Ms. Chia Moua Ms. Viola Popescu Ms. Nancy Saechao Mr. Ciprian Simon County Co-operator Acknowledgement The CDFA Biological Control Program greatly appreciates the many biologists and agriculture commissioners throughout the state whose co-operation and collaboration made this work possible. FOR OFFICIAL USE ONLY This report contains unpublished information concerning work in progress. The contents of this report may not be published or reproduced in any form without the prior consent of the research workers involved. Cover developed by Baldo Villegas, Dale Woods, and John P. Mattia (Orange, CT). Infestation of perennial pepperweed east of Susanville, California. (Photo courtesy of Lassen County Weed Management Area). Inset photo shows severe infection of perennial pepperweed by the plant pathogen, Albugo candida. (Photo by Villegas and Woods) COOPERATING SCIENTISTS Ms. Jodi Aceves, Siskiyou County Department of Agriculture, Yreka, California Dr. Pat Akers, CDFA, Integrated Pest Control Branch, Sacramento, California Dr. -
Native Plant Establishment Success Influenced Yb Spotted Knapweed (Centaurea Stoebe) Control Method
Grand Valley State University ScholarWorks@GVSU Funded Articles Open Access Publishing Support Fund 2014 Native Plant Establishment Success Influenced yb Spotted Knapweed (Centaurea stoebe) Control Method Laurelin M. Martin Grand Valley State University Neil W. MacDonald Grand Valley State University, [email protected] Tami E. Brown Grand Valley State University Follow this and additional works at: https://scholarworks.gvsu.edu/oapsf_articles Part of the Biology Commons ScholarWorks Citation Martin, Laurelin M.; MacDonald, Neil W.; and Brown, Tami E., "Native Plant Establishment Success Influenced by Spotted Knapweed (Centaurea stoebe) Control Method" (2014). Funded Articles. 15. https://scholarworks.gvsu.edu/oapsf_articles/15 This Article is brought to you for free and open access by the Open Access Publishing Support Fund at ScholarWorks@GVSU. It has been accepted for inclusion in Funded Articles by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. RESEARCH ARTICLE Native Plant Establishment Success Influenced by Spotted Knapweed (Centaurea stoebe) Control Method Laurelin M. Martin, Neil W. MacDonald and Tami E. Brown ABSTRACT Invasive species frequently need to be controlled as part of efforts to reestablish native species on degraded sites. While the effectiveness of differing control methods are often reported, the impacts these methods have on the establishment of a native plant community are often unknown. To determine methods that effectively reduce spotted knapweed (Cen- taurea stoebe) while enhancing native species establishment, we tested 12 treatment combinations consisting of an initial site preparation (mowing, mowing + clopyralid, or mowing + glyphosate), in factorial combination with annual adult knapweed hand pulling and/or burning. We established 48 plots and applied site preparation treatments during summer 2008, seeded 23 native forbs and grasses during spring 2009, pulled adult knapweed annually from 2009–2012, and burned in the early spring 2012. -
Evaluation of a Plant-Herbivore System In
EVALUATION OF A PLANT-HERBIVORE SYSTEM IN DETERMINING POTENTIAL EFFICACY OF A CANDIDATE BIOLOGICAL CONTROL AGENT, CORNOPS AQUATICUM FOR WATER HYACINTH, EICHHORNIA CRASSIPES A thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by ANGELA BOWNES December 2008 Abstract Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a free- floating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world. -
2015 Al Khatib BMC Evolutionar
Multilocus phylogeny and ecological differentiation of the ”Eupelmus urozonus species group” (Hymenoptera, Eupelmidae) in the West-Palaearctic Fadel Al Khatib, Astrid Cruaud, L. Fusu, Guénaëlle Genson, Jean Yves Rasplus, Nicolas Ris, Gérard Delvare To cite this version: Fadel Al Khatib, Astrid Cruaud, L. Fusu, Guénaëlle Genson, Jean Yves Rasplus, et al.. Mul- tilocus phylogeny and ecological differentiation of the ”Eupelmus urozonus species group” (Hy- menoptera, Eupelmidae) in the West-Palaearctic. BMC Evolutionary Biology, BioMed Central, 2016, 16, 10.1186/s12862-015-0571-2. hal-02635651 HAL Id: hal-02635651 https://hal.inrae.fr/hal-02635651 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Al khatib et al. BMC Evolutionary Biology (2016) 16:13 DOI 10.1186/s12862-015-0571-2 RESEARCH ARTICLE Open Access Multilocus phylogeny and ecological differentiation of the “Eupelmus urozonus species group” (Hymenoptera, Eupelmidae) in the West-Palaearctic F. Al khatib1,3*, A. Cruaud2, L. Fusu4, G. Genson2, J.-Y. Rasplus2, N. Ris1 and G. Delvare3 Abstract Background: The ecological differentiation of insects with parasitic life-style is a complex process that may involve phylogenetic constraints as well as morphological and/or behavioural adaptations. -
Impact of Biological Control on Two Knapweed Species in British Columbia
Impact of Biological Control on Two Knapweed Research Report Species in British Columbia Don Gayton, FORREX & Val Miller, B.C. Ministry of Forests, Lands and Natural Resource Operations Abstract Diffuse and spotted knapweed ( Centaurea diffusa Lam and C. stoebe L.) are two closely re - lated invasives found in many parts of British Columbia’s Southern Interior, causing sub - stantial economic losses in rangelands. Beginning in 1970, the provincial government initiated a long-term biological control effort against the knapweeds, introducing 10 dif - ferent insect agents from 1970 to 1987. In an effort to evaluate the efficacy of the program, archival (1983–2008) data was amassed from 19 vegetation monitoring sites that contained knapweed. In 2010, these sites were relocated and re-monitored and cover values were an - alyzed. Diffuse knapweed showed significant declines at 14 of 15 sites; spotted knapweed declined at three of four sites. Possible alternative explanations for the decline are dis - cussed. Evidence strongly points to a suite of biocontrol agents (seed feeders and root feed - ers) as the primary drivers of knapweed decline in British Columbia’s Southern Interior. KEYWORDS : biological control; British Columbia; Centaurea ; knapweed; monitoring Introduction iffuse knapweed ( Centaurea diffusa Lam.) and spotted knapweed ( Centaurea stoebe L.) are two introduced, closely related invasive forbs. These species are most com - Dmon in the northwestern United States and in western Canada. Centaurea stoebe (also referred to as C. maculosa Lam. and C. biebersteinii DC) is particularly widespread, reported in 45 US states and all provinces of Canada (Marshall 2004; Zouhar 2001). The drought-tolerant C. diffusa has an altitudinal range of 150–900 m, whereas C.