Uhm Phd 9416060 R.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Uhm Phd 9416060 R.Pdf INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedtbrougb, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. U·M·I University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. M148106-1346 USA 313/761-4700 800/521-0600 Order Number 9416060 Stellar oxygen abundances King, Jeremy R., Ph.D. University of Hawaii, 1993 U·M·I 300 N. Zeeb Rd. Ann Arbor,MI48106 STELLAR OXYGEN ABUNDANCES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ASTRONOMY DECEMBER 1993 By Jeremy R. King Dissertation Committee: Ann M. Boesgaard, Chairperson James N. Heasley Barry J. Labonte Alan N. Stockton Lawrence J. Wallen © Copyright 1993 by Jeremy R. King III Acknowledgements An undertaking such as this is not possible without the help and support of many people. First and foremost of these was my advisor Dr. Ann Boesgaard. Much of what I have learned about stellar spectroscopy over the past five years was from her. The responsibilities she assigned me and the trust she placed in me during this time were valued and her patient and friendly manner were much appreciated. When I originally approached Ann about doing an observational thesis on oxygen, she responded enthusiastically and included expanded support for this work in her proposal to NSF; I am grateful to her for giving me such freedom in the choice of a thesis topic. Additionally, Ann gratefully provided me with brief respites from my research by allowing me to look after her house, which has such a lovely and peaceful ocean view. I also much enjoyed tending to Daiquiri, her "astronomical cat", whose persitent and best efforts could not permanently keep me on an early rising schedule. Many thanks and much aloha, Ann, for your encouragement, genuine interest, and the opportunity to work with you. Dr. James Heasley is the person most responsible for me coming (and, ironically, almost not coming) to Hawai'i. He has given me much guidance while Ann Boesgaard was a visiting scientist at CFHT and Eberly chair at Penn State. Although it is not completely clear to me, I have probably benefited from the many times he has grumbled at me, my thesis, and my TeX skills. The idea to observe oxygen in open clusters was one he pushed strongly for and originally suggested. Many thanks to Dr. Barry Labonte for his humor, his valued input, and his broad knowledge of stellar astronomy. It was Barry's idea to use the 400 mm camera on the FOS to perform most of the stellar oxygen observations when I was seemingly out of options. Barry also accompanied me to Mees Solar Observatory and carried out the lion's share of the solar observations there. Dr. Alan Stockton made the stellar observations a reality by designing and directing the construction of the camera mount and the appropriate slit. He also contributed financially to that effort and I am very grateful to him. Dr. Larry Wallen graciously accepted the task of being the outside member on my committee. For the past two years, I have also been fortunate enough tc work with Dr. Constantine Deliyan­ nis. I appreciate his enthusiastic interest ill my thesis work and his constant encouragement. He has given me useful feedback and detailed comments on practically all the material in this dissertation. I have certainly benefited from discussions with him concerning stellar models, primordial Li, and cos­ mology. He also kindly provided one of the isochrones shown in Chapter 3. I also thank him for his undying patience when my attention could not be focussed on our collaborative projects unrelated to my thesis. Additionally, I am grateful for his time and effort in writing job recommendations for IV me. Most of all, I have valued his friendship in offering me counsel, advice, and opinion. His and his wife Deborah's hospitality on several occasions have provided needed and enjoyable diversions from ordinary graduate student life. Also I should like to thank him for an enjoyable observing run in Chile and for preserving my life via his nimble (harrowing?) driving through the deathtraps that are the streets of Santiago. I have been financially supported the past three years by NSF grant AST-9016778 to Dr. Ann Boesgaard. CCD astronomy at the UH 2.2-m is supported by NSF grant AST-9020680. Mees Solar Observatory is supported by NSF grant AST-91l5038 and NASA grant NAGW 1542. Additionally, it is a genuine pleasure to acknowledge the gracious financial support of the Honolulu chapter of the ARCS Foundation, Inc. during my first four years at UH. Mss. Diane Tokumura and Georgette Albert are to be thanked for insulating me, to the extent possible, from the usual reams of senseless, onerous bureaucracy and getting me to where I had to go. The UH 2.2-m telescope operators, Mssrs. Dave Woodworth and Frank Cheigh, skillfully and repeatedly placed my objects on a 0.7" slit and offered much additional assistance. Dr. Andrew Pickles, the UH 2.2-m day crew, and the IfA machine shop also played important roles in making the UH 2.2-m observations discussed here possible. Dr. Richard Canfield allowed used of Mees Solar Observatory to obtain the solar observations discussed in Chapter 5; additionally, I am grateful to him for providing travel support to obtain the observations. Ms. Kristin Blais helped me utilize the IDL software package in the reduction of the solar data and wrote several useful codes for my benefit. She also bore the frustrating burden of trying to explain spatially scanning spectroscopy to a point-source spectroscopist. During my dissertation research, I have made extensive use of the SIMBAD database, operated at CDS, Strasbourg, France. I am grateful to the Kitt Peak National Observatory TAC for granting me time to perform the Hydra multi-object spectrograph observations. Full support of travel and observing expenses by KPNO is gratefully acknowledged. Dr. Sam Barden answered many qustions about Hydra prior to the run and his guidance during the early observations is appreciated. The KPNO observations would not have gone as smoothly as they did without the competent assistance of the LTO, Ms. Jennifer Hedden. Dr. Jeanette Barnes spent the good part of a day in Tucson leading me through the Hydra reductions. She and Dr. Caty Pilachowski also have answered numerous questions over the past few years concerning the reduction of spectra using IRAF. Dr. Kenneth Janes, who initially kindled my interest in stellar astronomy, kindly provided a CCD image of NGC 188 which allowed me to obtain the astrometry for the Hydra observations. He also provided me with his unpublished photometry of NGC 188. v I am extremely grateful to Dr. Robert Kurucz, who unselfishly provided me with his unpublished model atmospheres, colors, and Fe log gf values, with which much of the analysis presented here was conducted. Thanks are also due Dr. Monique Spite and Dr. Lewis Hobbs for providing me with several of their halo star spectra. Dr. Spite also aIIowed the use of and provided guidance with her LTE abundance software package, RAllO. Dr. Michael BesseII kindly provided me with several pages of his personal notes concerning the reanalysis of 0 abundances in giants. Dr. Eric Feigeison made his SLOPES software package available to me to perform the regressions discussed in Chapter 4. Dr. Pierre Demarque made his isochrones for NGC 188 available for my use in Chapter 6. Dr. Jocelyn Tomkin provided me with his LTE and NLTE solar calculations for the 0 I triplet. FinaIIy, I must express my appreciation to my family and friends. I have managed to maintain my (in)sanity over the past five years with the support, concern, and valued friendship of Kristin Blais, Dave Kane, Niki Kapsambelis, Nancy Kohrs, Emma Murray, Mark Nadeau, and Ron and Diane Nadeau. I wish to thank my extended family for their interest and support, which were valued more than they probably knew. Special thanks go to my sister Kathy. AdditionaIIy, my delightful nieces Janna and Jaime and my nephew Nathan have been a source of enduring inspiration as well as pride to me. Lastly, I should like to dedicate this dissertation to my parents, Philip and Millideen, who were (and are) the most influential teachers in my life. Their wisdom, encouragement, interest, and love have been immeasurably important to me.
Recommended publications
  • Luminosity Functions for Old Stellar Systems
    LUMINOSITY FUNCTIONS FOR OLD STELLAR SYSTEMS by Peter Anthony Bergbusch L> ^ B.Sc., University of Saskatchewan, 1974 rACULTY 0 f GRADUATE STotd - M.Sc., University of Regina, 1984 „JL Dissertation submitted in partial fulfillment flr ' ^ DEAN of the requirements for the degree of P DOCTOR OF PHILOSOPHY in the Department of Physics and Astronomy We accept this dissertation as conforming to the required standard Dr. D.A. VandenBerg, Supervisor (Department of P’.ysics and Astronomy) Dr. F.D.A, Hartwick, Departmental Member (Dept, of Physics and Astronomy) Th'. O.J. Pritchet, Departmental Member (Department of Physics and Astronomy) Dr. R.D. McClure, Outside Member (Dominion Astrophysical Observatory) Dr. F.P. Robinsojv-Qutside Member (Department of Chemistry) Dr. II. Srivastava, Outside Member (Department of Mathematics) “ " / ■ —y — • r ----------------------- Dr. ( i.Ci . Fahlman, External Examiner (University of British Columbia) ©PETER ANTHONY BERGBUSCH, 1992 University of Victoria September 1992 All rights reserved. This dissertation may not be reproduced, in whole or in part, by mimeograph or other means, without the permission of the author. 11 Supervisor: Professor Don A, VandenBerg ABSTRACT The potential for luminosity functions (LFs) of post-turnoff stars to constrain basic cluster parameters such as age, metallicity, and helium abundance is examined in this di, sertation. A review of the published LFs for the globular cluster (GC) M92 suggests that the morphology of the transition from the main sequence to the red giant branch (ltGB) is sensitive to these parameters. In particular, a small bump in this region may provide an important age discriminant for GCs. A significant deficiency in the number of stars over a 2 mag interval, just below the turnoff, remains unexplained.
    [Show full text]
  • Download Article (PDF)
    Baltic Astronomy, vol. 24, 213{220, 2015 VELOCITY DISPERSION OF IONIZED GAS AND MULTIPLE SUPERNOVA EXPLOSIONS E. O. Vasiliev1;2;3, A. V. Moiseev3;4 and Yu. A. Shchekinov2 1 Institute of Physics, Southern Federal University, Stachki Ave. 194, Rostov-on-Don, 344090 Russia; [email protected] 2 Department of Physics, Southern Federal University, Sorge Str. 5, Rostov-on-Don, 344090 Russia 3 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachaevo-Cherkesskaya Republic, 369167 Russia 4 Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Universitetskij pr. 13, 119992 Moscow, Russia Received: 2015 March 25; accepted: 2015 April 20 Abstract. We use 3D numerical simulations to study the evolution of the Hα intensity and velocity dispersion for single and multiple supernova (SN) explosions. We find that the IHα{ σ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that collid- ing SN shells with significant difference in age are responsible for high velocity dispersion that reaches up to ∼> 100 km s−1. Such a high velocity dispersion could be hardly obtained for a single SN remnant. Peaks of velocity disper- sion in the IHα{ σ diagram may correspond to several isolated or merged SN remnants with moderately different ages. Degrading the spatial resolution in the Hα intensity and velocity dispersion maps makes the simulated IHα{ σ di- agrams close to those observed in dwarf galaxies not only in shape, but also quantitatively. Key words: galaxies: ISM { ISM: bubbles { ISM: supernova remnants { ISM: kinematics and dynamics { shock waves { methods: numerical 1.
    [Show full text]
  • IRFM T$ {\Sf\Sl Eff}$ Calibrations for Cluster and Field Giants in the Vilnius, Geneva, RI$ {\Sf\Sl (C)}$ and DDO Photometric Sy
    A&A 417, 301–316 (2004) Astronomy DOI: 10.1051/0004-6361:20031764 & c ESO 2004 Astrophysics IRFM Teff calibrations for cluster and field giants in the Vilnius, Geneva, RI(C) and DDO photometric systems I. Ram´ırez1,2 and J. Mel´endez1,3 1 Seminario Permanente de Astronom´ıa y Ciencias Espaciales, Universidad Nacional Mayor de San Marcos, Ciudad Universitaria, Facultad de Ciencias F´ısicas, Av. Venezuela s/n, Lima 1, Per´u 2 Department of Astronomy, The University of Texas at Austin, RLM 15.202A, TX 78712-1083, USA 3 Department of Astronomy, California Institute of Technology, MC 105–24, Pasadena, CA 91125, USA Received 2 May 2003 / Accepted 19 November 2003 Abstract. Based on a large sample of disk and halo giant stars for which accurate effective temperatures derived through the InfraRed Flux Method (IRFM) exist, a calibration of the temperature scale in the Vilnius, Geneva, RI(C) and DDO photometric systems is performed. We provide calibration formulae for the metallicity-dependent Teff vs. color relations as well as grids of intrinsic colors and compare them with other calibrations. Photometry, atmospheric parameters and reddening corrections for the stars of the sample have been updated with respect to the original sources to reduce the dispersion of the fits. Application of our results to Arcturus leads to an effective temperature in excellent agreement with the value derived from its angular diameter and integrated flux. The effects of gravity on these Teff vs. color relations are also explored by taking into account our previous results for dwarf stars. Key words.
    [Show full text]
  • Investigating [X/Fe], Imf and Compositeness in Integrated Models
    INVESTIGATING [X/FE], IMF AND COMPOSITENESS IN INTEGRATED MODELS By BAITIAN TANG A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Physics and Astronomy MAY 2015 c Copyright by BAITIAN TANG, 2015 All Rights Reserved c Copyright by BAITIAN TANG, 2015 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BAITIAN TANG find it satisfactory and recommend that it be accepted. Guy Worthey Ph.D., Chair Sukanta Bose, Ph.D. Matthew Duez, Ph.D. ii ACKNOWLEDGEMENT First and foremost I offer my sincerest gratitude to my advisor, Dr. Guy Worthey, who supported my study and research with motivation, enthusiasm, and immense knowledge. There were times when research funding was scarce, but his optimism, diligence and patience taught me the true meanings of research. Dr. Worthey gave me lots of free space in pursuing the research that interested me, and backed me up with his astrophysical proficiency. I would also like to thank the rest of my committee members: Dr. Sukanta Bose, and Dr. Matthew Duez for their encouragements and comments. Their courses, general relativity and astrophysical fluids, have expanded my eyesight to a much broader horizon. My sincere thanks also go to Dr. Qiusheng Gu and Dr. Zhaohui Shang, who supported my job applications and gave many insightful suggestions. During my Ph.D. study, I have been blessed with a friendly and cheerful group of fellow students. We enjoyed the great life and culture of the northwest.
    [Show full text]
  • Environmental Influences on Dwarf Galaxy Evolution: the Group Environment
    ENVIRONMENTAL INFLUENCES ON DWARF GALAXY EVOLUTION: THE GROUP ENVIRONMENT A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Sabrina Renee Stierwalt February 2010 c 2010 Sabrina Renee Stierwalt ALL RIGHTS RESERVED ENVIRONMENTAL INFLUENCES ON DWARF GALAXY EVOLUTION: THE GROUP ENVIRONMENT Sabrina Renee Stierwalt, Ph.D. Cornell University 2010 Galaxy groups are a rich source of information concerning galaxy evolution as they represent a fundamental link between individual galaxies and large scale structures. Nearby groups probe the low end of the galaxy mass function for the dwarf systems that constitute the most numerous extragalactic population in the local universe [Karachentsev et al., 2004]. Inspired by recent progress in our understanding of the Local Group, this dissertation addresses how much of this knowledge can be applied to other nearby groups by focusing on the Leo I Group at 11 Mpc. Gas-deficient, early-type dwarfs dominate the Local Group (Mateo [1998]; Belokurov et al. [2007]), but a few faint, HI-bearing dwarfs have been discovered in the outskirts of the Milky Way’s influence (e.g. Leo T; Irwin et al. [2007]). We use the wide areal coverage of the Arecibo Legacy Fast ALFA (ALFALFA) HI survey to search the full extent of Leo I and exploit the survey’s superior sensitivity, spatial and spectral resolution to probe lower HI masses than previous HI surveys. ALFALFA finds in Leo I a significant population of low surface brightness dwarfs missed by optical surveys which suggests similar systems in the Local Group may represent a so far poorly studied population of widely distributed, optically faint yet gas-bearing dwarfs.
    [Show full text]
  • The C Star Population of DDO 190,
    A&A 447, 473–480 (2006) Astronomy DOI: 10.1051/0004-6361:20052829 & c ESO 2006 Astrophysics The C star population of DDO 190, P. Battinelli1 and S. Demers2 1 INAF, Osservatorio Astronomico di Roma, Viale del Parco Mellini 84, 00136 Roma, Italia e-mail: [email protected] 2 Département de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada e-mail: [email protected] Received 7 February 2005 / Accepted 6 October 2005 ABSTRACT We have carried out deep R, I, CN, TiO observations of the dwarf irregular galaxy DDO 190. We confirm the existence of an intermediate-age population around this galaxy. The identification of 47 carbon stars seen up to 5 arcmin from the centre of the galaxy implies that the population distribution of DDO 190 is similar to those found in some other Local Group dIrr galaxies. An estimate of the metallicity, [Fe/H] = −1.55 ± 0.12, is obtained based on the observed C/M ratio. From the analysis of star counts, corrected for the radial variation of the incompleteness level, we determine a scale-length α = 40 ± 5, in agreement with the recent literature. Key words. galaxies: individual: DDO 190 – galaxies: dwarf – stars: carbon – stars: AGB and post-AGB – galaxies: fundamental parameters 1. Introduction expect signs of the gravitational collapse of the initial small amplitude perturbation still visible today around isolated dIrrs. Dwarf galaxies play a crucial role in the CDM scenario for galaxy formation, having been suggested to be the nat- DDO 190 (also known as UGC 9240) is a Magellanic ural building blocks from which larger structures are built dwarf, of morphological type Im.
    [Show full text]
  • Joint Meeting of the American Astronomical Society & The
    American Association of Physics Teachers Joint Meeting of the American Astronomical Society & Joint Meeting of the American Astronomical Society & the 5-10 January 2007 / Seattle, Washington Final Program FIRST CLASS US POSTAGE PAID PERMIT NO 1725 WASHINGTON DC 2000 Florida Ave., NW Suite 400 Washington, DC 20009-1231 MEETING PROGRAM 2007 AAS/AAPT Joint Meeting 5-10 January 2007 Washington State Convention and Trade Center Seattle, WA IN GRATITUDE .....2 Th e 209th Meeting of the American Astronomical Society and the 2007 FOR FURTHER Winter Meeting of the American INFORMATION ..... 5 Association of Physics Teachers are being held jointly at Washington State PLEASE NOTE ....... 6 Convention and Trade Center, 5-10 January 2007, Seattle, Washington. EXHIBITS .............. 8 Th e AAS Historical Astronomy Divi- MEETING sion and the AAS High Energy Astro- REGISTRATION .. 11 physics Division are also meeting in LOCATION AND conjuction with the AAS/AAPT. LODGING ............ 12 Washington State Convention and FRIDAY ................ 44 Trade Center 7th and Pike Streets SATURDAY .......... 52 Seattle, WA AV EQUIPMENT . 58 SUNDAY ............... 67 AAS MONDAY ........... 144 2000 Florida Ave., NW, Suite 400, Washington, DC 20009-1231 TUESDAY ........... 241 202-328-2010, fax: 202-234-2560, [email protected], www.aas.org WEDNESDAY..... 321 AAPT AUTHOR One Physics Ellipse INDEX ................ 366 College Park, MD 20740-3845 301-209-3300, fax: 301-209-0845 [email protected], www.aapt.org Acknowledgements Acknowledgements IN GRATITUDE AAS Council Sponsors Craig Wheeler U. Texas President (6/2006-6/2008) Ball Aerospace Bob Kirshner CfA Past-President John Wiley and Sons, Inc. (6/2006-6/2007) Wallace Sargent Caltech Vice-President National Academies (6/2004-6/2007) Northrup Grumman Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) PASCO Robert W.
    [Show full text]
  • The Spatial and Age Distribution of Stellar Populations in DDO
    The spatial and age distribution of stellar populations in DDO 1901 A. Aparicio Instituto de Astrof´ısica de Canarias, E38200 - La Laguna, Tenerife, Canary Islands, Spain N. Tikhonov Special Astrophysical Observatory, Stavropol, Russia ABSTRACT The spatial distribution of stellar populations, the star formation history, and other properties of the dIrr galaxy DDO 190 have been analyzed using color–magnitude diagrams (CMDs) of about 3900 resolved stars and the Hα fluxes of H ii regions. From the mean color index of the red giant branch, a mean metallicity [Fe/H] = −2.0 is obtained. The I magnitude of the TRGB has been used to estimate the distance. DDO 190 is 2.9 ± 0.2 Mpc from the Milky Way, 2.1 Mpc from the M 94 group (CnV-I), 2.4 Mpc from the M 81 group and 2.9 Mpc from the barycenter of the Local Group, all indicating that it is an isolated, field galaxy. The surface-brightness distribution of the galaxy is well fitted by ellipses of ellipticity e = 1 − a/b = 0.1 and P.A. = 82◦. The radial star density distribution follows an exponential law of scale length α = 43′′. 4, corresponding to 611 pc. The B ′ Holmberg semi-major axis to µB = 26.5 is estimated to be r26.5 = 3.0. Stellar populations of different ages in DDO 190 show strong spatial decoupling, the oldest population appearing much more extended than the youngest. Stars younger than 0.1 Gyr occupy only the central 40′′ (0.55 kpc); stars younger than a few (∼ 4) Gyr extend out to ∼ 80′′ (125 kpc), and for larger galactocentric distances only older stars seem to be present.
    [Show full text]
  • Fy05 Accomplishments and Fy06 Plans Helmut A. Abt
    Appendix A NOAO SCIENTIFIC STAFF: FY05 ACCOMPLISHMENTS AND FY06 PLANS ¬New appointment in FY05 S Non-NSF (external) funding ±Term ended in FY05 HELMUT A. ABT, Emeritus Astronomer Research Interests Evolutionary stellar problems, stellar characteristics, publication studies FY05 Accomplishments Abt and C. Boonyarak (U. Thailand) studied rotation velocities of stars in binaries. It was known that those with periods shorter than several days all have synchronized rotational and orbital motions. They found that binaries with periods up to 500 days have reduced rotational velocities due to tidal interactions. Abt found that the eccentricities in binaries vary from zero in close binaries to an average of 0.5 in binaries with periods greater than 1000 days. In the initial formation of binaries, all eccentricities are equally probable. FY06 Plans Abt is trying to understand the hot inner disks that occur around, at any one time, one-quarter of the rapidly- rotating A dwarfs. These disks have no connection with the outer cool dust disks found around many stars like Vega and beta Pictoris. These disks come and go on time scales of decades. Such stars do not occur in the low-density Local Interstellar Bubble, so they are material accreted from the interstellar medium. Theoretical aspects of the physical processes is being done with M. Marlborough (U. Western Ontario). TAFT E. ARMANDROFF, Astronomer (Director, NOAO Gemini Science Center) Research Interests Stellar populations in the Galaxy and nearby galaxies; dwarf spheroidal galaxies; globular clusters FY05 Accomplishments Armandroff has been studying the dwarf spheroidal satellite galaxies of M31 in collaboration with Da Costa (RSAA/ANU), Pritzl (Macalester), and Jacoby (WIYN).
    [Show full text]
  • The Observed Properties of Dwarf Galaxies in and Around the Local Group
    The Astronomical Journal,144:4(36pp),2012July doi:10.1088/0004-6256/144/1/4 C 2012. National Research Council Canada. All rights reserved. Printed in the U.S.A. ! THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP Alan W. McConnachie NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada; [email protected] Received 2011 December 22; accepted 2012 April 2; published 2012 June 4 ABSTRACT Positional, structural, and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates reliably placing them within 3 Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the quasi-isolated dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies that are found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups, such as Maffei, Sculptor, and IC 342. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, such as distances, velocities, magnitudes, mean metallicities, as well as structural and dynamical characteristics, are collated, homogenized (as far as possible), and presented in tables that will be continually updated to provide a convenient and current online resource.
    [Show full text]
  • Download Article (PDF)
    Baltic Astronomy, vol. 6, 499-572, 1997. CLASSIFICATION OF POPULATION II STARS IN THE VILNIUS PHOTOMETRIC SYSTEM. II. RESULTS A. Bartkevicius1 and R. Lazauskaite1 '2 1 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 2 Department of Theoretical Physics, Vilnius Pedagogical University, Studenty. 39, Vilnius 2340, Lithuania Received April 20, 1997. Abstract. The results of photometric classification of 848 true and suspected Population II stars, some of which were found to be- long to Population I, are presented. The stars were classified using a new calibration described in Paper I (Bartkevicius & Lazauskaite 1996). We combine these results with our results from Paper I and discuss in greater detail the following groups of stars: UU Herculis-type stars and other high-galactic-latitude supergiants, field red horizontal-branch stars, metal-deficient visual binaries, metal- deficient subgiants, stars from the Catalogue of Metal-deficient F-M Stars Classified Photometrically (MDPH; Bartkevicius 1993) and stars from one of the HIPPARCOS programs (Bartkevicius 1994a). It is confirmed that high galactic latitude supergiants from the Bartaya (1979) catalog are giants or even dwarfs. Some stars, identified by Rose (1985) and Tautvaisiene (1996a) as field RHB stars, appear to be ordinary giants according to our classification. Some of the visual binaries studied can be considered as physical pairs. Quite a large fraction of stars from the MDPH catalog are found to have solar metallicity. A number of new possible UU Herculis-type stars, RHB stars and metal-deficient subgiants are identified. Key words: techniques: photometric - stars: fundamental para- meters (classification) - stars: Population II 500 A.
    [Show full text]
  • Hubble Sees a Lonely Galactic Island 20 August 2012
    Hubble sees a lonely galactic island 20 August 2012 from our solar system. It is considered part of the loosely associated Messier 94 group of galaxies, not far from the Local Group of galaxies that includes the Milky Way. Canadian astronomer Sidney van der Bergh was the first to record DDO 190 in 1959 as part of the DDO catalog of dwarf galaxies. Although within the Messier 94 group, DDO 190 is on its own. The galaxy's nearest dwarf galaxy neighbor, DDO 187, is thought to be no closer than three million light-years away. In contrast, many of the Milky Way's companion galaxies, such as the Large and Small Magellanic Clouds, reside within a fifth or so of that distance, and even the giant spiral of the Andromeda Galaxy is closer to the Milky Way Image Credit: ESA/Hubble & NASA than DDO 190 is to its nearest neighbor. Hubble's Advanced Camera for Surveys captured this image in visible and infrared light. The field of (Phys.org) -- In terms of intergalactic real estate, view is around 3.3 by 3.3 arcminutes. our solar system has a plum location as part of a big, spiral galaxy, the Milky Way. Numerous, less A version of this image was entered into the glamorous dwarf galaxies keep the Milky Way Hubble's Hidden Treasures Image Processing company. Many galaxies, however, are Competition by contestant Claude Cornen. Hidden comparatively isolated, without close neighbors. Treasures is an initiative to invite astronomy One such example is the small galaxy known as enthusiasts to search the Hubble archive for DDO 190, snapped here in a new image from the stunning images that have never been seen by the NASA/ESA Hubble Space Telescope.
    [Show full text]