Download Article (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Article (PDF) Baltic Astronomy, vol. 6, 499-572, 1997. CLASSIFICATION OF POPULATION II STARS IN THE VILNIUS PHOTOMETRIC SYSTEM. II. RESULTS A. Bartkevicius1 and R. Lazauskaite1 '2 1 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 2 Department of Theoretical Physics, Vilnius Pedagogical University, Studenty. 39, Vilnius 2340, Lithuania Received April 20, 1997. Abstract. The results of photometric classification of 848 true and suspected Population II stars, some of which were found to be- long to Population I, are presented. The stars were classified using a new calibration described in Paper I (Bartkevicius & Lazauskaite 1996). We combine these results with our results from Paper I and discuss in greater detail the following groups of stars: UU Herculis-type stars and other high-galactic-latitude supergiants, field red horizontal-branch stars, metal-deficient visual binaries, metal- deficient subgiants, stars from the Catalogue of Metal-deficient F-M Stars Classified Photometrically (MDPH; Bartkevicius 1993) and stars from one of the HIPPARCOS programs (Bartkevicius 1994a). It is confirmed that high galactic latitude supergiants from the Bartaya (1979) catalog are giants or even dwarfs. Some stars, identified by Rose (1985) and Tautvaisiene (1996a) as field RHB stars, appear to be ordinary giants according to our classification. Some of the visual binaries studied can be considered as physical pairs. Quite a large fraction of stars from the MDPH catalog are found to have solar metallicity. A number of new possible UU Herculis-type stars, RHB stars and metal-deficient subgiants are identified. Key words: techniques: photometric - stars: fundamental para- meters (classification) - stars: Population II 500 A. Bartkevicius and R. Lazauskaite 1. INTRODUCTION Although Population II stars are rare in the solar neighborhood, they play an important role in different branches of astronomy due to their unique characteristics - they are the oldest stars in the Galaxy and, consequently, exhibit metal-deficiency, high velocities and spend most of their life in the galactic halo. Despite a long history of investigation of the stellar content of our Galaxy, a generally accepted definition of stellar populations does not exist (Majewski 1993, King 1995). In this paper, as in our previous papers (Bartkevicius 1994b, Bartkevicius & Lazauskaite 1996, hereafter Paper I) we use the term Population II for stars with metallicity [Fe/H]< —0.5 and a total space velocity (or its radial or tangential components) >100 km s-1. It is obvious that we admit to our Population II sample not only extreme Population II (halo) stars, but also intermediate Population II (thick disk, partly old disk) stars. In this paper we present the results of three-dimensional classifi- cation in the Vilnius photometric system of 848 known or suspected Population II stars and some Population I stars (visual binaries, su- pergiants, etc.) necessary for comparison with Population II stars. For the classification we use the methods described in Paper I of this series. Combining the results of classification from this paper and the results of the reclassification of 809 standard stars from Pa- per I (this brings to 1657 the number of stars classified in a unique scheme), we discuss the following groups of Population II stars: UU Herculis-type stars, field RHB stars, visual binaries, metal-deficient subgiants, stars from the MDPH catalog (Bartkevicius 1993) and the HIPPARCOS program stars (Bartkevicius 1994a). 2. PREVIOUS RESULTS OF CLASSIFICATION The development of methods for identification and classification of Population II stars in the Vilnius photometric system is briefly described in Paper I. Here we discuss applications of these methods for the determination of the main astrophysical parameters of Pop- ulation II stars. Bartkevicius & Sperauskas (1983) have classified 312 stars, among which a number of new giants and subdwarfs with high metal deficiency were identified. Twelve stars were suspected of being metal-deficient subgiants. It was estimated that about 20 % of high proper motion {¡JL > 0. 26 yr-1) stars are giants or subgiants. Classification of Population II stars 501 Bartkevicius & Tautvaisiene (1987) have made a three-dimen- sional classification of 78 known metal-deficient giants. Bartasiute (1989) has presented the results of classification of 343 stars in an area of 900 square degrees near the South Galactic Pole. Among the stars studied, 35 subdwarfs were identified. Also, the amount of interstellar reddening in this region was investigated. Bartasiute (1993) in her thesis has presented the results of clas- sification of 1189 stars. A majority of these stars are metal-deficient. The results of classification were combined with proper motion and radial velocity data, and space velocities and galactic orbits were calculated for these stars. On the basis of these data, a detailed analysis of stellar populations was carried out. Straizys et al. (1981) detected eight stars suspected of belonging to the red horizontal-branch stars. Recently, Tautvaisiene (1996a) has investigated 13 red horizontal-branch candidates identified by Rose (1985). She determined their spectral types, metallicities, abso- lute magnitudes, eifective temperatures and surface gravities. From a comparison of the observational HR diagram with isochrones, an age of 10-12 Gyr was obtained for these stars. Tautvaisiene (1987) also has calculated Te and log g for 110 metal-deficient giants from color indices in the Vilnius system and compared Te, log g plots with evolutionary tracks and isochrones. Bartkevicius et al. (1992) have classified in the Vilnius system 117 known and suspected Population II supergiants and related stars. Sperauskas (1987) has presented the photometric classification of 32 B and A stars suspected to belong to the blue horizontal- branch on the grounds of intermediate and low dispersion spectra or photometric color indices of various photometric systems. And, at last, in Paper I we presented the classification of 809 standard stars used for establishing new classification methods for Population II stars in the Vilnius photometric system. 3. OBSERVATIONS AND SELECTION OF STARS According to sources of the observed color indices, the stars in- vestigated in this paper can be divided into two groups: (1) stars observed within several special programs of investiga- tion of Population II stars (see Subsection 3.1), (2) stars selected according to some criteria (see Subsection 3.3) from the General Photometric Catalog of Stars Observed in the Vil- nius Photometric System (Straizys & Kazlauskas 1993). 502 A. Bartkevicius and R. Lazauskaite 3.1. Programs of investigation of Population II stars Since 1986, several long-term programs of the photometric in- vestigation of Population II stars in the Vilnius system have been started. Some of the investigations described in Section 2 have also been continued. Some stars are included in two or more programs. Below we list the programs and the groups of stars included: 1. Stars with known trigonometric parallaxes, absolute magni- tudes My and metallicities [Fe/H]; 2. HIPPARCOS program stars (Bartkevicius 1994a); 3. Eggen's halo and old disk moving group members (see Eggen 1996): stars from the Arcturus, a Puppis, Kapteyn and Groom- bridge 1830 moving groups; 4. Known and suspected UU Herculis-type stars, supergiants at high galactic latitudes, supergiants of normal chemical composition; 5. Field red horizontal-branch (RHB) candidates; 6. Metal-deficient subgiants; 7. Metal-deficient F-M stars classified spectroscopically from the MDSP catalog (Bartkevicius 1980) and its supplement MDSPS1 (Bartkevicius 1984) and stars from the Catalog of Metal-deficient F-M Stars Classified Photometrically (MDPH; Bartkevicius 1993); 8. Population II visual and spectral binaries; 9. Population II radial velocity program stars (Bartkevicius & Sperauskas 1990); 10. Some peculiar and astrophysically interesting stars. Not all of these programs have been completed at the present time. A detailed description of the programs related directly to the subject of the present study and a discussion of the results obtained will be presented in Section 6. 3.2. Observations Photoelectric observations in the Vilnius photometric system were done with the 63 cm telescope of the Moletai Observatory (Lithuania), the 48 cm telescope of the Vilnius University and 1 m telescope of the Institute of Theoretical Physics and Astronomy, the two latter telescopes being located at the Maidanak Observa- tory in Uzbekistan. At our request, 10 stars were observed by K. Zdanavicius with the 61 cm telescope of the Mount John Obser- vatory, New Zealand. The time of observations, the telescopes used Classification of Population II stars 503 Table 1. Observing runs and references to the published results. No. Run Observatory, Publication telescope 1. March-May 1986 Moletai, 63 cm Tautvaisiene (1996a) 2. July 1986 Maidanak, 48 cm Lazauskaite & Tautvaisiene (1990) 3. April-May 1987 Moletai, 63 cm This paper 4. August 1987 Maidanak, 48 cm Lazauskaite & Tautvaisiene (1990) 5. August 1988 Maidanak, 1 m Lazauskaite & Tautvaisiene (1990) 6. October 1988 Maidanak, 1 m Lazauskaite & Tautvaisiene (1990) 7. May 1991 Maidanak, 1 m Lazauskaite (1992) 8. October 1991 Maidanak, 1 m Lazauskaite (1992) 9. October-December 1991 Mt. John, 63 cm Zdanavicius et al. (1995) and references to the published observational data are presented in Table 1. The Moletai Observatory measurements were
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • 136, June 2008
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 136, June 2008 Contents Group Photograph, AAVSO/BAAVSS meeting ........................ inside front cover From the Director ............................................................................................... 1 Eclipsing Binary News ....................................................................................... 4 Experiments in the use of a DSLR camera for V photometry ............................ 5 Joint Meeting of the AAVSO and the BAAVSS ................................................. 8 Coordinated HST and Ground Campaigns on CVs ............................... 8 Eclipsing Binaries - Observational Challenges .................................................. 9 Peer to Peer Astronomy Education .................................................................. 10 AAVSO Acronyms De-mystified in Fifteen Minutes ...................................... 11 New Results on SW Sextantis Stars and Proposed Observing Campaign ........ 12 A Week in the Life of a Remote Observer ........................................................ 13 Finding Eclipsing Binaries in NSVS Data ......................................................... 13 British Variable Star Associations 1848-1908 .................................................. 14 “Chasing Rainbows” (The European Amateur Spectroscopy Scene) .............. 15 Long Term Monitoring and the Carbon Miras ................................................. 18 Cataclysmic Variables from Large Surveys: A Silent Revolution
    [Show full text]
  • Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
    A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius.
    [Show full text]
  • Okayama and Subaru Planet Search Programs
    Okayama and Subaru Planet Search Programs Bun’ei Sato Tokyo Institute of Technology Oct. 7‐9 2009 Searching for Planets around Evolved Intermediate‐Mass Stars Understanding properties of planets as a function of stellar mass, evolutionary stage, etc. (c) Okayama Astrophysical Observatory Why Giants? Distribution of planet‐hosting stars GK giants A4 V BA dwarfs G9 III 0 planets ~30 planets FGK dwarfs ~290 planets M dwarfs ~10 planets Sun East‐Asian Planet Search Network (EAPSNET) Okayama 1.88m tel., Japan 300 GK giants (V<6), since 2001 10 planets and 1 brown dwarf Xinglong 2.16m tel., China & Okayama 100 GK giants (V~6), since 2005 (1 planet and 1 brown dwarf) Bohyunsan 1.8m tel., Korea & Okayama 140 GK giants (V<6.5), since 2005 1 brown dwarf Subaru 8.2m tel., Japan & EAPSNET >200 GK giants (6.5<V<7), since 2006 Several candidates Goal: TUBITAK 1.5m tel., Turkey ~100 planets 50 GK giants (V~6.5), since 2008 from 1000 stars RV Precision with OAO/HIDES 2001~2002 2003~2005 2006~2008 σRV~4m/s Short-term (~weeks) precision is 2m/s (Kambe et al. 2008) Discoveries from EAPSNET Star Name Sp. Type Stellar Stellar Planetary Semi‐ Eccen Metallicity Mass Radius Mass major tricity ([Fe/H]) (M~) (R~) (MJUP) Axis (AU) (dex) HD 119445 G6III 3.9 20.5 37.6 1.71 0.08 +0.04 ε Tau K0 III 2.7 13.7 7.6 1.93 0.15 +0.13 11 Com G8 III 2.7 19 19.4 1.29 0.23 -0.28 81 Cet G5 III 2.4 11 5.3 2.5 0.21 +0.06 18 Del G6 III 2.3 8.5 10.3 2.6 0.08 -0.05 HD 104985 G9 III 2.3 11 8.3 0.95 0.09 -0.35 ξ Aql K0 III 2.2 12 2.8 0.68 0 -0.18 14 And K0 III 2.2 11 4.8 0.83 0 -0.24 HD 81688 K0 III‐IV 2.1 13 2.7 0.81 0 -0.34 HD 173416 G8 III 2.0 13.5 2.7 1.2 0.21 -0.22 6 Lyn K0 IV 1.7 5.2 2.4 2.2 0.13 -0.13 HD 167042 K1 IV 1.5 4.5 1.6 1.3 0.10 +0.00 To be Submitted OAO OAO OAO All of these are subgiants with 1.5-1.7M~ and [Fe/H]=0.0-0.1 Planet Frequency vs.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Luminosity Functions for Old Stellar Systems
    LUMINOSITY FUNCTIONS FOR OLD STELLAR SYSTEMS by Peter Anthony Bergbusch L> ^ B.Sc., University of Saskatchewan, 1974 rACULTY 0 f GRADUATE STotd - M.Sc., University of Regina, 1984 „JL Dissertation submitted in partial fulfillment flr ' ^ DEAN of the requirements for the degree of P DOCTOR OF PHILOSOPHY in the Department of Physics and Astronomy We accept this dissertation as conforming to the required standard Dr. D.A. VandenBerg, Supervisor (Department of P’.ysics and Astronomy) Dr. F.D.A, Hartwick, Departmental Member (Dept, of Physics and Astronomy) Th'. O.J. Pritchet, Departmental Member (Department of Physics and Astronomy) Dr. R.D. McClure, Outside Member (Dominion Astrophysical Observatory) Dr. F.P. Robinsojv-Qutside Member (Department of Chemistry) Dr. II. Srivastava, Outside Member (Department of Mathematics) “ " / ■ —y — • r ----------------------- Dr. ( i.Ci . Fahlman, External Examiner (University of British Columbia) ©PETER ANTHONY BERGBUSCH, 1992 University of Victoria September 1992 All rights reserved. This dissertation may not be reproduced, in whole or in part, by mimeograph or other means, without the permission of the author. 11 Supervisor: Professor Don A, VandenBerg ABSTRACT The potential for luminosity functions (LFs) of post-turnoff stars to constrain basic cluster parameters such as age, metallicity, and helium abundance is examined in this di, sertation. A review of the published LFs for the globular cluster (GC) M92 suggests that the morphology of the transition from the main sequence to the red giant branch (ltGB) is sensitive to these parameters. In particular, a small bump in this region may provide an important age discriminant for GCs. A significant deficiency in the number of stars over a 2 mag interval, just below the turnoff, remains unexplained.
    [Show full text]
  • Download This Article in PDF Format
    A&A 583, A85 (2015) Astronomy DOI: 10.1051/0004-6361/201526795 & c ESO 2015 Astrophysics Reaching the boundary between stellar kinematic groups and very wide binaries III. Sixteen new stars and eight new wide systems in the β Pictoris moving group F. J. Alonso-Floriano1, J. A. Caballero2, M. Cortés-Contreras1,E.Solano2,3, and D. Montes1 1 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain e-mail: [email protected] 2 Centro de Astrobiología (CSIC-INTA), ESAC PO box 78, 28691 Villanueva de la Cañada, Madrid, Spain 3 Spanish Virtual Observatory, ESAC PO box 78, 28691 Villanueva de la Cañada, Madrid, Spain Received 19 June 2015 / Accepted 8 August 2015 ABSTRACT Aims. We look for common proper motion companions to stars of the nearby young β Pictoris moving group. Methods. First, we compiled a list of 185 β Pictoris members and candidate members from 35 representative works. Next, we used the Aladin and STILTS virtual observatory tools and the PPMXL proper motion and Washington Double Star catalogues to look for companion candidates. The resulting potential companions were subjects of a dedicated astro-photometric follow-up using public data from all-sky surveys. After discarding 67 sources by proper motion and 31 by colour-magnitude diagrams, we obtained a final list of 36 common proper motion systems. The binding energy of two of them is perhaps too small to be considered physically bound. Results. Of the 36 pairs and multiple systems, eight are new, 16 have only one stellar component previously classified as a β Pictoris member, and three have secondaries at or below the hydrogen-burning limit.
    [Show full text]
  • Download Article (PDF)
    Baltic Astronomy, vol. 24, 213{220, 2015 VELOCITY DISPERSION OF IONIZED GAS AND MULTIPLE SUPERNOVA EXPLOSIONS E. O. Vasiliev1;2;3, A. V. Moiseev3;4 and Yu. A. Shchekinov2 1 Institute of Physics, Southern Federal University, Stachki Ave. 194, Rostov-on-Don, 344090 Russia; [email protected] 2 Department of Physics, Southern Federal University, Sorge Str. 5, Rostov-on-Don, 344090 Russia 3 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachaevo-Cherkesskaya Republic, 369167 Russia 4 Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Universitetskij pr. 13, 119992 Moscow, Russia Received: 2015 March 25; accepted: 2015 April 20 Abstract. We use 3D numerical simulations to study the evolution of the Hα intensity and velocity dispersion for single and multiple supernova (SN) explosions. We find that the IHα{ σ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that collid- ing SN shells with significant difference in age are responsible for high velocity dispersion that reaches up to ∼> 100 km s−1. Such a high velocity dispersion could be hardly obtained for a single SN remnant. Peaks of velocity disper- sion in the IHα{ σ diagram may correspond to several isolated or merged SN remnants with moderately different ages. Degrading the spatial resolution in the Hα intensity and velocity dispersion maps makes the simulated IHα{ σ di- agrams close to those observed in dwarf galaxies not only in shape, but also quantitatively. Key words: galaxies: ISM { ISM: bubbles { ISM: supernova remnants { ISM: kinematics and dynamics { shock waves { methods: numerical 1.
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • Divinus Lux Observatory Bulletin: Report # 27
    Vol. 9 No. 1 January 1, 2013 Journal of Double Star Observations Page 10 Divinus Lux Observatory Bulletin: Report # 27 Dave Arnold Program Manager for Double Star Research 2728 North Fox Run Drive Flagstaff, AZ 86004 Email: [email protected] Abstract: This report contains theta/rho measurements from 120 different double star systems. The time period spans from 2012.189 to 2012.443. Measurements were obtained using a 20-cm Schmidt-Cassegrain telescope and an illuminated reticle micrometer. This report represents a portion of the work that is currently being conducted in double star astronomy at Divinus Lux Observatory in Flagstaff, Arizona. This article contains a listing of double star the theta value. Perhaps AC warrants further scru- measurements that are part of a series, which have tiny by others in order to determine, more accu- been continuously reported at Divinus Lux Observa- rately, what these parameters actually are. tory, since the spring of 2001. The selected double Some other apparent discrepancies in the star systems, which appear in the table below, have catalog involve the STF 2319 (18277+1918) star sys- been taken exclusively from the 2006.5 version of the tem. To begin with, the measurements for the AC Washington Double Star Catalog, with published components appear to more nearly match the pa- measurements that are no more recent than ten rameters for BC, while the BC measurements appear years ago. There are also some noteworthy items to match the AC parameters. In addition, the theta that are discussed, which pertain to a few of the measurements for AD appear to reflect a quadrant measured systems.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]
  • 195 9Apj. . .130. .629B the HERCULES CLUSTER OF
    .629B THE HERCULES CLUSTER OF NEBULAE* .130. G. R. Burbidge and E. Margaret Burbidge 9ApJ. Yerkes and McDonald Observatories Received March 26, 1959 195 ABSTRACT The northern of two clusters of nebulae in Hercules, first listed by Shapley in 1933, is an irregular group of about 75 bright nebulae and a larger number of faint ones, distributed over an area about Io X 40'. A set of plates of parts of this cluster, taken by Dr. Walter Baade with the 200-inch Hale reflector, is shown and described. More than three-quarters of the bright nebulae have been classified, and, of these, 69 per cent are spirals or irregulars and 31 per cent elliptical or SO. Radial velocities for 7 nebulae were obtained by Humason, and 10 have been obtained by us with the 82-inch reflector. The mean red shift is 10775 km/sec. From this sample, the total kinetic energy of the nebulae has been esti- mated. By measuring the distances between all pairs on a 48-inch Schmidt enlargement, the total poten- tial energy has been estimated. From these results it is concluded that, if the cluster is to be in a stationary state, the average galactic mass must be ^1012Mo. Three possibilities are discussed: that the masses are indeed as large as this, that there is a large amount of intergalactic matter, and that the cluster is expanding. The data for the Coma and Virgo clusters are also reviewed. It is concluded that both the Hercules and the Virgo clusters are probably expanding, but the situation is uncertain in the case of the Coma cluster.
    [Show full text]