Luminosity Functions for Old Stellar Systems

Total Page:16

File Type:pdf, Size:1020Kb

Luminosity Functions for Old Stellar Systems LUMINOSITY FUNCTIONS FOR OLD STELLAR SYSTEMS by Peter Anthony Bergbusch L> ^ B.Sc., University of Saskatchewan, 1974 rACULTY 0 f GRADUATE STotd - M.Sc., University of Regina, 1984 „JL Dissertation submitted in partial fulfillment flr ' ^ DEAN of the requirements for the degree of P DOCTOR OF PHILOSOPHY in the Department of Physics and Astronomy We accept this dissertation as conforming to the required standard Dr. D.A. VandenBerg, Supervisor (Department of P’.ysics and Astronomy) Dr. F.D.A, Hartwick, Departmental Member (Dept, of Physics and Astronomy) Th'. O.J. Pritchet, Departmental Member (Department of Physics and Astronomy) Dr. R.D. McClure, Outside Member (Dominion Astrophysical Observatory) Dr. F.P. Robinsojv-Qutside Member (Department of Chemistry) Dr. II. Srivastava, Outside Member (Department of Mathematics) “ " / ■ —y — • r ----------------------- Dr. ( i.Ci . Fahlman, External Examiner (University of British Columbia) ©PETER ANTHONY BERGBUSCH, 1992 University of Victoria September 1992 All rights reserved. This dissertation may not be reproduced, in whole or in part, by mimeograph or other means, without the permission of the author. 11 Supervisor: Professor Don A, VandenBerg ABSTRACT The potential for luminosity functions (LFs) of post-turnoff stars to constrain basic cluster parameters such as age, metallicity, and helium abundance is examined in this di, sertation. A review of the published LFs for the globular cluster (GC) M92 suggests that the morphology of the transition from the main sequence to the red giant branch (ltGB) is sensitive to these parameters. In particular, a small bump in this region may provide an important age discriminant for GCs. A significant deficiency in the number of stars over a 2 mag interval, just below the turnoff, remains unexplained. A method of interpolating isochrones and LFs accurately from evolutionary se­ quences, from the lower main sequence to the RGB tip, i j discussed. The interpolation schf me is based on primary interpolation points which are identified by the behaviour of the derivative d(logTe#)/d(log t) along an evolutionary sequence. New BV CCD observations, calibrated with Landolt and Graham standard stars, for the old open cluster NGC 2243 and for the bright stars in the GCs NGC 288 and NGC 7099 are presented. The colour magnitude diagram (CMD) of NGC 2243 contains a strong binary star component. Comparisons with the fiducial sequences of the GC 47 Tuc (Hesser et al. 1987) indicate that t! two clusters have similar abundances, while comparisons with the new oxygen-enhanced isochrones (Bergbusch & VandeuBerg 1992) suggest that NGC 2243 has an age of 4-5 Gyr, and a metallicity [Fe/H] - 0.65. The morphology of both the CMD and the LF through the turnoff region cannot be attributed to the merging of the binary and single star sequences, but convective overshooting works m the correct sense to account for the differences between the isochrones and the CMD. For NGC 288 and NGC 7099, excellent overall consistency among the Zero Age Horizontal Branch, isochrone, and LF fits is obtained for cluster ages of 14-16 Gyr. The manifestation of the transition bump in NGC 288’s LF provides a particularly Ill strong constraint 011 the age, since this feature becomes more prominent as the metal licity increases, /t'-method helium abundance estimates give V ~ 0.23 for NGC 288 and F w 0.31 for NGC 7099. The 2nd param eter problem is discussed in light of these results. The RGB bump, present in canonical LFs, is only weakly identified in the cumulative LF (C’LF) of NGC 288, and may not be present at all in NGC 7099’s CLF. However, the brightest RGB stars in both clusters are found within as 0.2 mag of the RGB tip predicted by the oxygen-enhanced models. Examiners: Dr. D.A. VandenBere Dr. F.D.A. Hartwick Dk C.J~Pritchet Dr. R.D. McClure Dr. F.P. Robinson Dr. H. Srivastava / Dr. G.6 . Fahlmafi iv Table of Contents A bstract ii Table of Contents iv List of Tables viii List of Figures ix Acknowledgements xvii C hapter 1 Introduction 1 1.1 The Relevance of Luminosity Functions 1 1.2 The Helium Abundance 9 1.3 M92: An Illustration 13 1.3.1 The Age Luminosity Relations 14 1.3.2 The Luminosity Function Near the Turnoff 17 1.3.3 The Giant Branch Luminosity Function 22 1.3 4 Discussion 23 1.3.5 Conclusions 28 1.4 Scope of the Work 30 C hapter 2 The Construction of Model LFs and Isochrones 31 2.1 Introduction 31 2.2 The Mathematical Formalism 32 2.3 Equivalent Evolutionary Phases (EEPs) 36 2.3.1 The Zero-Age Main-Sequence (ZAMS) 37 2.3.2 Core Hydrogen Exhaustion (CHE) ?8 V 2.3.3 The Blue Hook (BH) 40 2.3.4 Post-Main-Sequence EEPs 41 2.4 Joining the Giant Branch to the Main Sequence Track 45 2.4.1 Idealized Upper Giant Branches 47 2.5 Tests of Interpolation Accuracy 48 C hapter 3 Data Acquisition and Reduction 55 3.1 Observations 55 3.2 Standard Svars 56 3.2.1 Cluster Photoelectric Sequences 64 3.3 Profile-Fitting Photometry of Cluster Fields 67 3.4 Artificial Star Tests 70 3.5 Rectification of the LF 71 C hapter 4 The Old Open Cluster NGC 2243 77 4.1 Introduction 77 4.2 Cluster and Background Fields 79 4.3 Artificial Star Tests 83 4.4 Cluster Members: The Location of the Giant Branch 94 4.5 The Color-Magnitude Diagram 95 4.5.1 Comparison with 47 Tuc 98 4.5.2 Comparison with Isochrones 101 4.6 The Luminosity Function 104 4.7 Discussion 111 vi 4.8 Summary 114 C hapter 5 The Globular Cluster NGC 288 116 5.1 (’luster parameters 116 5.2 Observations 119 5.2.1 Comparison with Other Cluster Photom etry 123 5.3 Artificial Star Tests 125 5.4 Analysis of the CMD 133 5.5 The Luminosity Function 142 5.6 The Helium Abundance 157 5.7 Discussion 159 C hapter 6 The Globular Cluster NGC 7099 162 6.1 Cluster Parameters 162 6.2 Observations 164 6.2.1 Comparisons with Other Cluster Photometry 167 6.3 Artificial Star Tests 171 6.4 Analysis of the CMD 179 6.5 The Luminosity Function 185 6.6 The Helium Abundance 193 6.7 Discussion 197 C hapter 7 Conclusions and Ftature Work 198 References 203 Appendices 210 VH A. NGC 2243 211 B. NGC 288 216 C. NGC 7099 263 vm List of Tables Table 1-1 Apparent Distance Moduli for Various Ages and Compositions 15 Table 3-1(a) Temporal Coefficients 61 Table 3-1 (b) Zero-Points and Zenith Extinctions 61 Table 3-2 NGC 2243 Photoelectric Sequences 66 Table 3-3 NGC288 Photoelectric Sequence 66 Table 3-4 NGC 7099 Photoelectric Sequence 66 Table 4-1 Observing Log (NGC 2243) 81 Table 4-2 Artificial Star Photometric Accuracy (NGC 2243) 89 Table 4-3 Artificial Star Completeness Fractions (NGC 2243) 108 Tabic 4-4 Rectified Luminosity Function (NGC 2243) 108 Table 5-1 Observing Log for NGC 288 120 Table 5-2 Fiducial Sequences for NGC 288 127 Table 5-3 Artificial Star Photometric Accuracy (NGC 288) 131 Table 5-4 Artificicl Star Completeness Fractions (NGC 288) 147 Table 5-5 Rectified Luminosity Function (NGC 288) 149 Table 6-1 Observing Log for NGC 7099 164 Table 6-2 Fiducial Sequences for NGC 7099 174 Table 6-3 Artificial Star Photometric Accuracy (NGC 7099) 176 Table 6-4 Artificial star Completeness Fractions (NGC 7099) 190 Table 6-5 Rectified Luminosity Function (NGC 7099) 192 List of Figures Figure 1-1 The effects of age, helium abundance, and metallicity on model LFs through the turnoff region. Figure 1-2 The effects of age, helium abundance, ;.nd metallicity on RGB LFs. Figure 1-3 The effects of age, helium abundance, and metallicity on RGB CLFs. Figure 1-4 V-magnitude as a function of metallicity for the brightest RGB stars in 33 globular clusters. Figure 1-5 Age-luminosity relations at the turnoff for selected metal-poor LFs. Figure 1-6 A composite LF for the turnoff region of M92, based on data from the literature. Figure 1-7 Theoretical LFs through the turnoff region, normalized at Afy = 2. Figure 1-8 Theoretical LFs through the turnoff region, superimposed on the composite LF for M92. Figure 1-9 Theoretical RGB LFs superimposed on Hai vick’s observed LF for M92. Figure 1-10 Theoretical CLFs superimposed on M92:s RGB CLF. Figure 2-1 The functional relation L — L (M ,t) in the L-M.-1 coordinate frame. Figure 2-2{a) The identification of primary EEPs on the temperature and luminosity derivatives. Figure 2-2(b) Evolutionary sequences with the primary EEPs, as identified in Fig. 2-2(a), indicated. Figure 2-3 The interpolation scheme, based on the primary EEPs identified in Fig. 2-2. Figure 2-4 Comparisons between idealized RGBs and the original sequences computed with the Eggleton code. Figure 2-5 Isochrones interpolated from evolutionary sequences separated by 0.3A4q, compared with those interpolated from the 0.1 M® grid to illustrate the linearity of the interpolation scheme. Figure 2-6(a) Evolutionary sequences and isochrones with approximately the same spacing in the L — Teg plane. Figure 2-6(b) Evolutionary sequences, recovered from the isochrones in 2-6(a) a,’e compared with the original sequences through the turnoff region. Figure 3-1 Correlation between the temporal coefficients «3 and 64 in the photometric transformation equations. Figure 3-2(a) Differences between the observed and standard magnitudes and colours as a function of time.
Recommended publications
  • Download Article (PDF)
    Baltic Astronomy, vol. 24, 213{220, 2015 VELOCITY DISPERSION OF IONIZED GAS AND MULTIPLE SUPERNOVA EXPLOSIONS E. O. Vasiliev1;2;3, A. V. Moiseev3;4 and Yu. A. Shchekinov2 1 Institute of Physics, Southern Federal University, Stachki Ave. 194, Rostov-on-Don, 344090 Russia; [email protected] 2 Department of Physics, Southern Federal University, Sorge Str. 5, Rostov-on-Don, 344090 Russia 3 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachaevo-Cherkesskaya Republic, 369167 Russia 4 Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Universitetskij pr. 13, 119992 Moscow, Russia Received: 2015 March 25; accepted: 2015 April 20 Abstract. We use 3D numerical simulations to study the evolution of the Hα intensity and velocity dispersion for single and multiple supernova (SN) explosions. We find that the IHα{ σ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that collid- ing SN shells with significant difference in age are responsible for high velocity dispersion that reaches up to ∼> 100 km s−1. Such a high velocity dispersion could be hardly obtained for a single SN remnant. Peaks of velocity disper- sion in the IHα{ σ diagram may correspond to several isolated or merged SN remnants with moderately different ages. Degrading the spatial resolution in the Hα intensity and velocity dispersion maps makes the simulated IHα{ σ di- agrams close to those observed in dwarf galaxies not only in shape, but also quantitatively. Key words: galaxies: ISM { ISM: bubbles { ISM: supernova remnants { ISM: kinematics and dynamics { shock waves { methods: numerical 1.
    [Show full text]
  • IRFM T$ {\Sf\Sl Eff}$ Calibrations for Cluster and Field Giants in the Vilnius, Geneva, RI$ {\Sf\Sl (C)}$ and DDO Photometric Sy
    A&A 417, 301–316 (2004) Astronomy DOI: 10.1051/0004-6361:20031764 & c ESO 2004 Astrophysics IRFM Teff calibrations for cluster and field giants in the Vilnius, Geneva, RI(C) and DDO photometric systems I. Ram´ırez1,2 and J. Mel´endez1,3 1 Seminario Permanente de Astronom´ıa y Ciencias Espaciales, Universidad Nacional Mayor de San Marcos, Ciudad Universitaria, Facultad de Ciencias F´ısicas, Av. Venezuela s/n, Lima 1, Per´u 2 Department of Astronomy, The University of Texas at Austin, RLM 15.202A, TX 78712-1083, USA 3 Department of Astronomy, California Institute of Technology, MC 105–24, Pasadena, CA 91125, USA Received 2 May 2003 / Accepted 19 November 2003 Abstract. Based on a large sample of disk and halo giant stars for which accurate effective temperatures derived through the InfraRed Flux Method (IRFM) exist, a calibration of the temperature scale in the Vilnius, Geneva, RI(C) and DDO photometric systems is performed. We provide calibration formulae for the metallicity-dependent Teff vs. color relations as well as grids of intrinsic colors and compare them with other calibrations. Photometry, atmospheric parameters and reddening corrections for the stars of the sample have been updated with respect to the original sources to reduce the dispersion of the fits. Application of our results to Arcturus leads to an effective temperature in excellent agreement with the value derived from its angular diameter and integrated flux. The effects of gravity on these Teff vs. color relations are also explored by taking into account our previous results for dwarf stars. Key words.
    [Show full text]
  • Investigating [X/Fe], Imf and Compositeness in Integrated Models
    INVESTIGATING [X/FE], IMF AND COMPOSITENESS IN INTEGRATED MODELS By BAITIAN TANG A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Physics and Astronomy MAY 2015 c Copyright by BAITIAN TANG, 2015 All Rights Reserved c Copyright by BAITIAN TANG, 2015 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BAITIAN TANG find it satisfactory and recommend that it be accepted. Guy Worthey Ph.D., Chair Sukanta Bose, Ph.D. Matthew Duez, Ph.D. ii ACKNOWLEDGEMENT First and foremost I offer my sincerest gratitude to my advisor, Dr. Guy Worthey, who supported my study and research with motivation, enthusiasm, and immense knowledge. There were times when research funding was scarce, but his optimism, diligence and patience taught me the true meanings of research. Dr. Worthey gave me lots of free space in pursuing the research that interested me, and backed me up with his astrophysical proficiency. I would also like to thank the rest of my committee members: Dr. Sukanta Bose, and Dr. Matthew Duez for their encouragements and comments. Their courses, general relativity and astrophysical fluids, have expanded my eyesight to a much broader horizon. My sincere thanks also go to Dr. Qiusheng Gu and Dr. Zhaohui Shang, who supported my job applications and gave many insightful suggestions. During my Ph.D. study, I have been blessed with a friendly and cheerful group of fellow students. We enjoyed the great life and culture of the northwest.
    [Show full text]
  • Environmental Influences on Dwarf Galaxy Evolution: the Group Environment
    ENVIRONMENTAL INFLUENCES ON DWARF GALAXY EVOLUTION: THE GROUP ENVIRONMENT A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Sabrina Renee Stierwalt February 2010 c 2010 Sabrina Renee Stierwalt ALL RIGHTS RESERVED ENVIRONMENTAL INFLUENCES ON DWARF GALAXY EVOLUTION: THE GROUP ENVIRONMENT Sabrina Renee Stierwalt, Ph.D. Cornell University 2010 Galaxy groups are a rich source of information concerning galaxy evolution as they represent a fundamental link between individual galaxies and large scale structures. Nearby groups probe the low end of the galaxy mass function for the dwarf systems that constitute the most numerous extragalactic population in the local universe [Karachentsev et al., 2004]. Inspired by recent progress in our understanding of the Local Group, this dissertation addresses how much of this knowledge can be applied to other nearby groups by focusing on the Leo I Group at 11 Mpc. Gas-deficient, early-type dwarfs dominate the Local Group (Mateo [1998]; Belokurov et al. [2007]), but a few faint, HI-bearing dwarfs have been discovered in the outskirts of the Milky Way’s influence (e.g. Leo T; Irwin et al. [2007]). We use the wide areal coverage of the Arecibo Legacy Fast ALFA (ALFALFA) HI survey to search the full extent of Leo I and exploit the survey’s superior sensitivity, spatial and spectral resolution to probe lower HI masses than previous HI surveys. ALFALFA finds in Leo I a significant population of low surface brightness dwarfs missed by optical surveys which suggests similar systems in the Local Group may represent a so far poorly studied population of widely distributed, optically faint yet gas-bearing dwarfs.
    [Show full text]
  • The C Star Population of DDO 190,
    A&A 447, 473–480 (2006) Astronomy DOI: 10.1051/0004-6361:20052829 & c ESO 2006 Astrophysics The C star population of DDO 190, P. Battinelli1 and S. Demers2 1 INAF, Osservatorio Astronomico di Roma, Viale del Parco Mellini 84, 00136 Roma, Italia e-mail: [email protected] 2 Département de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada e-mail: [email protected] Received 7 February 2005 / Accepted 6 October 2005 ABSTRACT We have carried out deep R, I, CN, TiO observations of the dwarf irregular galaxy DDO 190. We confirm the existence of an intermediate-age population around this galaxy. The identification of 47 carbon stars seen up to 5 arcmin from the centre of the galaxy implies that the population distribution of DDO 190 is similar to those found in some other Local Group dIrr galaxies. An estimate of the metallicity, [Fe/H] = −1.55 ± 0.12, is obtained based on the observed C/M ratio. From the analysis of star counts, corrected for the radial variation of the incompleteness level, we determine a scale-length α = 40 ± 5, in agreement with the recent literature. Key words. galaxies: individual: DDO 190 – galaxies: dwarf – stars: carbon – stars: AGB and post-AGB – galaxies: fundamental parameters 1. Introduction expect signs of the gravitational collapse of the initial small amplitude perturbation still visible today around isolated dIrrs. Dwarf galaxies play a crucial role in the CDM scenario for galaxy formation, having been suggested to be the nat- DDO 190 (also known as UGC 9240) is a Magellanic ural building blocks from which larger structures are built dwarf, of morphological type Im.
    [Show full text]
  • Joint Meeting of the American Astronomical Society & The
    American Association of Physics Teachers Joint Meeting of the American Astronomical Society & Joint Meeting of the American Astronomical Society & the 5-10 January 2007 / Seattle, Washington Final Program FIRST CLASS US POSTAGE PAID PERMIT NO 1725 WASHINGTON DC 2000 Florida Ave., NW Suite 400 Washington, DC 20009-1231 MEETING PROGRAM 2007 AAS/AAPT Joint Meeting 5-10 January 2007 Washington State Convention and Trade Center Seattle, WA IN GRATITUDE .....2 Th e 209th Meeting of the American Astronomical Society and the 2007 FOR FURTHER Winter Meeting of the American INFORMATION ..... 5 Association of Physics Teachers are being held jointly at Washington State PLEASE NOTE ....... 6 Convention and Trade Center, 5-10 January 2007, Seattle, Washington. EXHIBITS .............. 8 Th e AAS Historical Astronomy Divi- MEETING sion and the AAS High Energy Astro- REGISTRATION .. 11 physics Division are also meeting in LOCATION AND conjuction with the AAS/AAPT. LODGING ............ 12 Washington State Convention and FRIDAY ................ 44 Trade Center 7th and Pike Streets SATURDAY .......... 52 Seattle, WA AV EQUIPMENT . 58 SUNDAY ............... 67 AAS MONDAY ........... 144 2000 Florida Ave., NW, Suite 400, Washington, DC 20009-1231 TUESDAY ........... 241 202-328-2010, fax: 202-234-2560, [email protected], www.aas.org WEDNESDAY..... 321 AAPT AUTHOR One Physics Ellipse INDEX ................ 366 College Park, MD 20740-3845 301-209-3300, fax: 301-209-0845 [email protected], www.aapt.org Acknowledgements Acknowledgements IN GRATITUDE AAS Council Sponsors Craig Wheeler U. Texas President (6/2006-6/2008) Ball Aerospace Bob Kirshner CfA Past-President John Wiley and Sons, Inc. (6/2006-6/2007) Wallace Sargent Caltech Vice-President National Academies (6/2004-6/2007) Northrup Grumman Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) PASCO Robert W.
    [Show full text]
  • The Spatial and Age Distribution of Stellar Populations in DDO
    The spatial and age distribution of stellar populations in DDO 1901 A. Aparicio Instituto de Astrof´ısica de Canarias, E38200 - La Laguna, Tenerife, Canary Islands, Spain N. Tikhonov Special Astrophysical Observatory, Stavropol, Russia ABSTRACT The spatial distribution of stellar populations, the star formation history, and other properties of the dIrr galaxy DDO 190 have been analyzed using color–magnitude diagrams (CMDs) of about 3900 resolved stars and the Hα fluxes of H ii regions. From the mean color index of the red giant branch, a mean metallicity [Fe/H] = −2.0 is obtained. The I magnitude of the TRGB has been used to estimate the distance. DDO 190 is 2.9 ± 0.2 Mpc from the Milky Way, 2.1 Mpc from the M 94 group (CnV-I), 2.4 Mpc from the M 81 group and 2.9 Mpc from the barycenter of the Local Group, all indicating that it is an isolated, field galaxy. The surface-brightness distribution of the galaxy is well fitted by ellipses of ellipticity e = 1 − a/b = 0.1 and P.A. = 82◦. The radial star density distribution follows an exponential law of scale length α = 43′′. 4, corresponding to 611 pc. The B ′ Holmberg semi-major axis to µB = 26.5 is estimated to be r26.5 = 3.0. Stellar populations of different ages in DDO 190 show strong spatial decoupling, the oldest population appearing much more extended than the youngest. Stars younger than 0.1 Gyr occupy only the central 40′′ (0.55 kpc); stars younger than a few (∼ 4) Gyr extend out to ∼ 80′′ (125 kpc), and for larger galactocentric distances only older stars seem to be present.
    [Show full text]
  • Fy05 Accomplishments and Fy06 Plans Helmut A. Abt
    Appendix A NOAO SCIENTIFIC STAFF: FY05 ACCOMPLISHMENTS AND FY06 PLANS ¬New appointment in FY05 S Non-NSF (external) funding ±Term ended in FY05 HELMUT A. ABT, Emeritus Astronomer Research Interests Evolutionary stellar problems, stellar characteristics, publication studies FY05 Accomplishments Abt and C. Boonyarak (U. Thailand) studied rotation velocities of stars in binaries. It was known that those with periods shorter than several days all have synchronized rotational and orbital motions. They found that binaries with periods up to 500 days have reduced rotational velocities due to tidal interactions. Abt found that the eccentricities in binaries vary from zero in close binaries to an average of 0.5 in binaries with periods greater than 1000 days. In the initial formation of binaries, all eccentricities are equally probable. FY06 Plans Abt is trying to understand the hot inner disks that occur around, at any one time, one-quarter of the rapidly- rotating A dwarfs. These disks have no connection with the outer cool dust disks found around many stars like Vega and beta Pictoris. These disks come and go on time scales of decades. Such stars do not occur in the low-density Local Interstellar Bubble, so they are material accreted from the interstellar medium. Theoretical aspects of the physical processes is being done with M. Marlborough (U. Western Ontario). TAFT E. ARMANDROFF, Astronomer (Director, NOAO Gemini Science Center) Research Interests Stellar populations in the Galaxy and nearby galaxies; dwarf spheroidal galaxies; globular clusters FY05 Accomplishments Armandroff has been studying the dwarf spheroidal satellite galaxies of M31 in collaboration with Da Costa (RSAA/ANU), Pritzl (Macalester), and Jacoby (WIYN).
    [Show full text]
  • The Observed Properties of Dwarf Galaxies in and Around the Local Group
    The Astronomical Journal,144:4(36pp),2012July doi:10.1088/0004-6256/144/1/4 C 2012. National Research Council Canada. All rights reserved. Printed in the U.S.A. ! THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP Alan W. McConnachie NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada; [email protected] Received 2011 December 22; accepted 2012 April 2; published 2012 June 4 ABSTRACT Positional, structural, and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates reliably placing them within 3 Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the quasi-isolated dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies that are found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups, such as Maffei, Sculptor, and IC 342. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, such as distances, velocities, magnitudes, mean metallicities, as well as structural and dynamical characteristics, are collated, homogenized (as far as possible), and presented in tables that will be continually updated to provide a convenient and current online resource.
    [Show full text]
  • Download Article (PDF)
    Baltic Astronomy, vol. 6, 499-572, 1997. CLASSIFICATION OF POPULATION II STARS IN THE VILNIUS PHOTOMETRIC SYSTEM. II. RESULTS A. Bartkevicius1 and R. Lazauskaite1 '2 1 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 2 Department of Theoretical Physics, Vilnius Pedagogical University, Studenty. 39, Vilnius 2340, Lithuania Received April 20, 1997. Abstract. The results of photometric classification of 848 true and suspected Population II stars, some of which were found to be- long to Population I, are presented. The stars were classified using a new calibration described in Paper I (Bartkevicius & Lazauskaite 1996). We combine these results with our results from Paper I and discuss in greater detail the following groups of stars: UU Herculis-type stars and other high-galactic-latitude supergiants, field red horizontal-branch stars, metal-deficient visual binaries, metal- deficient subgiants, stars from the Catalogue of Metal-deficient F-M Stars Classified Photometrically (MDPH; Bartkevicius 1993) and stars from one of the HIPPARCOS programs (Bartkevicius 1994a). It is confirmed that high galactic latitude supergiants from the Bartaya (1979) catalog are giants or even dwarfs. Some stars, identified by Rose (1985) and Tautvaisiene (1996a) as field RHB stars, appear to be ordinary giants according to our classification. Some of the visual binaries studied can be considered as physical pairs. Quite a large fraction of stars from the MDPH catalog are found to have solar metallicity. A number of new possible UU Herculis-type stars, RHB stars and metal-deficient subgiants are identified. Key words: techniques: photometric - stars: fundamental para- meters (classification) - stars: Population II 500 A.
    [Show full text]
  • Hubble Sees a Lonely Galactic Island 20 August 2012
    Hubble sees a lonely galactic island 20 August 2012 from our solar system. It is considered part of the loosely associated Messier 94 group of galaxies, not far from the Local Group of galaxies that includes the Milky Way. Canadian astronomer Sidney van der Bergh was the first to record DDO 190 in 1959 as part of the DDO catalog of dwarf galaxies. Although within the Messier 94 group, DDO 190 is on its own. The galaxy's nearest dwarf galaxy neighbor, DDO 187, is thought to be no closer than three million light-years away. In contrast, many of the Milky Way's companion galaxies, such as the Large and Small Magellanic Clouds, reside within a fifth or so of that distance, and even the giant spiral of the Andromeda Galaxy is closer to the Milky Way Image Credit: ESA/Hubble & NASA than DDO 190 is to its nearest neighbor. Hubble's Advanced Camera for Surveys captured this image in visible and infrared light. The field of (Phys.org) -- In terms of intergalactic real estate, view is around 3.3 by 3.3 arcminutes. our solar system has a plum location as part of a big, spiral galaxy, the Milky Way. Numerous, less A version of this image was entered into the glamorous dwarf galaxies keep the Milky Way Hubble's Hidden Treasures Image Processing company. Many galaxies, however, are Competition by contestant Claude Cornen. Hidden comparatively isolated, without close neighbors. Treasures is an initiative to invite astronomy One such example is the small galaxy known as enthusiasts to search the Hubble archive for DDO 190, snapped here in a new image from the stunning images that have never been seen by the NASA/ESA Hubble Space Telescope.
    [Show full text]
  • The Local Group Timing Argument
    The Local Group Timing Argument •Real galaxies Milky Way (MW) Andromeda (M31) Indranil Banik ([email protected]) Supervisor: Hongsheng Zhao University of Saint Andrews MNRAS, 459 (2), 2237 – 2261 Governing Equations r In a homogeneous Universe: r a() t .. .. a GM()()r r GM r r r r MW MW M31 M 31 a 3 3 r rMW r r M 31 Can derive this from General Relativity (flat Universe assumed) Governing Equations r In a homogeneous Universe: r a() t .. .. a GM()()r r GM r r r r MW MW M31 M 31 a 3 3 r rMW r r M 31 Can derive this from General Relativity (flat Universe assumed) Model assumptions • All objects following Hubble flow at early time (no peculiar velocity) – spherical symmetry initially • Mass dominated by MW & M31 • MW – M31 orbit is radial (Sohn et. al., 2012) Local group axisymmetric • Test particles can’t start too close to MW or M31 – an equipotential is drawn which encloses the initial MW + M31 mass in a homogeneous Universe. Test particles starting within this equipotential are discarded. Close approaches • Particles that approach MW or M31 too closely are accreted and increase mass of accreting galaxy. • Force from MW and M31 is r -1 at short range (but r -2 at long range). This is to match their observed flat rotation curves. Model deficiencies • Interactions between LG dwarf galaxies not included. Would likely have caused a velocity dispersion of ~15 km/s (Kirby et. al., 2014) • Might be good to include M33 • Tides from distant galaxies might matter a little (though we included Cen A directly and regions too close to other
    [Show full text]